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Nanocomposite thermoelectric materials have attracted much attention recently due to experimental demon-
strations of improved thermoelectric properties over those of the corresponding bulk material. In order to better
understand the reported data and to gain insight into transport in nanocomposites, we use the Boltzmann
transport equation under the relaxation-time approximation to calculate the thermoelectric properties of n-type
and p-type SiGe nanocomposites. We account for the strong grain-boundary scattering mechanism in nano-
composites using phonon and electron grain-boundary scattering models. The results from this analysis are in
excellent agreement with recently reported measurements for the n-type nanocomposite but the experimental
Seebeck coefficient for the p-type nanocomposite is approximately 25% higher than the model’s prediction.
The reason for this discrepancy is not clear at the present time and warrants further investigation. Using new
mobility measurements and the model, we find that dopant precipitation is an important process in both n-type
and p-type nanocomposites, in contrast to bulk SiGe, where dopant precipitation is most significant only in
n-type materials. The model also shows that the potential barrier at the grain boundary required to explain the
data is several times larger than the value estimated using the Poisson equation, indicating the presence of
crystal defects in the material. This suggests that an improvement in mobility is possible by reducing the
number of defects or reducing the number of trapping states at the grain boundaries.
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I. INTRODUCTION

Thermoelectrics are of technological interest due to their
ability to convert heat directly into electrical energy. They
have been the subject of renewed research due to theoretical
predictions1–3 and experimental demonstrations of nanostruc-
tured materials with enhanced thermoelectric properties.4–19

The performance of these materials depends on the di-
mensionless figure of merit ZT=S2�T /�, where S is the See-
beck coefficient, � is the electrical conductivity, � is the
thermal conductivity, and T is the absolute temperature at
which the properties are measured.20,21

Nanocomposite thermoelectric materials, simply termed
nanocomposites, are a type of nanostructured material which
have attracted much attention recently due to experimental
demonstrations of improved thermoelectric properties over
those of the corresponding bulk material.7,8,10,12,16–19 These
materials have an important advantage over other nanostruc-
tured materials in that they can be produced in large quanti-
ties and in a form that is compatible with existing thermo-
electric device configurations. The term “nanocomposite”
has been used to describe several different types of struc-
tures. The original concept was applied to either nanopar-
ticles embedded in a host or to a heterostructure geometry
with nanoparticles of different materials adjacent to each
other.22,23 For the heterostructure geometry, when the two
materials are the same, the nanocomposite is essentially a
material with nanometer-sized grains. The physical mecha-
nisms that can lead to ZT improvement in heterogeneous and
nanograined materials are similar: in both cases, the grain
boundaries act as an additional phonon-scattering mecha-

nism, reducing the lattice thermal conductivity; while a po-
tential barrier, or an electron energy mismatch, at the grain
boundary leads to a reduced electrical conductivity but pos-
sibly higher Seebeck coefficient. Nanocomposites are com-
monly created using either a ball milling and hot pressing
technique16–19 or with thermal processing methods.7,8,10,12

The thermoelectric properties of Si0.8Ge0.2 nanocompos-
ites with improved properties over those of the bulk were
recently reported.18,19 To better understand the reported data
and to gain insight into the carrier transport, we calculate the
thermoelectric properties of these materials using the Boltz-
mann transport equation. The theory for modeling bulk ther-
moelectric materials using the Boltzmann transport equation
is well developed and the calculation is straightforward. If
the relaxation-time approximation can be used, the thermo-
electric properties can be expressed as integrals of a relax-
ation time,24–26 and standard expressions for the relaxation
time of various scattering mechanisms are given in the
literature.25–27 For the cases that we study here the
relaxation-time approach is a good approximation. A similar
approach was taken by Vining28 and Slack and Hussain,29

and we follow their work closely with a few important ex-
ceptions which will be described later. To model transport in
nanocomposites using this framework, we need to obtain an
additional relaxation time �GB �or equivalently a scattering
rate �GB

−1 � to account for the strong grain-boundary �GB� scat-
tering mechanism in these materials. Once determined, this
scattering rate can be added to the other scattering rates using
Matthiessen’s rule and the thermoelectric properties are cal-
culated in the usual manner.

Grain-boundary scattering has been of great interest, par-
ticularly for device applications involving polycrystalline
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silicon. Mayadas and Shatzkes30 obtained a scattering rate
from a series of delta-function potentials. Their model is
commonly used to calculate the resistivity of polycrystalline
materials. We will show that this model is not physically
consistent for thermoelectric materials. Many other models
for grain-boundary scattering in polycrystalline materials at-
tempt to obtain I-V characteristics by considering thermionic
field-emission and tunneling processes.31–34 However, this
framework neglects the energy relaxation of charge carriers
and can result in unrealistically large Seebeck coefficients,
especially in nanocomposites. For this reason, we focus on
calculating grain-boundary scattering rates, allowing all the
properties to be determined in a self-consistent manner.

The organization of the paper is as follows. First, in Sec.
II, the basic theory of calculating thermoelectric properties
using the Boltzmann equation is briefly dicussed. In Sec. III,
the code which implements this calculation is validated by
calculating the thermoelectric properties of bulk Si1−xGex al-
loys and comparing the results to experimental data. Section
IV introduces models for phonon and electron grain-
boundary scattering. We apply the models to Si0.8Ge0.2 nano-
composites in Sec. V and compare the results to recently
reported experimental data18,19 and new mobility measure-
ments. Finally, in Sec. VI, we use the model’s predictions to
help determine which strategies will be most effective in
further improving the figure of merit in these materials.

