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We study the low-energy properties of a triangular triple quantum dot connected to two noninteracting leads
in a wide parameter range, using the numerical renormalization group �NRG�. Various kinds of Kondo effects
take place in this system depending on the electron filling Ntot, or the level position �d of the triple dot. The
SU�4� Kondo behavior is seen in the half-filled case Ntot�3.0 at the dip of the series conductance, and it causes
a charge redistribution between the even and odd orbitals in the triangle. We show generally that the quasi-
particle excitations from a local Fermi-liquid ground state acquire a channel symmetry at zero points of the
two-terminal conductance, in the case the system has time-reversal and inversion symmetries. It causes the
SU�4� behavior at low energies, while the orbital degeneracy in the triangle determines the high-energy
behavior. At four-electron filling Ntot�4.0, a local S=1 moment emerges at high temperatures due to a
Nagaoka ferromagnetic mechanism. It is fully screened by the electrons from the two conducting channels via
a two-stage Kondo effect, which is caused by a difference in the charge distribution in the even and odd
orbitals.
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I. INTRODUCTION

The Kondo effect in quantum dots is an active field of
current research.1–4 It has been studied in various situations,
such as Aharanov-Bohm �AB� rings,5–8 tunneling junctions
coupled to superconducting hosts,9–15 and a number of mul-
tidot and multiorbital systems.16–19 Due to the variety of
combinations of quantum dots that can be fabricated, and
their high tunability, it is possible to study novel interplays
between the strong electron correlation and quantum-
mechanical interference effects. These were once studied as
different topics in the field of the condensed matter physics.

The triangular triple quantum dot �TTQD� is an interest-
ing system, which can demonstrate various types of the
Kondo effects depending on an external field, the electron
filling Ntot, and so on.20,21 For instance, a closed path along
the triangle under a magnetic field can work as an AB
interferometer.20 Also in the case four electrons occupying
the cluster of the triple dot, Ntot=4.0, the closed loop induces
a local S=1 moment due to a Nagaoka ferromagnetic
mechanism.21 Furthermore, the orbital degrees of freedom
cause a sharp conductance dip appearing at half-filling Ntot
=3.0,21 which links to the SU�4� Kondo effects. These fea-
tures distinguish the TTQD from a linear chain of three
quantum dots,22–27 and from the other three-level
systems.28–33 Experimentally, triple quantum-dot systems
have been realized in AlGaAs/GaAs heterostructure,34–36

self-assembled InAs,37 and a single wall carbon nanotube.38

The triangular trimmer of Cr atoms placed upon an Au sur-
face is also a related system.39–41

The TTQD has a big parameter space to be explored, and
the number of the conducting channels which are coupled to
the triangle also gives interesting variations in low-energy
properties.42–45 In Refs. 43 and 44 the TTQD’s connected,
respectively, to two leads43 and one lead44 were studied. The
main interest in these two recent works was the behavior at

half-filling Ntot�3.0, but the effects of the gate voltage �d
which varies the electron filling in the TTQD were not ex-
amined. The other recent report Ref. 45 addresses the effects
of �d in the cases of the two and three leads, but the param-
eter region examined was restricted to a small interaction U
and a large dot-lead coupling �. In the previous works we
studied the TTQD connected to two leads,21,42 and showed
that the various types of the Kondo behavior clearly take
place at different values of the gate voltage. The calculations
were carried out, however, for a typical but just one param-
eter set which describes a large U and small � situation.

The purpose of the present work is to study the feature of
the Kondo behavior in the TTQD connected to two leads in a
wide parameter range. To this end, we calculate the conduc-
tance and scattering phase shifts at zero temperature, making
use of the numerical renormalization group �NRG�. Further-
more, we calculate also the TTQD contributions to the
entropy and spin susceptibility, and from their temperature
dependence we deduce the Kondo energy scale. Our results
reveal the precise features of the Kondo behavior in a wide
parameter region of the electron filling Ntot, interaction U,
and the hybridization energy scale �. For instance, the S=1
moment is fully screened at low temperatures via two sepa-
rate stages by the conduction electrons from the two nonin-
teracting leads, which break the C3v symmetry of the tri-
angle. The two-stage screening process reflects the charge
distribution in the even and odd orbitals which are classified
according to the parity. It is confirmed that the S=1 Kondo
behavior can be seen in a wide parameter region for Ntot
=4.0. It is robust against the perturbations the typical energy
of which is less than the finite energy separation between the
Nagaoka and the first excited states for the triangular cluster.
Specifically, the S=1 Kondo behavior is not sensitive to the
deformations of the TTQD caused by the inhomogeneities in
the level positions and the interdot hopping matrix elements.

We show also that the fixed-point Hamiltonian, which de-
scribes the low-lying quasiparticle excitations from a local
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Fermi-liquid ground state, acquires an SU�2� symmetry be-
tween the even and odd channels at zero points of the two-
terminal conductance, in the case that the system has time-
reversal and inversion symmetries. It means that if the phase
shifts for the even and odd channels satisfy the condition
�e−�o=n� for n=0, �1, �2, . . ., then the low-energy be-
havior can be characterized by an SU�4� symmetric Fermi-
liquid theory with the channel and spin symmetries, even if
the original Hamiltonian does not have the SU�4� symmetry
on a global energy scale. This happens quite generally for
multidot and multiorbital systems. In the case of the TTQD
connected to two conducting channels, there are three zero
points at most. Particularly, the one at half-filling Ntot=3.0
shows a pronounced behavior as a sharp dip in the Kondo
plateau.21,42 At this zero point the system has an SU�4� sym-
metry not only at low energies but also at high energies,
which is caused the orbital degeneracy in the cluster of the
regular triangular. These symmetric properties cause the
SU�4� Kondo behavior46–49 seen in a wide temperature
range.42 Away from this zero point at the dip the NRG results
of the thermodynamic quantities show that the channel sym-
metry is broken at low temperatures, and we observe the
SU�2� Kondo behavior due to the spin. We find also that the
sharp dip structure of the series conductance does not disap-
pear from the Kondo plateau, even in the presence of infini-
tesimal deformations which break the C3v symmetry, al-
though the position of the dip shifts from the middle of the
plateau as the deformation increases.

We study also the characteristic temperature T�, at which
a crossover to a singlet ground state take place, for a wide
range of the electron filling Ntot. The result shows that T�

becomes high at the conductance dip for Ntot=3.0 due to the
SU�4� Kondo behavior. It is enhanced also at a mixed-
valence point, where the ground-state energy for Ntot=3.0
and that for Ntot=4.0 coincide. Furthermore, the screening
temperature T� increases as the hybridization energy scale �
increases, which would raise the experimental accessibility
to the low-temperature Fermi-liquid region.

The paper is organized as follows. In Sec. II, we give the
outline a description of the model and the formulation. In
Sec. III, we describe the low-energy channel symmetry that
the fixed-point Hamiltonian acquires at the zero point of the
two-terminal conductance. The NRG results for the ground-
state properties are presented in Sec. IV. The results for tem-
perature dependence of the TTQD contributions of entropy
and spin susceptibility are presented in Sec. V. The effects of
the deformations which breaks the triangular symmetry are
discussed in Sec. VI. A summary is given in Sec. VII.

II. FORMULATION

In this section we describe the model and the formulation
which we have employed in the present work. We also de-
scribe some particular characteristics of the triangular triple
dot in the two solvable limits, �=0 and U=0, in order to see
the essential ingredients that cause the various Kondo effects
taking place in this system.

A. Model

We start with a three-site Hubbard model on a triangle
that is connected to two noninteracting leads on the left �L�

and right �R�, at the sites labeled by i=1 and i=ND��3�,
respectively, as illustrated in Fig. 1�a�. The Hamiltonian is
given by

H = Hdot
0 + Hdot

U + Hmix + Hlead, �1�

Hdot
0 = − �

�ij�

ND

�
�

tij�di�
† dj� + dj�

† di�� + �
i=1

ND

�
�

�d,idi�
† di�, �2�

Hdot
U = U�

i=1

ND

nd,i↑nd,i↓, nd,i� � di�
† di�, �3�

Hmix = �
�

�vLd1,�
† CL� + vRdND,�

† CR� + H.c.� , �4�

Hlead = �
�=L,R

�
k�

�kck��
† ck��. �5�

Here, di�
† creates an electron with spin � at the ith site in the

dot, �d,i the onsite energy in the dot, and U the Coulomb
interaction. The hopping matrix elements tij between the dots
are chosen to be positive �tij 	0�. The conduction electrons
near the dots, C����kck�� /�N, can tunnel into the triangle
via the hybridization term Eq. �4�, which causes the level
broadening ����
v�

2, with 
 the density of states of the
leads. In the present work we consider the equal-coupling
case �L=�R����, namely, vL=vR��v�, and assume that the
system has an inversion symmetry taking �d,1=�d,3���d�,
t12= t23��t�, and t13��t��. We shall refer to the dot at i=2 in
Fig. 1 as the apex site �d,2��apex, and choose the Fermi
energy EF as the origin of the energy EF=0.

B. Cluster of the triangular triple dot

In order to see some characteristic features of the system,
we first of all discuss a cluster of a triangular triple dot,
described by Hdot

0 +Hdot
U . The eigenstates and energies of this

cluster give us a clue to understand the high-energy proper-
ties of the system. To be specific, we consider a regular tri-
angle case, choosing �apex=�d and t�= t.

