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Full nucleation control for deposited functional molecules on prepatterned surfaces is of major technological
relevance. To understand the nucleation behavior we combine the numerical solution for the evolution of the
adatom concentration with standard nucleation theory. From the qualitative change in nucleation behavior upon
variation in the pattern spacing and coverage we show why the quality of nucleation control can vary signifi-
cantly in different parameter regimes. In some limits analytical expressions can be formulated for the nucle-
ation control. Our analysis provides a theoretical explanation for previous experimental observations
�Wang et al., Phys. Rev. Lett. 98, 225504 �2007��.
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The controlled fabrication of nanostructures is a techno-
logically highly demanding and interesting topic. In this con-
text, techniques based on lithography and etching, have be-
come very sophisticated over the past decades. However,
with the advent of functional organic molecules in micro-
electronics, one faces the problem that this technique is often
not applicable to this class of substances. At this point the
concept of template-directed growth becomes interesting: in
this technique the areas of desired accretion are marked in
some fashion to favor the adsorption of the functional sub-
stance, which is subsequently deposited. There exists a num-
ber of methods to generate these preferred sites; see, e.g.,
Refs. 1–8.

From a technical point of view one is interested in exclu-
sive accretion of the deposited substance at the predefined
sites and no additional nucleation. The predefined sites dis-
play a regular quadratic arrangement �size of unit cell: p2;
see inset of Fig. 1�. To provide a quantitative means of evalu-
ation, the nucleation control can be expressed by

xN ª

1

1 + R
�1�

with R representing the number of additional nucleated clus-
ters per unit cell. Additionally, to be able to relate theory and
experiment the length scales are renormalized by

� ª��A

N
�

u
to p̃ ª

p

�
, �2�

where �N /A�u represents the overall island density of an un-
patterned substrate. For p̃�1 the influence of the predefined
sites on the nucleation processes can be neglected so that the
nucleation properties just follow the standard nucleation
theory; see, e.g., Refs. 9–13. In contrast, for dense patterns
with p̃�1 all nucleation occurs at the predefined sites �xN
�1�.1,14

The transition regime p̃�1 is of particular interest. First,
from an experimental/technological view one needs to under-
stand how far the range of complete nucleation control ex-
tends to large pattern sizes. Second, from a theoretical per-
spective new phenomena come into play as compared to

standard nucleation theory because of the interplay of the
nucleation tendency and the drainage of the adatoms by the
predefined sinks. The complexity of this regime is also high-
lighted in Fig. 1 where the results of previous computer
simulations8,14 and experiments are displayed.8 In the experi-
ments the surface had been prepatterned by a gold dot.
Whereas the simulations display nucleation control in the
regime p̃�1 the experiments show a loss of nucleation con-
trol at pattern spacings significantly below � �i.e., p̃�1�.
What is the interpretation of these differences?

In this paper we present the theoretical basis of nucleation
control and, in particular, reveal the influence of the
experimental-deposition time scale. For a clear identification
of the physical mechanisms we employ a minimum model
which considers particle deposition at flux F and subsequent
surface diffusion with diffusion constant D. Adatoms are ei-
ther included by the predefined sites, acting as perfect sinks,
or, if the distance between the sites p or F /D is too large,
start to form additional nuclei �R� aside of these locations.
Since we are interested in the key mechanisms, we neglect
possible desorption processes. Naturally, the presence of the

FIG. 1. Comparison of experimental ��� and simulated ���
nucleation control xN for different pattern spacings p̃ from Ref. 8.
While the simulated curve shows a retention of nucleation control
for p̃�1, the experimental curve exhibits an early loss at p̃ signifi-
cantly smaller than unity. In the inset the parameters of the model
are defined.
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predefined site renders the temporal evolution of nucleation
behavior completely different as compared to standard nucle-
ation theory.

To evaluate this temporal evolution on a prepatterned sub-
strate a simulation technique similar to the level-set methods
of Refs. 15–18 was applied. This algorithm is far more effi-
cient as compared to the previous atomistic Monte Carlo
simulations.8,14 It is based on the numerical solution of the
adatom diffusion equation

�c�x�
�t

= D�2c�x� + F �3�

by discretization in time and space. The generation of new
nuclei follows the concepts of standard nucleation theory.9–11

The local rate and hence also the chance of nucleation Sj,t on
the grid point j at time t with the next time step �t is given
by

Sj,t = k�cj,t/c0�i�+1�x�y�t , �4�

where i�+1 represents the number of adatoms in the first
stable two-dimensional nucleus and k and c0 are parameters
which characterize the nucleation probability. The
parameters19 were adjusted such that we obtained a typical
distance of about 50 grid points between nuclei in the steady-
state regime of the unpatterned case. For the definition of a
length scale in our simulations we have introduced the length
scale u, where u /2 describes the distance of two adjacent
grid points. Equation �3� is supplemented by the boundary
condition csink=0 at the positions of nuclei.