II. THEORY

The thermoelectric properties of Si1−xGex can be calcu-
lated using the Boltzmann equation. If all the scattering
mechanisms are elastic, the relaxation-time approximation
�RTA� may be employed, simplifying the solution.25–27,35 If
some scattering mechanisms are inelastic, then a relaxation
time cannot be strictly defined. For Si1−xGex, the only
inelastic-scattering mechanism is due to optical phonons,
where the interaction energy ��op, with �op being the
optical-phonon frequency, is on the order of kBT at room
temperature. Fortunately, for heavily doped Si1−xGex, most
carriers have energies several times larger than the optical-
phonon energies, making the assumption of elastic scattering
a reasonable one and allowing the use of the RTA for our
calculations.

A very similar approach to calculate the thermoelectric
properties of bulk materials was originally performed by sev-

eral authors,28,29 and we follow their work closely but with
important exceptions. The common calculations are as fol-
low. First, like Slack,29 we assume three-band transport, us-
ing two conduction bands, one near the X point and one at
the L point; and one effective valence band. We find that the
L-point conduction band does not contribute substantially to
the transport properties. Second, like Vining,28 we take into
account the exact form of the relaxation times from the
literature.25,26,28,36 Slack uses an effective relaxation-time ex-
ponent or empirical results in his model.

We differ from the others’ calculations in the following
ways. The first difference is that we do not assume that the
conduction bands and valence bands have the same band-
structure parameters; instead, we use literature or slightly
modified values for each band. These values are listed in
Table I.

The second difference is that we take into account the
nonparabolicity of the X-point conduction band, which
strongly affects the thermoelectric properties at high n-type
doping concentrations.26 Vining and Slack did not take non-
parabolicity into account, and while they were able to fit
most of the data, unphysical values of some fitting param-
eters were required, or an empirical result was used to obtain
agreement. By using a nonparabolic formulation we are able
to explain experimental data over the entire doping concen-
tration range with only minor adjustments to the literature
values of the band-structure parameters.

Another important difference is the treatment of dopant
precipitation issues in Si1−xGex. As discussed by many
authors,28,29,37–39 Si1−xGex alloys used for thermoelectrics,
which are usually doped with P �n type� or B �p type�, are
often doped beyond the solubility point for the dopant, caus-
ing the carrier concentration to vary with temperature as dop-
ants precipitate out at lower temperatures and become reac-
tivated at higher temperature. These processes can change
the carrier concentration by a factor of 2 or more over the
entire temperature range, significantly affecting the observed
transport properties. This effect is especially pronounced for
P in Si1−xGex, which has a strong tendency to precipitate at
grain boundaries. Furthermore, in many cases the carrier
concentration depends on the thermal history of the sample,
making it even more difficult to compare results because the
properties of the same material at the same temperature
might not be equal due to differences in thermal processing.
While Vining was forced to fit the chemical potential at each

TABLE I. Band structure parameters for Si1−xGex used to calculate electrical properties.

Property Symbol �units� Value Comment

Electron longitudinal/transverse effective mass �X� ml
� /mt

��me� 0.92/0.19 Ref. 49

Electron longitudinal/transverse effective mass �L� ml
� /mt

��me� 1.59/0.082 Ref. 49

Energy gap between X and L EL �eV� 0.8 Ref. 49

Hole DOS effective mass �bulk/nano� mh
��me� 1.2/1.55 Ref. 29

Nonparabolicity of X � �eV−1� 1.25 Ref. 48: 0.5

Low-frequency dielectric constant �0r��0� 21 Ref. 49: 11.7+4.5x; Ref. 28: 27

Electron deformation potential DA �eV� 10.5 Ref. 48: 9.0

Hole-deformation potential Dv �eV� 4.8 Ref. 28: 2.94; Ref. 26: 5.0
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temperature to account for this variation, we are able to es-
timate the change in carrier concentration versus temperature
during the electrical conductivity and Seebeck coefficient
measurement using the previously reported electrical con-
ductivity measurements,18,19 new mobility measurements,
and model calculations. This procedure simply uses the defi-
nition of conductivity �=ne	 for a single band to estimate
n�T�. It is necessary to assume one-band transport for this
procedure; we find this to be a valid assumption for the cases
studied here due to heavy doping. For the n-type case, where
the mobility has a stronger dependence on the carrier con-
centration, an iterative procedure is used to ensure self-
consistency between all the properties.

A final point to mention is the difficulty in accurately
modeling transport in p-type Si1−xGex using the Boltzmann
equation. The warped energy surface of the heavy-hole band,
along with interactions from the split-off band �which is only
0.044 eV away from the valence-band edge�, causes the
parabolic energy surface approximation to be poor at high
doping levels. While it is sometimes possible to obtain a
reasonable fit to the data, the quality of the fit is often worse
than that of n-type Si1−xGex, and for the p-type nanocompos-
ite no satisfactory fit could be found. The valence-band pa-
rameters used in the calculation are listed in Table I.

A. Relaxation-time approximation

Under the relaxation-time approximation, the electrical
conductivity, Seebeck coefficient, mobility, and electronic
thermal conductivity can be written as integrals of the form

Lk =� ��E�v2�−
� f0

�E
��E − Ef�kD�E�dE , �1�

where E is the energy, D�E� is the density of states, fo
= �exp��E−Ef� /kBT�+1	−1 is the Fermi-Dirac distribution
function, v is the electron group velocity, ��E� is the relax-
ation time, and Ef is the Fermi level. Detailed expressions for
the properties are given in many references24–27 and will not
be reproduced here. The Fermi level is determined from the
standard charge conservation condition.25–27

To accurately model Si1−xGex, it is necessary to account
for nonparabolicity and anisotropy. We use a standard two-
band approximation,26,27 which modifies the E�k� dispersion
relation from the usual parabolic form to

E�1 + �E� =
�2

2
� kl

2

ml
� + 2

kt
2

mt
�� , �2�

where ml
� and mt

� are the longitudinal and transverse compo-
nents of the effective mass, respectively; kl and kt are the
longitudinal and transverse components of the electron
wavevector; and � is the nonparabolicity coefficient, an ad-
justable parameter which is approximately �
1 /Eg, with Eg
being the bandgap.26 The temperature dependence of the
band gap Eg�T� is accounted for using a curve fit from Ref.
64. The density of states, electron velocity, and conductivity
mass for this modified dispersion relation are given in sev-
eral references.26,27,40

It is important to account for the effects of both electron
and hole transport, especially at high temperature where bi-

polar thermal conduction can occur. Multiple-band transport
can be incorporated by calculating the contribution from
each band and combining the results in the appropriate man-
ner, given in Ref. 20.