In the noninteracting case the one-particle states of Hdot
0

can be labeled by a wave number k�=0, �2� /3�, and the
eigenvalues are given by Ek

�1�=−2t cos k+�d,

(a)

�

� ��
�
�

�
�

�

v vt′

t t

1 3

2

(b) �

�

�

�
�

�
�

v√
2

v√
2

v√
2

v√
2

1

3

2t′
t

t

FIG. 1. Triangular triple quantum dot in �a� series and �b� par-
allel configurations. The dot labeled with i=2 is referred to as the
apex site, which has no direct connection to the leads.
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Ek=0
�1� = − 2t + �d, Ek=�2�/3

�1� = t + �d. �6�

The excited states, for t	0, are degenerate with respect to
k= �2� /3. This degeneracy brings interesting varieties to
the Kondo effects depending on the occupation number Ntot,
or �d, which can be controlled by the gate voltage. In the case
that the number of electrons is Ntot=3, namely at half-filling,
the ground state for the triangular cluster has the fourfold
degeneracy due to the orbital and spin degrees of freedoms.
This is because the first two electrons occupy the one-
particle state for k=0, and then for the third electron there
are four possible ways to occupy one of the orbitals of k
= �2� /3 with the spin �= ↑ ,↓. The fourfold degeneracy
emerges also for a finite Coulomb interaction Hdot

U , and could
cause the SU�4� Kondo behavior.

In the case that one additional electron is introduced into
the triangular cluster, the ground state of Hdot

0 +Hdot
U for a

four-electron occupation Ntot=4 becomes a triplet with the
total spin S=1 for U	0 �see also Appendix A�. This is
caused by the Nagaoka ferromagnetic mechanism,50 and the
energy separation �E�4��ES=0

�4� −ES=1
�4� between the ground

state ES=1
�4� =U−2t+4�d and the lowest singlet excited state

ES=0
�4� is given by

�E�4� =
1

2
	U + 3t − �9t2 + U2 + 2Ut
 . �7�

Note that �E�4�	0 for U	0, and in the two extreme limits
at small and large U it takes the form

�E�4� � �U/3, 0 � U  t

t , 0 � t  U
� . �8�

For weak repulsions, an infinitesimal U lifts the degeneracy
of the singlet and triplet states in the noninteracting ground
state. In the opposite limit, for large U the circular motion
along the triangle favors the magnetic S=1 ground state, and
the energy separation �E�4� is determined by the hopping
matrix element t. If the cluster of the TTQD is connected to
the leads, the local magnetic moment will be screened by the
conduction electrons showing the two-stage Kondo behavior
described in Sec. V.

As the level position �d decreases further, the occupation
number of the electrons increases. The ground-state energy
E0

�5� for a five-electron occupation and that for six electrons
E0

�6� are given by

E0
�5� − ES=1

�4� = E0
�6� − E0

�5� = U + t + �d. �9�

Specifically, at the point where the level in the TTQD �d
takes the value of �d=−U− t, the ground-state energies for
the three different fillings, Ntot=4 ,5, and 6, coincide. Thus
the occupation number jumps from Ntot=4 to 6, as �d crosses
this value.

C. Phase shifts, conductances, and Friedel sum rule

The charge transfer between the dots and leads makes the
low-energy states of the whole system a local Fermi liquid,
which can be described by renormalized quasiparticles. Par-
ticularly, in the case where the system has an inversion sym-

metry �L=�R, the ground-state properties are characterized
by the two phase shifts, �e and �o, for the quasiparticles with
the even and odd parities. At zero temperature, the series
conductance gs in the two-channel configuration, which is
shown in Fig. 1�a�, and the average number of electrons in
the triple dots can be expressed, respectively, in the form of
a Landauer formula and the Friedel sum rule,23,51

gs =
2e2

h
sin2��e − �o� , �10�

Ntot � �
i=1

3

�
�

�di�
† di�� =

2

�
��e + �o� . �11�

Furthermore, the parallel conductance gp for the current
flowing along the horizontal direction in the four-terminal
geometry, which is shown in Fig. 1�b�, can also be obtained
from these two phase shifts

gp =
2e2

h
�sin2 �e + sin2 �o� . �12�

The phase shifts can be expressed in terms of the renormal-
ized matrix element t̃i j,

23,24 �see also Appendix B�

− t̃i j = − tij + �d,i�ij + Re �ij
+�0� , �13�

where �ij
+�0� is the self-energy due to the interaction Hdot

U .
Specifically in the inversion symmetric case, the renormal-
ized matrix element t̃i j for i , j�=1,2 ,3� inside the TTQD
takes the form

− t̃i j� = � �̃d − t̃ − t̃�

− t̃ �̃apex − t̃

− t̃� − t̃ �̃d
� , �14�

and the two phase shifts are given, respectively, by

cot �e =
�̃d − t̃� − 2t̃2/�̃apex

�
, cot �o =

�̃d + t̃�

�
. �15�

As a simple example, the conductances, the phase shifts, and
the occupation number Ntot in the noninteracting case �ij

+

=0 are plotted in Fig. 2 as functions of �d, for �apex=�d, t�
= t and � / t=0.12. We see in the upper panel �a� that the
parallel conductance gp shows the peaks as the one-particle
states defined in Eq. �6� cross the Fermi level, namely, at the
values of �d which satisfy Ek

�1�=0. We can see that the series
conductance gs has a zero point at �d=−t. This is due to the
destructive interference, which reflects the value of the phase
shifts �e=3� /2 and �o=� /2 at this point. The overall �d
dependence of the phase shifts 2�e /�, 2�o /� and local
charge Ntot defined in Eq. �11� are shown in the lower panel
�b�. The phase shifts show a step of the height � as one
resonance state crosses the Fermi level. Correspondingly the
local charge also shows a staircase behavior. Note that two
electrons with spin up and down enter the resonance state
simultaneously in the noninteracting case. Among the three
one-particle states k=0 and �2� /3, the lowest one with k
=0 is an even-parity state, so that the even phase shift �e
takes the first step at �d�2t. Then at �d�−t electrons enter
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the other two one-particle states which can be classified into
even and odd states.

D. Even and odd orbitals

The noninteracting Hamiltonian H0�Hdot
0 +Hmix+Hlead

can be written in a diagonal form, using the even-odd basis

a1� �
d1� + d3�

�2
, b1� �

d1� − d3�

�2
, �16�

and a0��d2�. Here, for the linear combinations the labels 0
and 1 are assigned in the way that is shown in Fig. 3. The
couplings to the two leads by � break the C3v symmetry of
the regular triangle, and lift the degeneracy of the even and
odd states. In order to see this, we consider the spectral func-
tions defined by

Ae��� = −
1

�
Im���a0�;a0�

† ��� + ��a1�;a1�
† ���� , �17�

Ao��� = −
1

�
Im��b1�;b1�

† ���, �18�

where ��Ô ; P̂����−i�0
�dtei��+i0+�t�Ô�t� , P̂�� is the retarded

Green’s function. These spectral functions for noninteracting
electrons, U=0, are plotted in Fig. 4 as functions of � for
� / t=0.12 and �d=0.0. The odd component Ao��� has a
single peak at �� t, and its width is wider than that of the
peak of Ae��� emerging at the same position. This is because
on the resonance at �� t the spectral weight of Ae��� is
dominated by the component of the apex site a0, which is
situated away from the leads, as shown in Fig. 3. In contrast,
Ao��� represents the spectral weight of the level b1, which is
directly connected to one of the leads. This geometry of the
triangle and the two leads in the even-odd basis causes the
difference in the peak width. If the level position is lowered
from �d=0.0 which is the value chosen for Fig. 4, the peaks
move toward the left side in the figure. As the two resonance
states approach the Fermi energy �=0, the third electron
enters the odd-resonance state first rather than the even one,
because of the difference in the peak width. Then, both the
resonance states become singly occupied when the two peaks
just reach �=0. Correspondingly, the phase shifts take the
values �e=3� /2 and �o=� /2, and the series conductance
has a dip at �d / t=−1.0 in Fig. 2.

The interaction Hamiltonian defined in Eq. �3� can be
rewritten, using the even-odd basis, in the form

Hdot
U = Una,0↑na,0↓ +

U

2
�na,1↑na,1↓ + nb,1↑nb,1↓�

+
U

2
�1

2
na,1nb,1 − 2S�a,1 · S�b,1�

+
U

2
�a1↑

† a1↓
† b1↓b1↑ + b1↑

† b1↓
† a1↓a1↑� . �19�

Here, S�a,i=����ai�
† �� ���ai�� /2, �� the Pauli matrices, na,i�

=ai�
† ai�, and na,i=��na,i�. The operators nb,1� and S�b,1 for the

odd orbital b1� are defined in the same way. We see in Eq.
�19� that the interaction contains some long-range compo-
nents between a1 and b1 orbitals. Specifically, the last two
terms in the right-hand side describe a charge transfer which

FIG. 2. �Color online� Conductances, phase shifts, and the fill-
ing Ntot of the triple dot in the noninteracting case U=0.0 are plot-
ted vs �d / t for a regular triangle t�= t, �apex=�d, and � / t=0.12.