Commonly �see, e.g., Refs. 15–17�, a new nucleus is gen-
erated when Q�t�, defined via Q=	 j,tSj,t exceeds an integer
value. However, the deterministic nature of the first nucle-
ation event introduces a bias during a critical phase of this
simulation.20 More specifically, we observe a steplike behav-
ior when analyzing the time dependence of the additional
nuclei. Thus, the small but finite probability to generate a
first nucleus for still relatively small concentrations is not
captured and would, thus strongly modifies the behavior for
small R. This problem is circumvented with the following
Monte Carlo type algorithm: at every time step, St=	iSi,t is
spatially integrated and in combination with sufficiently
small �t provides St�t�1. This chance is then compared to
a random number 0�r�1 resulting in nucleation for r
�St�t. In a successful event the new nucleus is placed sto-
chastically according to the individual Si,t.

A simulation run consists of one quadratic unit cell of the
surface pattern with length p as shown in the inset of Fig. 1,
using periodic boundary conditions. We have explicitly
checked that the xN vs p̃ plot does not display any finite-size
effects. The finite-size effects, reported in literature,21 occur
in a regime where p��. However, due to the additional
predefined site in our setup further nucleation is strongly
suppressed in this regime. This is the underlying reason for
the absence of finite-size effects. Each data point results from
averages over 200–1500 independent simulations. All sys-
tems are subject to the same flux F and a value of i�=4.14

Similar to Refs. 22 and 23 we represent the predefined sites
as a single grid point on our discretized simulation lattice,

acting as a perfect sink. The same holds for newly generated
nuclei. In this way a predefined or generated nucleus pos-
sesses an effective area u2 /4. The sinks remain to be con-
fined to their initial position and do not expand any further.
Since we are mainly interested in the formation of the first
additional nucleus beyond the initial predefined site no dif-
fusion of clusters is of relevance in the present analysis. The
remaining effects due to a larger effective radius of the pre-
defined site have been already discussed in Ref. 14. Experi-
mentally, the area � occupied by an adatom is, of course,
much smaller than that of the pattern. Consequently, the ratio
� /u2 is orders of magnitude smaller than unity �O�10−4��
and the resulting values for the coverage 	, which are given
below in units of � /u2, hence correspond to submonolayer
growth.

For good nucleation control the nucleus density of the
prepatterned surface �N /A�pt has to be lower than that of the
unpatterned counter part �N /A�u. In what follows we com-
pare the temporal evolution of these densities for several
patterned systems of different p complemented by an unpat-
terned reference system; see Fig. 2. The unpatterned system
�solid line� possesses the characteristic shape expected from
standard nucleation theory:10: The beginning shows a
transient-time regime of rapid nucleation, dominated by local
super saturation. However, as the surface becomes saturated
with nuclei, the overall concentration decreases and the sys-
tem enters the regime of steady-state nucleation. Mechanis-
tically, the comparatively slow nucleation rate of this regime
can be attributed to statistical fluctuations in the adatom con-
centration.

With respect to the patterned surfaces Fig. 2 allows the
following observations: �a� for comparably large p �see, e.g,
p /u=90� the behavior of the patterned systems resembles
that of the unpatterned counter part but as by construction
there already exists one dot at the beginning of the simula-
tion and �b� the systems start off at a density of �N /A�pt�t
=0�� �N /A�u�t=0�=0. As growth commences, however, the
permanent adatom depletion by the pattern leads to an effec-
tively smaller nucleation rate such that �c� the patterned sur-
faces approach the unpatterned long-time behavior from be-
low. �d� Furthermore, as p becomes smaller �p /u=50,40� the

FIG. 2. Evolution of the nucleus densities N /A with growing
time. Shown are surfaces of different prepatterned densities �with
p /u indicated by the numbers� as well as the unpatterned reference
system �solid line�.

FELIX KALISCHEWSKI AND ANDREAS HEUER PHYSICAL REVIEW B 80, 155421 �2009�

155421-2



s-shaped part of the curve is stretched in time corresponding
to a slower transition through the rapid nucleation regime.
This effect increases to the point that �e� at sufficiently low
pattern spacing, e.g., p /u=32.5, the s shape becomes unrec-
ognizable and �N /A�pt remains significantly below �N /A�u
within the considered time scale. �f� Finally, p can be de-
creased to the point where �N /A�pt�t=0� becomes so large
that the unpatterned long-time behavior above the unpat-
terned case.

Returning to the question of nucleation control, Eq. �1�
can, with the help of Eq. �2�, be rewritten as

xN = �N

A
�

u
�t�/�N

A
�

pt
�t, p̃�

1

p̃2 . �5�

A surface can hence only lie above xN= p̃−2 and show re-
tained nucleation control if �N /A�u / �N /A�pt�1. Specifically
this means that because of �b� the nucleation control at the
beginning of the experiment is always very low but due to
�c� and �d� this changes with increasing time for all patterns
up to �f�.