B. Charge-carrier relaxation times

The relaxation times account for the scattering processes
in a material. In this paper we will be modeling Si0.8Ge0.2
and will incorporate ionized impurity scattering �IIS� and
phonon deformation-potential �DP� scattering. Note that
Si1−xGex is not a polar material and thus polar scattering
mechanisms are not applicable. Technically Si1−xGex also has
an alloy scattering mechanism but the scattering rate due to
alloy scattering has the same energy dependence as that of
phonon scattering and so is accounted for with an effective
deformation potential. The relaxation times used here incor-
porate nonparabolicity. Various forms of the relaxation times
are in the literature and give similar results.25–27,35,36,41

The first scattering mechanism, ionized impurity scatter-
ing, has a relaxation time given by the standard Brooks-
Herring result.25,26 For highly doped materials, it is more
appropriate to use the Thomas-Fermi approximation for the
screening length, which is given by40,42

R−2 =
4
e2Z

��
�

0

� �−
� f0

�E
�D�E�dE , �3�

where e is the absolute value of the charge of an electron, Z
is the number of charges per impurity and �� is the high
frequency permittivity.

Phonon scattering in SiGe requires more discussion. In
general, charge carriers can be scattered by both acoustic and
optical phonons. When the carriers have energy greater than
the optical-phonon energy, the optical-phonon scattering rate
is usually dominant. In pure silicon, intravalley optical-
phonon scattering in the X valley is forbidden due to selec-
tion rules but intervalley scattering between the six X valleys
of equivalent energy can take place through nonpolar optical-
phonon �NPOP� scattering. The scattering rate for intervalley
scattering is usually calculated using a deformation-
potential-type analysis26 and values of the optical-phonon
energies and coupling constants have been inferred from ex-
periment and Monte Carlo simulations.43–46

However, the materials we examine in this study are quite
different from single-crystal silicon or germanium, and we
find that the intervalley parameters inferred for silicon, ger-
manium, or an interpolation of the two, cannot explain the
experimental data we analyze in this work. The most likely
reasons for this discrepancy are the different phonon spectra
between single-crystal silicon or germanium and SiGe al-
loys, and different coupling constants due to additional scat-
tering mechanisms and high carrier concentrations in the
SiGe alloys.47

As there are no experimental data available on the optical-
phonon modes in bulk or nanocomposite SiGe, to proceed, it
is necessary to perform some type of fit to explain the data.
As the scattering rates due to acoustic-phonon scattering and
intervalley scattering have the same energy dependence, fit-
ting an effective deformation potential and fitting a coupling
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constant and optical-phonon energy should give equivalent
results. Using our model, we have verified that the mobilities
calculated from these scattering rates have essentially the
same slope with temperature, as expected. Hence, we can
account for both acoustic-phonon and intervalley scattering
using an effective deformation potential. This type of ap-
proximation is discussed in Ref. 36, and Vining also used a
single deformation potential in his study.28

It should be noted that the relaxation-time approximation
is not strictly valid for the inelastic NPOP mechanism and if
carrier energies are comparable to the optical-phonon energy
the approximation will fail. In the highly doped materials
studied here, however, the Fermi level is up to 0.2 eV in the
conduction or valence bands, and hence most carriers have
energies greater than the typical optical-phonon energy of
20–50 meV, making the assumption of elastic scattering a
reasonable approximation.

The relaxation time �DP for phonon deformation-potential
scattering is taken from Ravich,36

�0
−1 =


kBTDA
2


vs
2�

D�E� , �4�

�DP
−1 = �0

−1��1 −
�E

1 + 2�E
�1 −

Dv

DA
�
2

−
8

3

�E�1 + �E�
�1 + 2�E�2

Dv

DA
� ,

�5�

where E is the energy relative to the band edge, DA is the
conduction-band deformation potential, Dv is the valence-
band deformation potential, � is the nonparabolicity param-
eter, D�E� is the density of states, 
 is the density, and vs is
the sound speed. The values of the electron and hole defor-
mational potentials used are listed in Table I.

To obtain a total relaxation time for all the scattering
mechanisms, we can add the scattering rates �−1 using Mat-
thiessen’s rule �−1=�i�i

−1.25,26

C. Phonon modeling

To model phonon transport, we use the Steigmeier and
Abeles model47 of the lattice thermal conductivity of alloys
based on the Callaway model.50 Their model treats phonons
with the Boltzmann equation under the RTA and includes
point-defect, phonon-phonon, and phonon-electron-
scattering mechanisms, all of which are characterized by a
relaxation time.47 These relaxation times are used exactly as
they are given in Ref. 47 and so are not reproduced here. One
important point is that the deformation potentials used in the
phonon-electron relaxation times are not the same as those
used in the electronic properties calculation. The reason is
that the primary contribution to the thermal conductivity is
from acoustic phonons but the deformation potentials used
for the electronic properties calculations account for both
acoustic and optical phonons. Thus, we use slightly smaller
deformation potentials for the thermal-conductivity calcula-
tion which are consistent with the values given in Ref. 47.