�

�

�

√
2t v

v
εa0 εa1

εb1

a0

a1

b1

“a, even”

“b, odd”

FIG. 3. Even and odd orbitals: the onsite potential of each or-
bital is given by �a0=�apex, �a1=�d− t�, and �b1=�d+ t�.

FIG. 4. �Color online� Spectral functions Ae��� and Ao��� for
noninteracting electrons U=0.0, for �d=0.0, t�= t, �apex=�d, and
� / t=0.12. The even and odd components are defined in Eqs.
�16�–�18�.
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breaks the charge conservation in each of the even and odd
channels. Thus for U�0, each of the phase shifts �e and �o
does not necessarily correspond, respectively, to �na,0
+na,1�� /2 and �nb,1�� /2. The Friedel sum rule given in Eq.
�11� holds in a way such that �e+�o= �na,0+na,1+nb,1�� /2.

III. LOW-ENERGY SU(4) SYMMETRY AT ZERO POINTS
OF CONDUCTANCE

In this section we show that the low-lying excitations ac-
quire a special symmetry between channels at the zero points
of the series conductance. This is a general property of a
Fermi-liquid fixed point for a quantum-impurity system con-
nected to two conduction channels. To be specific, we con-
sider the case that the system has time-reversal and inversion
symmetries. We use the discretized Hamiltonian HN of NRG
�Refs. 52 and 53� �see also Appendix C� in this section not
for a numerical purpose, but for showing explicitly the sym-
metric properties that emerge in a finite-size spectrum.

The two phase shifts �e and �o for interacting electrons
can be deduced from the fixed-point eigenvalues of the dis-
cretized Hamiltonian HN defined in Eq. �C1�, following the
procedure described in Ref. 23. Conversely, for some par-
ticular values of the phase shifts, one can deduce that the
system captures a special symmetry asymptotically at low
energies. Particularly at the zero points of the series conduc-
tance, the low-lying energy spectrum for the even �s-wave�
and odd �p-wave� channels become identical near the Fermi
energy. It means that the quasiparticles of the local Fermi
liquid acquire the channel degeneracy as well as the spin
degeneracy.

In order to see this, we go back briefly to a few essential
points of the NRG. At a Fermi-liquid fixed point the low-
lying energy spectrum of the many-body Hamiltonian HN
defined in Eq. �C1� can be reproduced by a discretized ver-
sion of free quasiparticle Hamiltonian Heff

�N�,

Heff
�N� � ��N−1�/2�H̃dot + Hmix + Hlead

�N� �

= �
�=↑,↓

�
�=e,o

�
l

�l�
�N��l,��

† �l,��. �20�

Here, the renormalized TTQD part, H̃dot, in the first line is
defined in Eq. �B6�. The second line is a diagonal form, for
which ��=e,o� is the channel index, and the label l is a
quantum number for the eigenstates in each channel. The
ground state for Heff

�N� can be constructed in a such way that
all the states for �l�

�N��0 are filled by the �l,�� particles, and
the excitation energy �l�

�N� of the quasiparticles near the Fermi
level can be determined from the fixed-point eigenvalues of
HN.52,53

The phase shifts can be expressed as ��=−cot �� in terms
of the parameter �� which determines the value of a Green’s
function at the Fermi energy, as shown in Eq. �B8�. The
value of this parameter �� can be deduced from the quasi-
particle energy spectrum �l�

�N�,23

�� =
2A�

�
lim
N→�

D��N−1�/2gN��l�
�N�� . �21�

Here, A� is a coefficient which is defined in Eq. �C4�, D is
the half-width of the conduction band, and gN��� is a local
Green’s function at the interface n=0 of the discretized ver-
sion of the noninteracting lead Hlead

�N� given in Eq. �C3�. The
Eq. �21� represents the relation between the phase shift and
the low-energy quasiparticle spectrum in each channel �.
The right-hand side of Eq. �21� converges to the same value
of �� for any l, as long as �l�

�N� is an excitation energy near
the Fermi energy of the quasiparticles �l,��. Specifically, it is
not necessary that �l�

�N� should be the lowest excitation en-
ergy, although the lowest one is preferable for a numerical
purpose to make the corrections due to a residual interaction
between the quasiparticles small.54

One can deduce conversely the properties of the low-
energy spectrum from the values of �e and �o, using Eq.
�21�. Particularly at zero points of the series conductance, the
phase shifts satisfy the condition �e−�o=n� for n
=0, �1, �2, . . .. This is equivalent to �e=�o, and thus from
Eq. �21� it is deduced that the low-lying energy spectrum for
the even and odd channels become identical for large N,
namely, �l,e

�N�=�l,o
�N� for all l near the Fermi level of the quasi-

particles. Thus the quasiparticles acquire a rotational symme-
try in the channel �flavor� space asymptotically at low ener-
gies, in addition to the rotation symmetry of the spin.
Therefore, Heff

�N� has a SU�4� symmetry at the zero points of
the series conductance.

In the special case �e=0 and �o=0, which correspond to
�e= �n+1 /2�� and �o= �n�+1 /2�� for integer n and n�, the
low-lying energy states have a particle-hole symmetry in ad-
dition to the channel symmetry, because the lead Green’s
function in the right-hand side of Eq. �21� is an odd function
of the frequency gN�−��=−gN���, due to the particle-hole
symmetry of Hlead

�N� .
There are some other interesting cases in the unitary limit,

at which the series conductance reaches gs=2e2 /h. If the two
phase shifts take the values of �e= �n�1 /4�� and �o
= �n��1 /4��, then �� becomes �e= �1 and �o= �1. There-
fore in this case the low-energy excitations acquire a
particle-hole symmetry between a particle �hole� in the even
channel and a hole �particle� in the odd channel, although
there is no channel symmetry in this case. It can also be
deduced from Eq. �21� that for the other set of the phase
shifts, �e= �n+1 /2�� and �o=n��, particle-hole symmetry
holds in each channel at low energies.

IV. GROUND-STATE PROPERTIES

We have carried out the NRG calculations in order to
study the effects of the interaction on the transport and mag-
netic properties. Specifically we concentrate on the regular
triangle case, for which �d=�apex and t�= t in the following.
We will examine the effects of the deformations of the regu-
lar triangle caused by �apex and t� in Sec. VI.

The ratio of the interdot hopping matrix element t and the
half-width of the conduction band D are chosen typically to
be t /D=0.1 in most of our calculations. The iterative diago-
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nalization has been carried out by using the even-odd basis.
For constructing the Hilbert space at each NRG step, instead
of adding two orbitals from even and odd orbitals simulta-
neously, we add the one from the even part first and retain
3600 low-energy states after carrying out the diagonalization
of the Hamiltonian. Then, we add the other orbital from the
odd part, and again keep the lowest 3600 eigenstates after the
diagonalization. This truncation procedure preserves the in-
version symmetry. We have chosen the discretization param-
eter to be �=6.0. It has been confirmed that the conductance
for noninteracting electrons U=0 is reproduced sufficiently
well with this calculation scheme.22–24

A. Results at a small � and large U

The phase shifts and conductances for a relatively weak
coupling � / t=0.12 and strong interaction U / �2�t�=1.0 are
plotted as functions of �d /U in Fig. 5. The number of elec-
trons Ntot in the triangle increases with decreasing �d. It
shows plateaus for Ntot=1 ,2 ,3, and 4, and then jumps to
Ntot�6.0 at �d�−1.16U without taking a step for Ntot�5.0.
The same behavior has already been seen in the case of the
triangular cluster, for which the ground-states energies for
the three different fillings, Ntot=4 ,5 and 6, coincide at �d=
−t−U, as mentioned in Sec. II B. The vertical dashed lines in
�a� correspond to the values of �d at which the local charge
varies discontinuously in the limit of �=0. We can see that
the staircase behavior of Ntot in this small � case is essen-
tially determined by the one in this isolated limit.

The triangular triple dot has the S=1 local moment due to
the Nagaoka ferromagnetic mechanism at the plateau for
Ntot�4.0, as mentioned in Sec. II A. This moment is
screened at low temperatures by the conduction electrons
from the two leads, and the ground state of the whole system
becomes a singlet. We can see in Fig. 5�b� that the two con-
ductances show a significant difference at this filling Ntot
�4.0. At −1.15U��d�−0.85U the parallel conductance
reaches the unitary limit of two conducting channels gp
�4e2 /h, while the series conductance gs is suppressed. We
have seen a similar difference between gp and gs for U=0
near the peaks at �d=−t in Fig. 2�a�. We can see in Fig. 5�a�
that the two phase shifts are locked at the value �e�3� /2

and �o�� /2 in the wide region −1.15U��d�−0.85U, due
to the Coulomb interaction. Therefore in this region, both the
even and odd channels give a unitary-limit contribution to
the four-terminal conductance gp, while the destructive inter-
ference reduces the two terminal conductance gs.

The difference between the two phase shifts �e−�o is
shown in Fig. 6. It crosses the value of � at �d /U�−1.15,
−0.88, and −0.59. At these three points the series conduc-
tance becomes zero. The series conductance must have a
maximum between two adjacent zero points, and thus a fine
structure of gs seen at −1.2U��d�−1.1U can be regarded as
one such example. It should be noted that in the noninteract-
ing case only a single zero point appears as �d varies 	see
Fig. 2�a�
.