The corresponding nucleation control can be found in Fig.
3: at low coverage �	=60 � /u2� the unpatterned surface
does not yet show significant nucleation and hence the vast
majority of patterned systems exhibits a higher nucleus den-
sity, which in turn results in an early loss of nucleation con-
trol, indicated by a curve in the lower left segment of the
figure. As time increases, however, and the regime of rapid
nucleation begins around 	=70 � /u2, the unpatterned
nucleation density commences to exceed its patterned coun-
terparts leading to an increasing number of systems under
nucleation control and hence to a crossing of the xN= p̃−2

diagonal closer to p̃=1. As the unpatterned surface reaches
the beginning of the steady-state nucleation regime, nucle-
ation control becomes most pronounced which can be seen
from the curve corresponding to 	=100 � /u2. Past this
point the slow convergence of all patterned nucleus densities

to that of the unpatterned surface results again in a decrease
in nucleation control. All this effects together mean that at
fixed p̃ one has a nonmonotonous dependence of xN on 	.
Note that upon changing the coverage the onset of nucleation
control can vary as much as a factor of 2 with respect to the
critical-pattern density �relative to the respective value of ��.

Two limits can be treated more quantitatively. First, in the
limit of low coverage and large p �	p2=const� the growth of
additional nuclei is not influenced by the predefined site.
Thus one has �N /A�pt= �N /A�u+ p−2, which yields xN=1 / �1
+ p̃2�. This limit is included in Fig. 3.

Second, further analysis is possible when the first nucleus
is formed from a stationary concentration profile. As shown
in Ref. 14 for fixed parameters one can find a critical time
scale tc such that for t� tc the stationary concentration profile
is reached. For this condition to be applicable it is important
that nucleation can be neglected for times smaller than t or,
equivalently, R�1 at time t. The time scale tc scales like
p2.14 In this scenario one can derive the relation

R 
 	p̃f , �6�

where f can be calculated from knowledge of the stationary
concentration field, which was done numerically in Ref. 14.

In Fig. 4 we have replotted xN�p̃� as R�p̃�. At the lower
limit �R�0.002� one has on average one nucleation event in
500 realizations which is already hard to identify numeri-
cally with sufficient precision. In this representation one can
clearly see that Eq. �6� is recovered for small values of p̃.
This nice agreement with the theoretical expectation, includ-
ing the value of f , reflects the fact because for a given time
scale of the experiment the stationarity condition is always
fulfilled in the limit of small p and correspondingly small tc.
Furthermore the linearity with respect to 	 is reflected in the
linear increase in �N /A� for small p in Fig. 2. Interestingly,
the applicability range of this power law strongly depends on
the coverage: while at 	=60 � /u2 the relation only holds
for values less than R�0.05, for larger coverage the power
law nearly holds up to the theoretical limit of R=1. This can
be easily understood from analyzing R at the time scale tc,

60

100

350

FIG. 3. Nucleation control xN with increasing coverage
	 / �� /u2�=60���, 100���, and 350���. At relatively low coverage
the patterns display an early loss of nucleation control �xN�. How-
ever, as the unpatterned reference system passes into the steady-
state nucleation regime, nucleation control becomes most pro-
nounced. With further increasing time the curves converge to the
dotted limit. The low-coverage limit xN=1 / �1+ p̃2� is indicated by
the broken line.

FIG. 4. Additionally formed nuclei R�p̃� at increasing coverage
	 / �� /u2�=60���, 100���, and 350���. The theoretical expecta-
tion for the static case according to Ref. 14 �R
 p̃f with f =13.2� is
represented by the dashed lines. The regime of retained nucleation
control is indicated in gray.
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introduced above. Joining together Eq. �6� and the relation
tc
 p2 one obtains R�tc�
 tc

f/2. Indeed, one observes a dra-
matic increase in the range of applicability of Eq. �6� upon
increasing the coverage. Of course, at the latest the power-
law scaling has to break down when R approaches 1.

Based on these considerations we can conclude the fol-
lowing: the experimentally observed early loss of nucleation
control as depicted in Fig. 1 fully agrees with the general
understanding of the mechanisms governing template-
directed growth and can be attributed to dynamic effects. In
particular, this effect is caused by a different temporal evo-
lution of the nucleus density on the patterned and unpat-
terned substrates as analyzed in this work. Whereas for the
stationary case our model can be treated analytically, as al-
ready shown in Ref. 14, the general situation has been ana-
lyzed via computer simulations in this work. Unpatterned
substrates or patterns of very large p show a distinct separa-
tion between the transient and the steady-state regime, which
mechanistically corresponds to nucleation by super satura-
tion or by statistical aggregation, respectively. With decreas-
ing pattern spacing, however, the transient regime becomes

dilated until it is phenomenologically as well as mechanisti-
cally indiscernible from steady-state nucleation. In the com-
monly used representation, which is normalized by an unpat-
terned surface, this leads to the effect that initially the
majority of patterned systems exhibits an early loss of nucle-
ation control. This changes, however, as the unpatterned sur-
face approaches the end of the transient regime which leads
to maximal nucleation control close to the beginning of
steady-state nucleation. Thus, a consistent picture of the in-
fluence of the distance of the patterns as well as the experi-
mental time scale on nucleation control can be formulated.
This is of particular relevance for the understanding of the
formation of nanostructure on surfaces. Evidently, also more
complex situations such as noncircular patterns can be ana-
lyzed within the present model approach.
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