Once the relaxation times have been computed, the lattice
thermal conductivity �l can be determined

�l =
kB

2
2vs
� kB�D

�
�3

�I1 + I2
2/I3� , �6�

where vs is the sound speed, �D is the Debye temperature,
and I1, I2, and I3 are given by

I1 = �
0

1

�x2 �2x2e�x

�exp��x� − 1�2dx , �7�

I2 = ��
0

1 �

�U
x2 �2x2e�x

�exp��x� − 1�2dx , �8�

I3 = ��
0

1 1

�U
�1 −

��

�U
�x2 �2x2e�x

�exp��x� − 1�2dx . �9�

Here x=� /�D, where �D is the Debye frequency, �
= ��D /T�n, n
1 is a fitting parameter related to higher-order
phonon scattering, � is the ratio of Umklapp to normal-mode
scattering, and � and �U are the total and Umklapp relaxation
times, respectively. The total thermal conductivity � is the
sum of the lattice thermal conductivity �l and the electronic
thermal conductivity �e.

D. Summary of the calculation

We now review the steps necessary to perform the calcu-
lation. After specifying band-structure parameters, tempera-
ture, and doping level, the first step is to calculate the Fermi
level. The next step is to compute the energy-dependent re-
laxation times and combine them using Matthiessen’s rule.
Once the total relaxation times are determined, we can com-
pute the thermoelectric properties for each band, and subse-
quently calculate the overall transport properties. Finally, the
lattice thermal conductivity can be calculated separately us-
ing the Callaway model.47,50 This procedure can be repeated
for each temperature or doping concentration, allowing all of
the thermoelectric properties to be determined over the de-
sired temperature and doping concentration ranges.

III. MODEL VALIDATION

To validate the model, we compare the calculated results
to experimental data for bulk Si1−xGex from several
sources.18,19,28,51 The parameters used are listed in Tables I
and II.

The modeling predictions for bulk n-type Si0.7Ge0.3, along
with the same data used by Vining for comparison,28,51 are
shown in Fig. 1. The calculations match the experimental
data to within about 15% over most of the doping concen-
tration and temperature range. The two highest doping con-
centrations have been increased by about 10% from the re-
ported values; this adjustment is expected to be within the
experimental error of the measurement. Some of the impor-
tant effects discussed earlier can be clearly seen in the
model; for example, for the lowest doping concentration the
bipolar thermal conductivity is dominant at high tempera-
tures, and is accompanied by a large decrease in Seebeck
coefficient. The most highly doped material shows evidence
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of dopant activation above 1000 K, seen as an increase in the
electrical conductivity, but this is not accounted for here as
the mobility is unknown.

A similar result for p-type Si0.7Ge0.3, along with data from
Dismukes,51 is shown in Fig. 2. The fit is slightly worse than
that for the n-type case, particularly for the Seebeck coeffi-
cient, as this parameter is sensitive to the band structure and
is most affected by the failure of the parabolic approxima-
tion. At high temperature the Seebeck coefficient is underes-
timated by about 20% in the worst case. The room-
temperature thermal conductivities are also lower than the
experimental values, illustrating the difficulty in fitting many
data sets with only one set of parameters. As discussed in
Ref. 47, the acoustic deformation potential appears to be a
function of carrier concentration, but we have used a single
acoustic deformation potential for simplicity. The � symbols
in the figure indicate that the accuracy of some of the experi-
mental data is questionable as the maximum ZT value for the
highest two doping concentrations is almost ZT=0.8, higher
than the expected value of around 0.5–0.6 for state-of-the-art
bulk Si0.8Ge0.2 shown in Fig. 4.

We also computed the thermoelectric properties of state-
of-the-art n-type and p-type Si0.8Ge0.2 alloys,18,19 shown in
Figs. 3 and 4. In this case the carrier concentrations are not
available, forcing us to adjust the values to fit the data. The
fitted carrier concentrations were determined to be ND=1.7
�1020 cm−3 for n type and NA=1.35�1020 cm−3 for p type.
The calculation is again in good agreement with the experi-
mental data over the temperature range. As expected, the
n-type material exhibits a strong carrier-concentration varia-
tion with temperature due to dopant precipitation effects. To
account for this, the calculated mobility and the experimental
electrical conductivity are used to estimate the carrier-
concentration variation with temperature using �=ne	. As
the mobility depends on the carrier concentration to some
extent, an iterative procedure is employed to ensure consis-
tency between all the properties. The carrier-concentration
variation is found to be similar to that deduced for the n-type
nanocomposite, and using either curve will give a good fit;

TABLE II. Lattice parameters for Si1−xGex used to calculate the lattice thermal conductivity.

Property Symbol �units� Value Comment

Lattice constant a �Å� 5.431�1−x�+5.658x Ref. 49

Bulk modulus C1�1010 N /m2� 9.8−2.3x Ref. 49

Debye temperature �D �K� 640−266x Ref. 49

Density 
 �kg /m3� 2329+3493x−499x2 Ref. 49

Ratio of normal to Umklapp scattering � 2.0 Ref. 47

Anharmonicity �n type� �l 0.9 Ref. 47

Anharmonicity �p type� �l 0.75

Strain parameter �s 100 Ref. 47

Electron-acoustic deformation potential Ecl �eV� 9.0 Ref. 47

Hole-acoustic deformation potential Evl �eV� 4.0 Ref. 47

Higher-order phonon-scattering exponent n 1.4

200 400 600 800 1000 1200
0

500

1000

1500

Temperature (K)

E
le

ct
ri

ca
lc

o
n

d
u

ct
iv

it
y

(S
/c

m
)

200 400 600 800 1000 1200
−600

−500

−400

−300

−200

−100

0

Temperature (K)

S
ee

b
ec

k
co

ef
fi

ci
en

t
(µ

V
/K

)

200 400 600 800 1000 1200
3

4

5

6

7

8

Temperature (K)