In most of the other regions of the electron filling, the
series and parallel conductances show a similar �d depen-
dence. For instance, both the two conductances show a pla-
teau with the value 2e2 /h for 0.15U��d�0.3U in Fig. 5�b�.
This Kondo behavior is caused by a S=1 /2 moment of a
single electron which occupies the lowest even-parity orbital
with the energy Ek=0

�1� . Then, for −0.3U��d�0.1U, two elec-
trons fill the lowest orbital, and both the series and parallel
conductances are suppressed. As �d decreases further, for
−0.58U��d�−0.3U, the third electron enters the odd orbital
corresponding to the site b1 which is illustrated in Fig. 3. The
moment due to the third electron causes the SU�2� Kondo
effect in this region.

We can see in Fig. 5�b� that there is a sharp dip in the
series conductance at �d�−0.59U in the middle of the pla-
teau for Ntot�3.0. This reflects a sudden change of the two
phase shifts, seen in Fig. 5�a�. Near the series conductance
dip, the difference between the two phase shifts �e−�o varies
from � /2 to 3� /2 continuously, taking the middle value of
� at the zero point of gs. In contrast, the sum of the two
phase shifts does not show a significant change, and is al-
most a constant �e+�o�3� /2 which corresponds to the oc-
cupation number Ntot�3.0. Thus the parallel conductance
varies very little in this narrow region, keeping the value
gp�2e2 /h. Furthermore, the two phase shifts take the value
�o�� /4 and �e�5� /4 at the zero point of gs in the center
of the dip. These values of the phase shifts are consistent

(b)(a)

FIG. 5. �Color online� Plots of NRG results as functions of �d /U
for U / �2�t�=1.0, � / t=0.12, t�= t, and �apex=�d. �a�: the local
charge Ntot, the phase shifts 2�e /� and 2�o /�. �b�: the series �� �
and parallel ��� conductances. The vertical dashed lines in �a� cor-
respond to �d, at which Ntot in the limit of �=0 varies discontinu-
ously. At the zero point of the series conductance for �d�−0.59U,
the phase shifts take the values �o�� /4 and �e�5� /4. Inset in �b�
shows the region near the zero point of gs.

FIG. 6. �Color online� Difference between the two phase shifts
2��e−�o� /� is plotted vs �d /U for U / �2�t�=1.0, for several values
of � / t ��� 0.12 �� � 0.25, and ��� 0.5. At the points where the
lines cross the horizontal line of �e−�e=�, the series conductance
gs becomes zero.
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with the one reported for a capacitively coupled double dot
with a single electron in an SU�4� symmetric limit.46 As
mentioned in Sec. III, the quasiparticle excitations have
channel degeneracy as well as the spin degeneracy generally
at zero points of the series conductance, and the system has
an SU�4� symmetry of a Fermi-liquid origin at low energies.
In the case of the TTQD, the system also has an SU�4� sym-
metry of a different origin at high energies, which is caused
by the fourfold degenerate eigenstates of the isolated trian-
gular cluster with three electrons, mentioned in Sec. II B. We
will see in Sec. V from the results of the thermodynamic
quantities that the fourfold degenerate local degrees of free-
dom remain free at high temperatures, and are screened at
low temperatures by the conduction electrons keeping the
SU�4� symmetric behavior.

The sudden change of the two phase shifts also implies
that a charge redistribution takes place in the TTQD. One
might expect from the behavior of �e and �o that the third
electron moves away from the odd orbital to enter the second
even orbital for −0.8U��d�−0.6U. Each of the two phase
shifts, however, does not necessarily correspond to the occu-
pation number of the orbitals of each parity, Neven��na,0
+na,1� or Nodd��nb,1�, in the interacting case U�0, as men-
tioned in Sec. II D. For this reason, we have calculated also
the expectation value of �na,i� and �nb,1� with the NRG in
order to clarify precisely the charge distribution. The results
are presented in Fig. 7. We see that an intuitive estimate,
which assumes Neven�2�e /� and Nodd�2�o /�, approxi-
mately works for �d�−0.85U and −0.6U��d. For instance,
the third electron really enters into the odd orbital to take the
occupation number of the value, �nb,1��1.0, for −0.58U
��d�−0.4U on the right side of the series conductance dip.
Such a separation of the Friedel sum rule, however, does not
make sense in the central region. We can see for −0.75
��d /U�−0.6 that the local charges are redistributed be-
tween the even and odd orbitals, and take the values �na,0�
�1.0, �na,1��1.5, and �nb,1��0.5. Thus Neven�2.5 and
Nodd�0.5, while the phase shifts take the values 2�e /�
�3.0 and 2�o /��0.0. Furthermore, at the zero point of the

series conductance the phase shifts take the values �o
�� /4 and �e�5� /4 as mentioned, while the occupation
number for the even and odd orbitals become �na,0��1.0,
�na,1��1.28, and �nb,1��0.72.

The charge distribution in real space can also be deduced,
using the operator identities nd,2�na,0 and nd,1+nd,3=na,1
+nb,1 which follow from the definition in Eq. �16�,

�nd,1� = �nd,3� = �na,1 + nb,1�/2. �22�

We have confirmed that the numerical value of �na,0� and
�na,1+nb,1� /2 are very close in the whole region of �d plotted
in Fig. 7. Thus the occupation number of the apex site, �nd,2�,
is not much different from �nd,1�, or �nd,3�. Consequently, for
small �, the charge distribution is almost homogeneous in
real space. The charge inhomogeneity in the even-odd basis,
however, affects the transport and magnetic properties very
much. This is because the orbitals a1 and b1 are connected
directly to the leads as shown in Fig. 3, while the apex site
does not have a direct connection to the leads.

We can see also at −1.15U��d�−0.83U in Fig. 7 that
four electrons in the TTQD are distributed in the even and
odd orbitals such that �na,0��1.3, �na,1��1.7, and �nb,1�
�1.0. These values are close, respectively, to 4/3, 5/3, and 1,
which are the occupation numbers in the cluster limit �=0
�see Appendix A�.

B. Large � cases

The conductances and phase shifts discussed in the above
are the results obtained for a relatively small hybridization
� / t=0.12. For this reason the structures of the plateaus and
valleys can be seen very clearly. We next examine how the
strength of the couplings � between the triangle and two
leads affects the ground-state properties. For comparison
with the data shown in Fig. 5, we have carried out the cal-
culations for several larger values of � keeping the interac-
tion U the same value of U / �2�t�=1.0. The results are
shown in Fig. 8. The couplings are chosen such that � / t
=0.25 for �a� and �b�, and � / t=0.5 for �c� and �d�.

As a general trend, the structures seen in the phase shifts
and conductances are smeared gradually as the couplings get
stronger. We see in the upper panels �a� and �b� of Fig. 8,
however, that the structures are still distinguishable by eye in
the case of � / t=0.25, and the feature of each line can be
compared with the corresponding line in Fig. 5. Specifically,
for Ntot�3.0 the broadening makes the dip of the series con-
ductance near �d�−0.6U wider. This structure reflects the
behavior of the phase shifts at −0.8U��d�−0.6U in Fig.
8�a�. In this region the odd phase shift �o still shows a clear
concaving valley, although it becomes shallower than that in
the case of Fig. 5�a�. This valley is smeared further in the
case of � / t=0.5, and the fine structure of gs at −0.8U��d
�−0.6U is not visible in Fig. 8�d�. Particularly, the conduc-
tance plateau on the left side of the dip almost vanishes. We
can see, nevertheless, in Fig. 6 that the difference between
the two phase shifts �e−�o for � / t=0.5 crosses the value of
� at �d /U�−0.73, −0.82, and −1.15. It means that there still
exist three zero points of the series conductance, and gs has a
weak maximum between the two adjacent zero points.

FIG. 7. �Color online� Filling of even and odd orbitals, �na,0�,
�na,1�, and �nb,1� are plotted vs �d /U for U / �2�t�=1.0 and � / t
=0.12. The dashed lines correspond to the phase shifts 2�e /� and
2�o /�. Just at the zero point, �d�−0.59U, of the series conduc-
tance in the middle of the crossover region the phase shifts take the
values �o�� /4, �e�5� /4, and three electrons distribute in these
orbitals as �na,0��1.0, �na,1��1.28, and �nb,1��0.72.
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In contrast to the series conductance gs, the parallel con-
ductance gp is less sensitive to �. Particularly, we can see
that in Fig. 8 that the broad peaks of gp at Ntot�4.0 and
Ntot�1.0 keep their essential features seen in the small �
case in Fig. 5. This is because the energy gain of the Na-
gaoka state �E�4�, which is defined in Eq. �7�, is of the order
of the interdot hopping matrix element t for large U. It takes
a value of �E�4� / t=0.735 for U / �2�t�=1.0, and thus in the
present case �E�4� / t is still much larger than the energy scale
of the hybridization � / t=0.5.

We can also see another quantitative change in Fig. 8�d�
that the difference between gp and gs at Ntot�1.0 becomes
visible for large �. A similar tendency was seen also for the
conductances of a linear triple dot.23

C. Small U cases

We next consider the ground-state properties for weak
interactions. For comparison with the case of Fig. 5, we have
carried out the calculations, taking U smaller than U / �2�t�
=1.0 and choosing the same value of � / t=0.12 for the hy-
bridization. The results are plotted in Fig. 9; the upper panels
�a� and �b� for U / �2�t�=0.5, and the lower panels �c� and �d�
for U / �2�t�=0.2. The vertical dashed lines in the panels �a�
and �c�, show the values of the �d at which the occupation
number Ntot changes in the isolated limit �=0.

We can see that the area for three-electron filling becomes
broad as U increases. Note that in the noninteracting case the
occupation number Ntot does not take the steps at Ntot
�1.0,3.0 and 4.0 as shown in Fig. 2�b�. Therefore the effects
of the Coulomb interaction are particularly important for
these electron fillings. The conductance peak at Ntot�1.0
becomes wider as U increases, and the peak shape deviates
from a simple Lorentzian form which is seen in Fig. 2�b� for
U=0. This is caused by the SU�2� Kondo effects due to the
moment of a single electron occupying the local one-particle
state Ek=0

�1� in the triangle, as mentioned.

We see in �a� and �b� of Fig. 9 that the overall feature of
the phase shifts and the conductances for U / �2�t�=0.5 are
similar to the those for U / �2�t�=1.0 shown in Fig. 5. For
instance, the dip structure of the series conductance is clearly
seen for Ntot�3.0 in �b�, which reflects the behavior of the
phase shifts at −0.8��d /U�−0.6 in Fig. 9�a�. Particularly,
the peak of gs on the left side of the dip is caused by a
concaving behavior of �o. The occupation number Ntot, how-
ever, no longer shows a clear staircase behavior at three-
electron filling for U / �2�t�=0.5. Correspondingly, we see
in Fig. 9�b� that the parallel conductance gp has a shoulder
behavior, instead of a well-defined plateau, at −0.8��d /U
�−0.6.

These plateau and valley structures almost disappear for
the smaller interaction U / �2�t�=0.2, as shown in the lower
panels �c� and �d� of Fig. 9. Specifically, the region for three-
electron filling, which corresponds to −1.2��d /U�−1.1,
becomes very narrow, as mentioned. Nevertheless, we have
confirmed that the difference between the two phase shifts
�e−�o crosses the value of � at the points �d /U�−1.2, −1.4,
and −1.7, which correspond to the zero points of gs. The
series conductance has a weak peak between the two adja-
cent zero points, although it is not visible on the scale of Fig.
9.

The parallel conductance at four-electron filling, which is
shown in �b� and �d� of Fig. 9, keeps the features of the S
=1 Kondo behavior seen for larger U in Fig. 5. This is be-
cause the Coulomb interaction is still larger than the interdot
hopping matrix element t, even for U / �2�t�=0.2. Corre-
spondingly, we can see in Fig. 9�c� that the even phase shift
shows a clear plateau behavior for �e�3� /2 at −1.7
��d /U�−1.3, although the odd phase shift �o behaves mod-
erately. Note that the energy gain of the Nagaoka state is
given by �E�4�=0.319t for U / �2�t�=0.2, and �E�4�=0.563t
for U / �2�t�=0.5. Therefore, in both of these two cases the
energy �E�4� is greater than ��=0.12t�, and it makes the S
=1 Kondo behavior robust.

(b)(a)

(c) (d)

FIG. 8. �Color online� Phase shifts and conductances for large
hybridizations �upper panels� � / t=0.25 and �lower panels� � / t
=0.5; U / �2�t�=1.0 is fixed. The vertical dashed lines in �a� and �c�
correspond to �d, at which Ntot in the limit of �=0 varies
discontinuously.

(b)(a)

(c) (d)

FIG. 9. �Color online� Phase shifts and conductances for small
values of U �upper panels� U / �2�t�=0.5 and �lower panels�
U / �2�t�=0.2; � / t=0.12 is fixed. The vertical dashed lines in �a�
and �c� correspond to �d, at which Ntot for �=0 varies
discontinuously.
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V. THERMODYNAMIC QUANTITIES

We present the NRG results for the magnetic susceptibil-
ity and the entropy of the TTQD in this section. The Kondo
behavior in a wide energy scale can be investigated from the
temperature dependence of these thermodynamic quantities.
Particularly, we study how the screening of the local moment
is completed in the case of the S=1 high-spin Nagaoka state
at Ntot�4.0. We investigate also the SU�4� Kondo behavior,
which takes place at the series conductance dip in the middle
of the plateau at Ntot�3.0.

A. Entropy and spin susceptibility

The free energy of the whole system consisting of the dots
and leads is given by F=−T log	Tr e−H/T
. The contribution
of the quantum dots to this free energy can be extracted, by
subtracting the contribution of the noninteracting leads,
Flead=−T log	Tr e−Hlead/T
, from the total free energy,52

�F � F − Flead. �23�

Then, the entropy S and the spin susceptibility � due to the
dots can be obtained from

S � −
��F

�T
, � � −

�2�F

�H2 . �24�

Here, the magnetic field H is introduced both for the dots and
leads, adding the Zeeman energy Hex to the Hamiltonian H
defined in Eq. �1�,

Hex = − �
i=1

3

�nd,i↑ − nd,i↓�H − �
�=L,R

�
k

�ck�↑
† ck�↑ − ck�↓

† ck�↓�H .

�25�

These thermodynamic quantities can be evaluated using the
eigenvalues of the discretized Hamiltonian of the NRG.52

B. Screening of S=1 Nagaoka high spin

The entropy S and 4�T are plotted in Fig. 10�a� as func-
tions of log�T /D� for a parameter set, U / �2�t�=1.0 and �d
=−1.01U, which corresponds to the middle of the charge

step for Ntot�4.0 in Fig. 5. We can see that the screening of
the spin S=1 local moment is achieved via two separate
stages. The first and second stages take place at T /D�10−8

and T /D�10−29, respectively. At high temperatures 10−7

�T /D�10−3, the entropy shows a plateau of the value of
S� log 3, which represents the contribution of a free un-
screened S=1 moment. Then, at intermediate temperatures
10−27�T /D�10−10, the entropy takes the other value S
� log 2 corresponding to a spin 1/2 moment. In this region,
the spin susceptibility also shows a Curie behavior 4�T
�1.0⇒4s�s+1� /3 with a coefficient s=1 /2 due to a free
spin. Therefore in the intermediate temperature region, half
of the S=1 moment is screened by the conduction electrons
from one of the channel degrees of freedom, and the local
moment is still in an underscreened situation with the re-
maining free spin of s=1 /2. The full screening is completed
at low temperature of the order T /D�10−30 in the case of
Fig. 10�a�. This crossover energy scale to the low-energy
Fermi-liquid regime can be regarded as a Kondo temperature
for the S=1 local moment in the present case. We refer to the
crossover energy scale to the singlet ground state as the
screening temperature T�, and use this definition for a wide
range of electron filling 0�Ntot�6.

The reason that the two stages are required to reach the
Kondo singlet state can be understood from the distribution
of the S=1 moment in the triangular triple dot. Specifically
in the limit of �=0, the partial moment ma/b,i, which consti-
tutes the S=1 moment as shown in appendix A, distributes in
the even-odd orbitals a0, a1, and b1 with the weights 1/3, 1/6,
and 1/2, respectively. Among the three orbitals, a1 and b1 are
coupled directly to the lead, as illustrated in Fig. 3. There-
fore, the partial moments in these two orbitals can be
screened directly by the conduction electrons at the first
stage. In contrast, the other orbital a0 has no direct tunneling
matrix element to the leads, and thus the partial moment in
the a0 orbital has to be screened indirectly by the conduction
electrons coming over the a1 orbital which is already filled
up to �na,1��1.7, as mentioned in Sec. IV A. This amount of
the occupation number is caused mainly by the difference
between the onsite potential �a0=�d and �a1=�d− t in the
even-odd basis, namely, �a1 is deeper than �a0 �see also Ap-
pendix A�. Therefore, in this situation the charge and spin
fluctuations must be nearly frozen in the a1 orbital, and the
screening temperature for the partial moment in the apex site
a0 becomes low. These features of the screening at the sec-
ond stage are analogous to those of a superexchange mecha-
nism.

We see in Fig. 10�a� that the essential feature of the
screening can be observed either in S or T�. At the transient
regions, however, S varies more clearly than T� does. There-
fore, in order to see how the Coulomb interaction U affects
the two-stage screening of the S=1 moment at Ntot�4.0, the
entropy S is plotted in Fig. 10�b� for several values of U,
choosing the parameter set �U / �2�t� ,�d /U� in a way such
that it corresponds to the middle of the plateau of the parallel
conductance, solid line: �1.5, −0.99�, dashed line: �1.0,
−1.01�, dotted line: �0.5, −1.01�, and dash-dot line: �0.2,
−1.52�. The hybridization is chosen to be � / t=0.12. Note
that the ground-state properties for these two small U cases
were presented in Fig. 9. We see in Fig. 10�b� that the cross-

(b)(a)

FIG. 10. �Color online� Entropy S and spin susceptibility 4T� in
the middle of the charge step for Ntot�4.0 are plotted vs log�T /D�
for t�= t, �apex=�d, and � / t=0.12, where D the half-width of the
conduction band. In �a� both S and 4T� are plotted for U / �2�t�
=1.0 and �d=−1.01U. In �b� entropy is plotted for several values of
U: �dash-dot line� U / �2�t�=0.2, �d=−1.52U, �dotted line�
U / �2�t�=0.5, �d=−1.01U, �dashed line� U / �2�t�=1.0, �d=
−1.01U, and �solid line� U / �2�t�=1.5, �d=−0.99U.