T
h

er
m

al
co

n
d

u
ct

iv
it

y
(W

/m
K

)

200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0

Temperature (K)

F
ig

u
re

o
f

M
er

it
Z

T

FIG. 1. �Color online� Experimental �symbols� and computed
�curves� thermoelectric properties of n-type bulk Si0.7Ge0.3 �data
from Ref. 28�. Doping concentrations ��1019 cm−3�: �=0.22; �

=2.3; �=7.3; and �=17.
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FIG. 2. �Color online� Experimental �symbols� and computed
�curves� thermoelectric properties of p-type bulk Si0.7Ge0.3 �data
from Ref. 51�. Doping concentration ��1019 cm−3�: �=3.4; �

=8.9; �=18; �=24; and �=35. � symbols in the ZT figure indi-
cate the accuracy of the data is questionable as the ZT value is much
higher than previously reported values for bulk p-type Si1−xGex.
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the fit using the bulk experimental data is used for both cases
as it gives smoother results.

IV. MODELING NANOCOMPOSITES

Si1−xGex nanocomposites can have markedly different
transport properties from their bulk counterparts. Grain
boundaries in materials can act as interfaces to scatter
phonons,2 electrical traps for charge carriers,52–54 and segre-
gation sites for dopant atoms.28,54 In nanocomposites these
effects are further enhanced because the grain size is often
comparable to or smaller than characteristic lengths such as
the phonon mean-free path �MFP� or the electron wave-

length. TEM images also show that the microstructure of
nanocomposites is much more complicated than that of mi-
crocrystalline materials; in nanocomposites the nanometer-
sized grains contain defects and composition variations, and
the nanometer-sized grains themselves are embedded inside
larger grains.17–19 We focus our discussion on the effects of
grain boundaries between the nanometer-sized grains as
these are expected to have the largest impact on transport
properties.

The most obvious way the thermoelectric properties are
affected by grain boundaries is by a reduction in lattice ther-
mal conductivity, which is the dominant mechanism of ZT
enhancement in Si1−xGex nanocomposites.18,19 It is also
found that the presence of grain boundaries reduces the elec-
trical conductivity and can affect the Seebeck coefficient.
The physical mechanisms for these changes in the transport
properties of polycrystalline materials have been the subject
of much discussion, especially for polycrystalline silicon.31,32

The reduction in the lattice thermal conductivity is attributed
to strong interface scattering of phonons.2 For charge carri-
ers, the generally accepted model to explain the effects of
grain boundaries is the charge-trapping model.52–54 This
model postulates that incomplete bonding in grain bound-
aries leads to the formation of many surface states within the
band gap, making it preferable for carriers to occupy these
lower-energy states. Due to a depletion of the grain near the
grain boundary, a space-charge region with a potential bar-
rier forms; this potential acts as a scattering potential for
charge carriers. Dopant segregation is also thought to affect
the electrical properties of grain boundaries, though if and
how the grain boundaries are affected is not well
understood.54 Misalignment of crystallographic directions
between adjacent grains can also lead to electron-scattering
processes.55

To obtain quantitative predictions of how grain bound-
aries affect the thermoelectric properties in nanocomposites
using the Boltzmann equation, it is necessary to develop
phonon and charge-carrier grain-boundary scattering models
which give a grain-boundary scattering rate �GB

−1 . The result-
ing scattering rates can then be added to the bulk scattering
rate and the thermoelectric properties calculated in the usual
manner. We now develop the grain-boundary scattering mod-
els. Here, we specialize the situation for charge-carrier scat-
tering to electrons in an n-type material; the same discussion
will apply to holes in a p-type material.

A. Phonon scattering

There have been several previous efforts to determine the
thermal conductivity of nanocomposites. Yang et al.22,23 cal-
culated the effective thermal conductivity of a nanocompos-
ite using the phonon Boltzmann equation. Monte Carlo tech-
niques have also been used to calculate the thermal
conductivity, giving good results but requiring significant
computational time.56 Prasher57,58 has had considerable suc-
cess obtaining analytical solutions to the Boltzmann equation
for simple geometries. Scattering models based on Rayleigh
scattering59 and acoustic Mie scattering theory60 have also
been used to treat nanoparticle scattering. Minnich and
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FIG. 3. �Color online� Experimental �symbols� and calculated
�curves� thermoelectric properties of state-of-the-art n-type bulk
Si0.8Ge0.2. �Solid line—model including carrier-concentration varia-
tion with temperature; dashed line—model without carrier-
concentration variation with temperature; dotted lines—electronic
and lattice components of thermal conductivity.�
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Chen61 introduced a modified theory to analytically compute
the thermal conductivity of nanocomposites.

For the present work we use a standard boundary scatter-
ing rate.14,59 We can derive the model by examining charac-
teristic lengths relevant to phonon transport. In this case the
appropriate lengths are the phonon mean-free path relative to
the grain size. Our calculations for bulk Si0.8Ge0.2 indicate
that a large fraction of phonons have a MFP LPH of about
100 nm, which is much larger than the nanocomposite grain
size lgb of about 10–20 nm. A reasonable model is thus one
which approximates the phonon MFP in nanocomposites to
be limited to the grain size such that LPH= lgb. Then, using
the sound speed as the phonon velocity, as in the Debye
model, the scattering rate follows immediately,

�GB
−1 =

vs

lgb
. �10�

This is added to the other phonon-scattering rates and the
lattice thermal conductivity calculated in the same manner.
We are able to obtain a good fit to the thermal-conductivity
data using a grain size lgb of 10–20 nm, which is consistent
with the experimental values recently reported.18,19

B. Electron scattering

The grain-boundary model for electrons is based on the
charge-trapping model, which postulates that the formation
of surface states at the grain boundary depletes the grain of
carriers near the grain boundary, resulting in a space-charge
region with a potential barrier. The potential barrier acts as a
scattering potential which affects electron transport. To cal-
culate electrical properties, it is necessary to develop a model
which can describe this phenomenon with a relaxation time.
But to create a consistent model it is necessary to clarify
details of the GB scattering process. Important questions that
must be answered are what is a physical value for the GB
potential, whether the electron wave experiences diffuse or
coherent scattering, and over what length scale the grain-
boundary potential affects the electrons.