KONDO EFFECTS IN A TRIANGULAR TRIPLE QUANTUM… PHYSICAL REVIEW B 80, 155330 �2009�

155330-9



over temperature decreases as U increases. Particularly, the
second screening stage is more sensitive to U than the first
stage which occurs at higher temperature. We can also see
that the crossover temperature of the first stage and that of
the second one become close for small U. For instance, the
two stages take place almost successively for U / �2�t�=0.2.
Note that the value of the coupling between the TTQD and
leads chosen for Fig. 10 is relatively small � / t=0.12, so that
the screening temperature to reach the singlet state becomes
very low in the present case, especially for large U. The
screening temperature, however, rises as � increases. It
would make T� an accessible value in experiments. We will
examine the � dependence of T� in Sec. V D.

C. SU(4) Kondo effect at the dip for Ntot¶3.0

In this subsection we present the results of the thermody-
namic quantities at three-electron filling Ntot�3.0. In Fig. 11,
the entropy and spin susceptibility are plotted vs log�T /D�,
for U / �2�t�=1.0, and � / t=0.12. The impurity level �d is
chosen in a way such that �a� �d=−0.5897U at the zero point
of gs in the middle of the sharp dip seen in Fig. 5, and �b�
�d=−0.65U�−0.55U� at a point on the left �right� of the dip.

We can see in Fig. 11�a� that at high temperatures 10−5

�T /D�10−2 the entropy is a constant S� log 4, which is
caused by the fourfold degeneracy of the local states in the
isolated TTQD cluster mentioned in Sec. II B. Furthermore,
the spin susceptibility shows the Curie behavior ��s�s
+1� / �3T� with s=1 /2 at high temperatures. Then, at low
temperatures both S and �T decrease with T. Specifically, the
screening of the local fourfold degenerate states is completed
in a single stage at T� /D�10−7. This behavior is observed
just at the zero point, at which the two phase shifts are �e
�5� /4 and �o�� /4. At the zero point the low-energy ex-
citations from the singlet ground state asymptotically have
the channel symmetry in addition to the global SU�2� sym-
metry of the spin, as shown in Sec. III. Therefore, the low-
temperature behavior of these thermodynamic quantities
must reflect the low-energy SU�4� symmetry of the fixed-
point Hamiltonian. We refer to this zero point of the series
conductance at Ntot�3.0 as the SU�4� symmetric point in the
following. It should be noted that T� is enhanced at this point
due to the channel degeneracy.

For the values of �d away from the dip, the entropy shows
the two-stage behavior. We can see in Fig. 11�b� that the

entropy still shows the value of S� log 4 at high tempera-
tures even in the case away from the dip. At intermediate
temperatures, however, it takes another plateau with S
� log 2, and the spin susceptibility shows the Curie behavior
with the coefficient of s=1 /2. Therefore, the orbital part of
the degrees of freedom is frozen at intermediate tempera-
tures, and the spin degrees of freedom still remains free.
Furthermore, away from dip the low-lying energy excited
states no longer have the channel symmetry. The full screen-
ing of the remaining spin 1/2 is completed at T� /D�10−21

for �d=−0.65U, and T� /D�10−8 for �d=−0.55U. These tem-
peratures are lower than the screening temperature at the
SU�4� symmetric point, but still much higher than T� for the
S=1 Kondo effect at Ntot=4, for the same parameter values
of U, t, and �.

Furthermore, the screening temperature on the right-hand
side of the SU�4� symmetric point is higher than that on the
left-hand side. The difference reflects the charge redistribu-
tion, taking place at the conductance dip as discussed in Sec.
IV A. As we saw in Fig. 7, the distribution is almost homog-
enous on the right side; �na,0���na,1���nb,1��1.0. In con-
trast, it becomes inhomogeneous on the left side; �na,0�
�1.0, �na,1��1.5, and �nb,1��0.5. In the second screening
stage the partial moment in the a0 orbital, which is singly
occupied on average, has to be screened by the electrons
coming over the a1 orbital. Therefore, T� must be affected by
the filling of the a1 orbital. Specifically, the charge and spin
fluctuations at the a1 orbital, which are necessary for the
second stage screening, tend to be frozen as �na,1� ap-
proaches to 2.0. The situation is similar to that in the S=1
Kondo case, mentioned in Sec. V B. We will discuss this
point further in the next subsection.

The conductances which we discussed in Sec. IV are the
results obtained at zero temperature. If the temperature is
raised, the series conductance at the SU�4� symmetric point
will increase. Simultaneously, the series conductance pla-
teaus on the left- and right-hand sides will decrease. Then,
the dip structure will disappear at the temperature of T� on
the left side because it is the lowest energy scale near the
symmetric point. Note that the screening temperature T� it-
self varies depending on the parameters �, t, and U. In order
to preserve the typical structure of the dip, however, there are
upper and lower bounds for � / t and U / t, respectively, as we
can see in Figs. 8 and 9.

D. Dependence of the screening temperature on �

We consider in this subsection the dependence of the
screening temperature T� on the hybridization � and the level
position �d. For comparisons, we have calculated the entropy
for several values of the hybridization � / t=0.12, 0.25, and
0.5, for a fixed value of the interaction U / �2�t�=1.0. The
ground-state properties for these parameter sets were pre-
sented in Figs. 5 and 8.

Figure 12 shows the results obtained at �a� the parallel
conductance plateau for Ntot�4.0��d /U=−1.01�, and �b� the
zero point of the series conductance for Ntot�3.0. Therefore,
we can see in �a� the � dependence of the two-stage screen-
ing of the S=1 moment of the Nagaoka state, and in �b� the

(b)(a)

FIG. 11. �Color online� Entropy S and spin susceptibility 4T� in
the step for Ntot�3.0 are plotted vs log�T /D� for t�= t, �apex=�d and
� / t=0.12. Impurity level is chosen to be �a� just at the series con-
ductance dip �d=−0.5897U, �b� on the left �d=−0.65U and the right
�d=−0.55U sides of the dip.
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single-stage SU�4� Kondo behavior. In both of these two
cases, the entropy for the intermediate coupling � / t=0.25
retains the structures which we observed in the weak cou-
pling case � / t=0.12. For large hybridization � / t=0.5, how-
ever, the charge transfer between the leads and the TTQD
brings the system into a mixed-valence regime, and the typi-
cal structures are smeared. Furthermore, we can see in �a�
and �b� that the crossover temperature T� is sensitive to the
value of the hybridization, and it increases rapidly with the
coupling �.

We have calculated the entropy also for different fillings,
and determined the screening temperature T� from the mid-
point of a low-energy crossover to a singlet ground state. The
energy scale T� defined in this way can be regarded as a
Kondo temperature in the case that the system has a well-
defined local moment at high energies, which is the case of
Ntot�1.0, 3.0, and 4.0. The results of T� are plotted as a
function of �d in Fig. 13. We see that at the single-electron
filling for 0.1U��d�0.3U the screening temperature is
larger than that of the other regions of the filling. This is
because at this filling the single electron enters mainly the a1
orbital which is connected directly to one of the leads, as
illustrated in Fig. 3.

In the region of the three-electron filling Ntot�3.0, the
screening temperature is enhanced at the SU�4� symmetric
point, �d�−0.59U, where the series conductance has a dip.
We see in Fig. 13 that T� in the weak hybridization case

� / t=0.12 has a local minimum at �d�−0.65U on the left
side of the symmetric point, and T� becomes very low near
the minimum. This is because the fraction of the local spin in
the a0 orbital must be screened indirectly by the conduction
electrons coming through the a1 orbital which is filled al-
ready up to �na,1��1.5. As we see in Fig. 7, there is a sig-
nificant difference between the charge distribution on the left
and right sides of the symmetric point. On the right side, at
−0.58��d /U�−0.4, the local moment is mainly in the odd-
parity b1 orbital which has a direct tunneling matrix element
to one of the leads, as discussed in Sec. IV A. For this rea-
son, the screening temperature on the right side of the dip
becomes larger than that on the left side.

We see also in Fig. 13 that the screening temperature is
enhanced significantly at �d�−0.82U for � / t=0.12. This
seems to be caused by the charge fluctuations between the
two different fillings of Ntot=3 and Ntot=4. We note that near
this point there is another zero point of the series conduc-
tance at �d /U�−0.88, as we see in Fig. 6. At four-electron
filling, T� becomes small again particularly at �d�−0.95U.
This is because in the second screening stage of the S=1
moment the partial moment in the a0 site needs to be
screened by the electrons from the leads which have no di-
rect hopping matrix elements to the apex site, as mentioned
in Sec. V B. We see also that the screening temperature de-
pends sensitively on �, as well as on U. Therefore, in order
to observe the two-stage behavior experimentally, � should
be tuned to a large value, but still has to be �
�max�U /3, t� in order to retain the typical structures. This
criterion is determined by the energy scale �E�4�

�max�U /3, t�, defined in Eq. �8�.

VI. DEFORMATIONS OF TRIANGLE

So far, we have assumed the full C3v symmetry for the
TTQD. Although it has already been broken partly by the
connection to the two leads, the perturbations which break
the triangular symmetry should be examined further, since
real TTQD systems must be deformed from the regular struc-
ture to a certain extent. We consider in this section how an
asymmetry caused by the inhomogeneity in the level posi-
tions and the interdot hopping matrix elements affects the
ground-state properties.

In the presence of a deformation which is described by
�apex and t�, the one-particle energies of the isolated TTQD
vary from those for the regular triangle given in Eq. �6� to
the following forms:

Ee,�
�1� =

�apex + �d − t�

2
��� �apex − �d + t�

2
�2

+ 2t2, �26�

Eo
�1� = �d + t�. �27�

Here, Ee,�
�1� and Eo

�1� are the eigenvalues for the states with
even and odd parities, respectively. Note that the system still
has the inversion symmetry in the present case. Among these
three one-particle states, Ee,−

�1� becomes the lowest energy for
small perturbations. The other two excited states become de-
generate, Ee,+

�1� =Eo
�1�, in the regular triangle case with t�= t and

(b)(a)

FIG. 12. �Color online� Entropy vs log�T /D� for several values
of �; U / �2�t�=1.0 is fixed. Impurity level is chosen to be �a�
�d /U=−1.01 which corresponds to Ntot�4.0, and �b� at the dip in
the middle of the step for Ntot�3.0 ��d /U=−0.55,−0.62, and −0.73
for � / t=0.12,0.25, and 0.5, respectively�.

FIG. 13. �Color online� The crossover energy scale T� as a func-
tion of �d for several values of � / t=0.12, 0.25, and 0.5; U / �2�t�
=1.0 is fixed. T� is defined as the temperature in the middle of the
low-energy crossover observed in the entropy. The vertical dashed
lines correspond to �d, at which Ntot in the limit of �=0 varies
discontinuously.
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�apex=�d. The deformations lift this degeneracy, and the first-
order correction with respect to ����apex−�d, and �t� t�− t,
is given by

Ee,+
�1� − Eo

�1� �
2

3
�� −

4

3
�t . �28�

Thus, the energy of the even state Ee,+
�1� becomes higher

�lower� than that of the odd one Eo
�1� for ��−2�t	0��0�. It

reflects the fact that the apex site with �apex belongs to the
even part of the basis. Furthermore, t� shifts the onsite po-
tential of the b1 orbital upward, and that of the a1 down-
wards. In the following, we examine effects of ��, and �t,
separately, in a wide range of the electron filling Ntot.

In Figs. 14 and 15, the NRG results of the conductances
and phase shifts are plotted as functions of �d for several
fixed values of ��, with �t=0. The values of �apex are chosen
such that �� /U=−0.05,−0.1 for Fig. 14, and �� /U
=0.05,0.1 for Fig. 15. The other parameters U and � are
chosen to be the same as those for Fig. 5.

We see in �b� and �d� of both Figs. 14 and 15 that the
series conductance dip emerges in the Kondo plateau at
three-electron filling Ntot�3.0 even in the presence of the
small deformations. Particularly, the typical feature of the
sharp dip clearly remains. The position of the dip, however,
shifts sensitively to ��, and it moves toward the right �left�
for ���0 ���	0�. This reflects the behavior of the phase
shifts at −0.8U��d�−0.3U in �a� and �c� of these figures.
Particularly, the odd phase shift �o shows a clear contrast
between the positive and negative ��. Correspondingly the
kink, which is seen in the even phase shift as a step between
the values of 2�e /�=2.0 and 3.0, moves as �� varies. When
the gate voltage �d decreases from a value at two-electron
filling, the third electron enters mainly the b1 orbital until �d
reaches the SU�4� symmetric point, at which point the charge
distribution changes significantly as seen in Fig. 7. The re-
distribution of the charge is protracted for ��	0 because the

odd orbital becomes energetically favorable Ee,+
�1� 	Eo

�1�. In
the opposite case, for Ee,+

�1� �Eo
�1�, the redistribution takes

place earlier than the regular triangle case. As the magnitude
���� of the deformations increases further, the conductance
dip moves away from the Kondo plateau and disappears. The
range of ����, in which the dip can be seen, will increase with
the width of the Kondo plateau.

Another notable change caused by the deformations due
to ��, is the structure at five electron filling Ntot�5.0. We see
in �b� and �d� of both Figs. 14 and 15 that a peak of the series
conductance evolves at −1.2U��d�−1.1U, as ���� in-
creases. Simultaneously, in this region, the parallel conduc-
tance has a gentle shoulder. Furthermore, we can see also in
�c� of these figures that a weak step for the five-electron
occupancy emerges for Ntot in the case of ��= �0.1U.

In the other regions of the filling, namely at Ntot�4.0 and
Ntot�2.0, the conductances and phase shifts are less sensi-
tive to the small perturbations due to ��. Specifically, the S
=1 Kondo behavior is robust, although the region of �d for
the four-electron filling becomes slightly narrow. As men-
tioned in Sec. II B, the Nagaoka state is the ground state of
the TTQD for Ntot=4 in the limit of �=0. We have calcu-
lated the cluster eigenstates in the presence of the deforma-
tions, and found that the Nagaoka state remains as the
ground state near �d /U�−1.0 in a wide range of the defor-
mation −0.41U����0.87U for U / �2�t�=1.0. This is deter-
mined mainly by the finite-size energy separation �E�4�

�ES=0
�4� −ES=1

�4� between the Nagaoka and the lowest singlet
states, mentioned in Sec. II B. This energy scale of the
TTQD makes the S=1 Kondo behavior rigid also against the
deformations.

We have examined also the effects of small deformations
caused by the hopping matrix elements �t= t�− t, choosing
the level positions to be uniform ��=0. In Fig. 16, the con-
ductances and phase shifts are plotted as functions of �d for
t�=1.01t �upper panels�, and for t�=0.98t �lower panels�. Be-
sides huge similarities to the above results for the case of ��,

(b)(a)

(c) (d)

FIG. 14. �Color online� Phase shifts and conductances are plot-
ted vs �d, keeping the difference between �apex and �d unchanged;
�upper panels� �apex−�d=−0.05U and �lower panels� �apex−�d=
−0.1U, with U / �2�t�=1.0, � / t=0.12, and t�= t.

(b)(a)

(c) (d)

FIG. 15. �Color online� Phase shifts and conductances are plot-
ted vs �d, keeping the difference between �apex and �d unchanged;
�upper panels� �apex−�d=0.05U and �lower panels� �apex−�d=0.1U,
with U / �2�t�=1.0, � / t=0.12, and t�= t.
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one notable difference is that no pronounced structures
evolve at Ntot=5.0 for small �t. In the cluster limit �=0, the
five-electron charge state can become the ground state for
finite �t, but in a very narrow region near �d�−1.16U, the
width of which ��d is calculated to be ��d�0.004U for
t� / t=0.98, and ��d�0.002U for t� / t=1.01. This energy
scale is much smaller than the hybridization strength �
=0.019U, and thus quantitatively the five-electron structure
was not seen in the present situation.

In the other regions of the filling, however, the results
obtained for �t	0 and �t�0 resemble those for ���0 and
��	0, respectively. Particularly, the structures of the series
conductance dip and the phase shifts at Ntot�3.0 are similar
qualitatively to those seen in the upper panels of Figs. 14 and
15. These features are determined essentially by the way that
the orbital degeneracy between the even and odd orbitals is
lifted, namely Ee,+

�1� �Eo
�1� or Ee,+

�1� 	Eo
�1�. The SU�4� Kondo

effect is sensitive to relatively small deformations because it
relies on the orbital degeneracy at three-electron filling. Nev-
ertheless, the sharp structure of the dip does not collapse
immediately under an infinitesimal perturbation, and thus a
perfect C3v symmetry is not necessary to observe the SU�4�
Kondo behavior in the TTQD.

The S=1 Kondo behavior at the four-electron filling is not
sensitive to �t, as that in the case of small ��. We have
confirmed also that the Nagaoka state remains as a ground
state of the isolated TTQD cluster near �d /U�−1.0 also in a
wide of range of the off-diagonal inhomogeneity 0.30
� t� / t�2.87 for U / �2�t�=1.0. The S=1 Kondo behavior is
robust also against the deformations by �t, and it is mainly
due to the finite-size energy separation of �E�4�.

VII. SUMMARY

We have discussed first of all in Sec. III that the fixed-
point Hamiltonian which describes the low-lying energy ex-
citation from a local Fermi-liquid ground state has an SU�4�

symmetry, consisting of the channel and spin degrees of free-
dom, at zero points of the two-terminal conductance, or
equivalently at the points where the two phase shifts satisfy
the condition �e−�o=n� for n=0, �1, �2, . . .. This sym-
metry property holds at low energies quite generally for the
systems which can be described by the Hamiltonian H given
in Eq. �1�, for any numbers of quantized levels ND, in the
case that the system has time-reversal and inversion symme-
tries. Specifically, the Hamiltonian H does not necessarily
have an SU�4� symmetry on the global energy scale.