The first question, an appropriate value for the GB poten-
tial, can be answered using a depletion region approxima-
tion. This analysis yields the following equation for the GB
potential, assuming all the trap states are filled52

Ug =
eNt

2

8�ND
, �11�

where � is the permittivity, ND is the doping concentration,
and Nt is the number density of traps. Given the doping level
ND and trap density Nt, Ug can be estimated. Of course, the
trap density is unknown and could vary widely. An important
unresolved question is how dopant segregation affects the
distribution and quantity of surface states.54 It is known that
P in Si1−xGex has a strong tendency to precipitate to the
GB,28 and, in principle, the extra dopant atoms in the GB
could affect the surface-state distribution. Assuming that the
reported values for Nt
1�1011−1�1013 cm−3 are a rea-
sonable estimate for our materials, at high doping levels this
model predicts that Ug should be less than 20 meV.54 How-

ever, we find that a larger GB potential is required to fit the
nanocomposite data; we will discuss possible reasons for this
discrepancy in Sec. VI.

The last two questions can be answered by examining the
key length scales related to carrier transport in nanocompos-
ites as was done for phonons. TEM and x-ray diffraction
�XRD� measurements indicate that the average GB size is
10–20 nm and its thickness is around 1 nm.18,19 We can
determine how these length scales compare to carrier length
scales by computing the screening length R, the electron
wavelength �e, and the electron MFP.

The screening length R was previously given in Eq. �3�.
Computing this value shows that R is less than 1 nm, imply-
ing that the GB potential is completely screened unless the
electron is within a few nanometers of the GB. Hence, we
can conclude that the model should focus on only a small
section of the GB since long-range potentials from other sec-
tions of the GB are neutralized by screening effects. The
Mayadas model is not consistent with this result as it models
the potential as a series of grain boundaries.

Next, the type of scattering must be determined. For ex-
ample, if there are substantial variations in the potential at
the GB we might expect the electron wave to be scattered
diffusely, but if the variations are small, the scattering should
be coherent. In addition, if the MFP is comparable to the
grain size we might also expect multiple-scattering effects to
be important. These questions can be resolved by calculating
the distribution of electron wavelengths and MFPs. We first
determine the cumulative distribution function of the elec-
tron occupation number versus wavelength, which gives the
percentage of electrons that have a wavelength less than a
certain value. The wavelength is given by the de Broglie
expression,

�e =
2
�

mc
�v

=
2
��1 + 2�E�
�2mc

�E�1 + �E�
, �12�

where v is the electron velocity and mc
� is the conductivity

effective mass. We define the transport electron occupation
number as,

gt = v2�−
� f0

�E
�D�E� . �13�

Integrating gt to a certain value and normalizing the result
will give the cumulative distribution function for the trans-
port electron occupation number. Additionally, we can deter-
mine the electron MFP length using an equation of the form
l=v�, where � is the total bulk electron relaxation time. The
electron MFP will in general be energy dependent, and we
can relate the electron MFP to the wavelength �e by express-
ing each as a function of energy.

These two quantities, the transport electron wavelength
cumulative distribution function and the electron MFP versus
wavelength, are shown in Fig. 5 at 300 K for heavily doped
bulk Si0.8Ge0.2. The first observation we can make is that
most electrons have mean-free paths between 2 and 5 nm,
which is smaller than the grain size. This fact implies that
each small section of the grain with which the electron inter-
acts is independent of the others: since the grain size is on
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average on the order of 10–20 nm, after the electron scatters
from the GB it will, on average, experience several collisions
before it reaches another part of the GB. Thus the memory of
the previous collision is essentially lost by the time the car-
rier reaches another part of the grain and we can conclude
that each scattering point on the GB is independent from the
others. This is further evidence against using the Mayadas
model for thermoelectrics as it accounts for the effects of
many grain boundaries scattering coherently.

The second observation is that most electrons have a
wavelength between 6 and 11 nm, which is much larger than
the GB thickness of 1 nm. Diffuse scattering of the electron
wave requires substantial potential variation so that the wave
is scattered randomly in all directions. Since the barrier po-
tential is confined to a region very close to the GB itself, any
spatial variation in the potential can only occur over a length
on the order of the GB thickness. Furthermore, having a
large variation in the value of the potential along the GB
would require substantial nonuniformities which have not
been observed in microstructure studies. These two results
suggest that any variation in potential is not large and is
confined to a region much smaller than the electron wave-
length, which implies that the large variation in potential
required for diffuse electron scattering is not present. Thus
we can conclude that electrons for the most part should scat-
ter coherently from the GB, enabling the use of scattering
theory to calculate scattering rates of an electron wave from
a scattering potential.

The third observation we make is that the electron MFP is
predicted to be smaller than the wavelength, implying that
the Boltzmann equation is at the edge of its validity. As the
Boltzmann equation still gives good results for both the bulk
and nanocomposite materials, the above discussion is still
expected to hold. This issue is further discussed in Sec. VI.

Based on the above discussion, the physical picture for
GB scattering is that of a carrier interacting with local re-
gions of the GB with each region acting as an independent

scattering site which coherently scatters an electron wave.
The GB is composed of many of these scattering sites. The
most appropriate model for GB scattering is therefore one
which models only a local potential along a small section of
the GB.