In the main part of the paper we have discussed the
Kondo effects taking place in the triangular triple quantum
dot connected to two noninteracting leads, as illustrated in
Fig. 1. We have deduced from the difference between the two
phase shifts shown in Fig. 6 that the two-terminal conduc-
tance of this system can have three zero points as the level
position �d varies. The low-energy properties at these zero
points can be characterized by the SU�4� symmetric local
Fermi-liquid theory. Particularly, the zero point at three-
electron filling appears as a sharp dip in the middle of the
conductance plateau seen in Fig. 5. At this zero point the
phase shifts satisfy the conditions �e−�o=� and �e+�o
�3� /2, which mean that �e�5� /4 and �o�� /4. Further-
more, at this filling, the system has an SU�4� symmetry also
at high energies, which is caused by the fourfold degeneracy
in the local states of an isolated triangular cluster. These
symmetry properties at two opposite limits, at low and high
energies, cause a single-stage screening observed in tempera-
ture dependence of the entropy shown in Fig. 11.

For the values of �d away from the dip, the system no
longer has the low-energy SU�4� symmetry, and the low-
lying energy excited states have only the SU�2� symmetry of
the spin. We have confirmed also that the charge distribution
in the even and odd orbitals, the geometrical feature of which
is illustrated in Fig. 3, changes significantly at the dip as
shown in Fig. 7. The inhomogeneous charge distribution in
the even-odd basis also causes the two-stage Kondo behavior
of the S=1 local moment which emerges at four-electron
fillings due to Nagaoka ferromagnetic mechanism. The par-
tial moment which is distributed away from the two leads
makes the Kondo temperature for the second stage very
small. Nevertheless, the Kondo temperature can be raised by
increasing the coupling � between the TTQD and leads.
Therefore, in order to observe the second screening stage, �
should be large. At the same time, however, � has to be
smaller than �E�4��max�U /3, t� so that the hybridization
effects should not smear the typical structures of the S=1
Kondo behavior.

We have studied also the effects of the deformations,
which break the full triangular symmetry C3v and lift the
orbital degeneracy in the one-particle excited states. Specifi-
cally, the deformations which are caused by inhomogeneity
in the onsite potentials ����apex−�d, and the interdot cou-
plings �t� t�− t have been examined. We found that the se-
ries conductance dip does still exist stably at three-electron
filling, even in the presence of infinitesimal deformations.
The position of the dip, however, shifts sensitively from the
middle of the Kondo plateau for Ntot�3.0. In the other re-
gion of the fillings, small deformations do not affect the
Kondo behavior significantly, and just cause some gradual

(b)(a)

(c) (d)

FIG. 16. �Color online� Phase shifts and conductances as func-
tions of �d, for �upper panels� t�=1.01t, and �lower panels� t�
=0.98t, with U / �2�t�=1.0, � / t=0.12 and �apex=�d.
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and quantitative changes. These results support our belief
that the various Kondo effects in the TTQD could be ob-
served in future.
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APPENDIX A: NAGAOKA STATE IN A TRIANGLE

The eigenvector of the Nagaoka state ��S=1
�4� � for the iso-

lated triangle with t�= t and �apex=�d can be constructed sim-
ply, by filling first the one-particle state of k=0 defined in
Eq. �6� by two electrons, and then filling each of the two
excited states with k=+2� /3 and k=−2� /3 by a single up-
spin electron. This state can be expressed, using the even and
odd orbitals described in Eq. �16� and Fig. 3, in the form

��S=1
�4� � = �0�I� + �1�II� , �A1�

�I� = b1↑
† a0↑

† a1↑
† a0↓

† �0�, �II� = b1↑
† a0↑

† a1↑
† a1↓

† �0� . �A2�

Here, �0=�1 /3, �1=�2 /3, �0� is a vacuum, and the eigen-
value is give by ES=1

�4� =−2t+U+4�d. This state has a finite
total-spin z component of Sz=+1, and breaks the spin rota-
tional symmetry. In this state, the partial moments for even
orbitals are given by

ma,i � ��S=1
�4� �

1

2
�ai↑

† ai↑ − ai↓
† ai↓���S=1

�4� � =
1

2
�1 − ��i�2� .

�A3�

Thus, ma,0=1 /3, ma,1=1 /6, and the partial moment in the
odd orbital b1 is given by mb,1=1 /2. Furthermore, the occu-
pation number of each orbital takes the value �na,0�=4 /3,
�na,1�=5 /3, and �nb,1�=1.

In the subspace with Ntot=4 and S=1, the interaction
Hamiltonian has a diagonal form

���Hdot
U ���� = U��,��, �A4�

for � ,��=I , II. This can be verified directly using Eq. �19�.
For this reason, the wave function is determined by the non-
interacting Hamiltonian, which can be rewritten generally in
the following form �see also Fig. 3�,

Hdot
0 = �apexna,0 + ��d − t��na,1 + ��d + t��nb,1 − �2t�

�

�a0�
† a1�

+ a1�
† a0�� . �A5�

Therefore, the coefficients �0 and �1 defined in Eq. �A2�
depend crucially on the potential difference between the a0
and a1 orbitals, which correspond to the first and second
terms in the right-hand side of Eq. �A5�. This potential pro-
file in the even-odd basis plays an important role on the

two-stage Kondo effects, which take place in the case that
the two leads are connected to the a1 and b1 orbitals in the
way that is shown in Fig. 3.

APPENDIX B: MANY-BODY PHASE SHIFTS

The phase shifts for interacting electrons can be defined,
using the Green’s function,

Gij�i�n� = − �
0

�

d��T�di����dj�
† �0��ei�n�, �B1�

where �=1 /T, dj����=e�Hdj�e−�H, and �O�=Tr	e−�HO
 /
Tr e−�H. The retarded and advanced Green’s functions corre-
spond to the analytic continuations Gij

����=Gij��� i0+�. The
interaction Hdot

U between electrons in the dots at 1� i�ND
�ND=3 for the triple dot� causes the self-energy correction
�ij�z�, and the Dyson equation is given by

Gij�z� = Gij
0 �z� + �

i�=1

ND

�
j�=1

ND

Gii�
0 �z��i�j��z�Gj�j�z� . �B2�

Here, Gij
0 �z� is the noninteracting Green’s function corre-

sponding to H0�Hdot
0 +Hmix+Hlead.

At zero temperature T=0, the series gs and parallel gp
conductances can be expressed in terms of the Green’s func-
tion at the Fermi level �=0, in the case the system has a
time-reversal symmetry19,23

gs =
2e2

h
4�R�L�GND1

+ �0��2, �B3�

gp =
2e2

h
	�L

2�G11
+ �0��2 + �R

2 �GNDND

+ �0��2 + 2�L�R�GND1
+ �0��2
 ,

�B4�

=
2e2

h
	− �L Im G11

+ �0� − �R Im GNDND

+ �0�
 . �B5�

Note that the contributions of the vertex correction do not
appear here due to the property that the imaginary part of the
self-energy vanishes Im �ij

��0�=0 at T=0 and �=0.55 There-
fore the value of Gij

+�0� appearing in the above equations can
be reproduced correctly by a free quasiparticle Hamiltonian

Heff�H̃dot+Hmix+Hlead,

H̃dot � − �
i,j=1

ND

�
�

t̃i jdi�
† dj�. �B6�

Here, −t̃i j =−tij +�d,i�ij +Re �ij
+�0�, can be regarded as the

hopping matrix element for free quasiparticles.19,55

Furthermore, in the case the system has also the inversion
symmetry �L=�R����, the Green’s functions take the form

G11
+ �0� = GNDND

+ �0� =
1

2�
� 1

�e + i
+

1

�o + i
� , �B7�
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GND1
+ �0� =

1

2�
� 1

�e + i
−

1

�o + i
� . �B8�

Here, �e=−cot �e and �o=−cot �o include all the many-body
corrections through the real part of the self-energy
Re �ij

+�0�.23 Equations �10�–�12� follow from Eqs.
�B3�–�B8�. One can state immediately from Eq. �B8� that the
series conductance gs becomes zero in the case �e=�o, or
equally for �e−�o=n� for n=0, �1, �2, . . ..

APPENDIX C: NRG APPROACH

In the NRG approach the noninteracting leads are trans-
formed into the chains carrying out the logarithmic discreti-
zation with the parameter �, and a sequence of the Hamil-
tonian HN in the following form is introduced,52,53

HN = ��N−1�/2�Hdot
0 + Hdot

U + Hmix + Hlead
�N� � , �C1�

Hmix = v̄�
�

�f0,L�
† d1,� + d1,�

† f0,L�� + v̄�
�

�f0,R�
† dNC,�

+ dNC,�
† f0,R�� , �C2�

Hlead
�N� = D

1 + 1/�
2 �

�=L,R
�
�

�
n=0

N−1

�n�−n/2

� �fn+1,��
† fn,�� + fn,��

† fn+1,��� . �C3�

Here, D is the half-width of the conduction band, and the
other parameters are given by52,53

v̄ =�2D�A�

�
, A� =

1

2

1 + 1/�
1 − 1/�

log � , �C4�

�n =
1 − 1/�n+1

�1 − 1/�2n+1�1 − 1/�2n+3
. �C5�

The factor A� represents a correction to the discrete model
for comparison with results in the continuum limit
�→1.52,56 We have carried out the iterative diagonalization
of HN using the even-odd basis defined in Sec. II D.
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