Using these results, we can now create an electron GB
scattering model by identifying a scattering potential and cal-
culating the corresponding scattering rate. We have devel-
oped a model which describes a small section of the grain
boundary with a scattering potential Ug in a cylindrical re-
gion, as illustrated in Fig. 6. Since the actual GB is an ex-
tended planar defect, the modeled GB is composed of many
such cylinders, each of which acts as an independent scatter-
ing site. The potential takes into account the variation in the
potential along the direction perpendicular to the grain
boundary. If r0 is the radius of the cylinder, z is the direction
normal to the GB, and z=0 is at the center of the GB, then
the model potential is given by

Ug = �U0e−�z�/z0 r � r0

0 r � r0
� . �14�

Here U0 is the maximum grain-boundary potential, r0 is a
constant on the order of the screening length R, and z0 is a
constant related to the size of the depletion region. This par-
ticular form of the potential is chosen for several reasons.
The decaying exponential form of the potential in z is used as
an approximation to the exact potential which would result
from a carrier depletion region. The cylindrical geometry is
chosen to model the effects of screening: within the cylinder
the GB potential acts on the electron but beyond several
multiples of the screening length the GB potential is
screened out and is essentially zero.

With the scattering potential determined, the final step is
to determine the scattering rate. We use the first Born ap-
proximation to calculate the scattering rate as the GB poten-
tial is not expected to be large. The matrix element for the
potential is
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Mkk� =� eik�·r�Ug�r��e−ik�� ·r�d3r =� eiq� ·r�Ug�r��d3r �15�

=4
U0� z0

1 + �qzz0�2
r0
2� J1�qrr0�

qrr0

 , �16�

where J1�qrr0� is a first-order Bessel function of the first
kind, q� =k� −k�� , and qr and qz are the r and z components of q� ,
respectively. Here the r-z coordinate system is relative to that
of the disk. From Fig. 6, we can express qr and qz in terms of
�, the angle between the z axis and k�; �, the angle between
the z axis and k�� ; and �, the angle between kr and kr�. The
result is

qz = kz − kz� = k�cos � − cos �� , �17�

qr = k�sin2 � + sin2 � − 2 sin � sin � cos � . �18�

The scattering rate and momentum relaxation times can
be obtained from the expressions

S�k,k�� =
2


�
�Mkk��

2��Ek� − Ek� , �19�

�−1 =
2

�2
�3�
0

2
 �
0


 �
0

�

S�k,k���1 − cos ��k�2 sin �dk�d�d� .

�20�

Since the potential does not have spherical symmetry,
evaluating the momentum relaxation time is more compli-
cated and an analytic solution is not possible. Using the defi-
nitions above, the momentum relaxation time can be shown
to be

�GB
−1 =

8
2U0
2z0

2r0
4D�E�

�
NgI�r0,z0� , �21�

I�r0,z0� =
1



�

0

2
 �
0


 �
0


 sin ��1 − cos � cos � − sin � sin � cos ��
�1 + �qzz0�2�2

J1
2�qrr0�
�qrr0�2 d�d�d� , �22�

where Ng is the number of cylinders per unit volume. An
average has been performed over the incoming angles �.

This scattering rate has two distinct regimes. For qzz0
�1 �low-energy electrons�, �GB

−1 �E1/2, similar to the energy
dependence of a diffusive boundary scattering rate. For
qzz0�1 �high-energy electrons�, �GB

−1 �E−3/2, similar to the
energy dependence of the ionized impurity-scattering rate.
Depending on the value of the cylinder radius r0, this change
in energy dependence could give an energy filtering effect.

The final quantity needed is the density of cylinders Ng. If
the grain boundary is modeled as a sphere, the number of
cylinders per grain is simply the surface area of the sphere
divided by the base area of the cylinder. The number density
of cylinders is then just the number of cylinders per grain
multiplied by the number density of grains,

Ng =
1

2

4
�lgb/2�2

�
r0
2�

�
1

�lgb/2�3 � f =
4f

lgbr0
2 . �23�

The factor of 1/2 is necessary as each cylinder is shared
between two grains. The parameter 0� f �1 is a constant
which accounts for the geometrical distribution of the cylin-
ders. In the actual material, the cylinders are arranged ac-
cording to the shape of the grain boundaries but in the deri-
vation above it is implicitly assumed that the cylinders are
uniformly distributed throughout the material. This could
lead to an overestimation of the scattering rate. To estimate
the magnitude of this effect, we implemented a simple Monte
Carlo simulation which models a particle traveling through a
three-dimensional lattice containing GB scattering sites in
various geometries. In the first case, the GB sites are ar-

ranged along the faces of a cube, an approximation to their
actual locations in the material; in the second case, the same
number of GB sites are distributed uniformly throughout the
region. After the particle passes through the GB site it is
assumed the particle experiences an elastic, velocity-
randomizing collision; the particle also experiences the same
type of collision over a randomly chosen distance between 2
and 5 nm to account for other scattering processes. For each
geometry, the number of times the particle passes through a
GB site is recorded. This analysis indicates that assuming the
same number of GB sites are uniformly distributed overesti-
mates the number of times the particle is scattered by a GB
site by approximately 30%. To compensate for this, we sim-
ply set f 
0.7–0.8 to reduce the effective density of cylin-
ders. This is valid as it was previously shown that all the GB
scattering sites should be independent of each other. The
results are not particularly sensitive to the value of f: using a
value of f �0.1 will give a GB potential of approximately
Ug�5 meV. We use f =0.7 for the calculations in this study.

With the scattering rate determined, the thermoelectric
properties of nanocomposites can be determined by adding
the GB scattering rate to the other scattering rates using Mat-
thiessen’s rule. To explain the nanocomposite data, suitable
values of the model parameters will need to be determined.
The adjustable parameters of the model are the barrier height
Ug, the radius of the disk r0, and the potential decay constant
z0. However, the parameters are not totally arbitrary: to be
consistent with the characteristic lengths discussed before, r0
must be on the order of the screening length, about 1–2 nm,
and z0 must be on the order of the space-charge region width,
about 2–4 nm. The charge-trapping model predicts that Ug
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should be less than 20 meV, though the required GB poten-
tial turns out to be larger. In addition, for the lattice thermal-
conductivity model the grain size must be specified; this is
determined from XRD measurements to be on the order of
10–20 nm.18,19

V. RESULTS

Using these values as a guide, we have calculated the
thermoelectric properties for n-type and p-type Si0.8Ge0.2
nanocomposites whose properties were recently reported.18,19

The fitting procedure is as follows. First, with all other pa-
rameters kept constant, the parameters r0, z0, and Ug are
adjusted so that the calculated mobility agrees with the ex-
perimental results. Next, the carrier concentration versus
temperature variation is determined using the calculated mo-
bility and the reported electrical conductivity. Finally, the
electrical conductivity, Seebeck coefficient, thermal conduc-
tivity, and ZT are calculated. If the calculation is consistent,
after fitting the mobility and carrier concentration the calcu-
lated results for all the properties should match the experi-
mental data.

A. n type

We are able to obtain excellent agreement with the experi-
mental data for the n-type nanocomposite using this proce-
dure, indicating that the Boltzmann equation and the GB
scattering model provide a good description of the transport.
The calculated and experimental mobilities are shown in Fig.
7. IIS is the dominant scattering mechanism over most of the
temperature range with GB scattering next most dominant at
room temperature and acoustic-phonon scattering next most
dominant above 700 K. The GB scattering fitting parameters
used to obtain this result are summarized in Table III.

Figure 8 shows the n-type and p-type carrier concentra-
tions versus temperature. For the n-type nanocomposite,
there is a slight decrease in electron concentration with tem-
perature at intermediate temperature, followed by a large in-
crease in electron concentration with temperature at elevated
temperature. This behavior is consistent with previous re-
ports, as dopant precipitation to the GB in n-type Si1−xGex is
known to be a significant process even at intermediate tem-
peratures of 600–700 K.28,39 At room temperature the mate-
rial is a supersaturated solution of Si0.8Ge0.2 and P as it has
been quenched in air to room temperature, freezing the dop-
ants in place. As the temperature is increased P is rejected
from the lattice as the material attempts to return to its equi-
librium state. At high temperature, the dopants are reacti-
vated due to the increasing solubility limit and the electron
concentration increases. Somewhat unexpectedly, the pres-
ence of additional grain boundaries in the nanocomposite
does not seem to exacerbate this phenomenon; the bulk and
nanocomposite materials exhibit very similar carrier concen-
tration versus temperature curves.

The calculated thermoelectric properties, including dopant
precipitation effects, are shown in Fig. 9, along with the
nanocomposite experimental data and the calculated results
without GB scattering for comparison. The calculated results
which include GB scattering are in excellent agreement with
the experimental results. Dopant precipitation is seen to
cause the normally monotonically decreasing electrical con-
ductivity to actually increase above 900 K; the opposite trend
is present in the Seebeck coefficient. The same carrier-
concentration variation with temperature as was used for the
bulk n-type case in Fig. 3 is also used here.
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TABLE III. Fitting parameters used for nanocomposite
modeling.

Material
Ug

�meV�
r0

�nm�
z0

�nm�
lgb

�nm�

n-type Si0.8Ge0.2 45 1.0 2.0 12

p-type Si0.8Ge0.2 45 1.0 2.0 20
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B. p type

Unfortunately, a completely consistent fit for the p-type
nanocomposite could not be found. Specifically, the model is
not able to predict the high Seebeck coefficient that is ob-
served experimentally without adjustment to the hole effec-
tive mass. We find that increasing the hole effective mass
from 1.2me to 1.55me is able to explain the data, possibly
indicating the nanocomposite valence band is different from
that of the bulk. A change in hole effective mass has been
reported in strained Si1−xGex /Si1−yGey thin films62 but
whether the same phenomenon is responsible for the ob-
served nanocomposite properties is not clear.

The mobility is shown in Fig. 10. Unlike the n-type case,
where ionized impurity scattering is dominant, here acoustic-

phonon scattering is the dominant scattering mechanism over
most of the temperature range.

Figure 8 shows the hole concentration versus temperature.
Unlike previous reports for bulk p-type Si0.8Ge0.2,

37 the
nanocomposite does exhibit a change in hole concentration
at elevated temperature, reducing from around 2.6
�1020 cm−3 at room temperature to 2.0�1020 cm−3 at 1300
K. This is somewhat unexpected as carrier concentration
changes in p-type Si0.8Ge0.2 had previously been observed
only on the time scale of thousands of hours.37 The explana-
tion for this effect is similar to that for n-type dopant pre-
cipitation. At room temperature, the material is supersatu-
rated with B but it must be raised to a higher temperature of
about 1000 K to reject B from the lattice. The B rejection
causes the hole concentration to reduce to a value closer to
the solubility limit.

Figure 11 shows calculated thermoelectric properties for
different conditions along with the experimental thermoelec-
tric properties of the nanocomposite and bulk material. One
set of curves is calculated using an effective mass of 1.55me
and includes GB scattering while the second set does not
include GB scattering but is otherwise the same. The See-
beck coefficient using the bulk effective mass of 1.2me has
also been computed for comparison.

The calculated Seebeck coefficient obtained using the
bulk effective mass of 1.2me is about 25% lower than the
experimental data over the entire temperature range while
that calculated using 1.55me gives a better fit. An interesting
feature of the experimental data is that even though the hole
concentration of the nanocomposite material is almost twice
that of the bulk material �2.6�1020 cm−3 versus 1.35
�1020 cm−3�, the Seebeck coefficient of the nanocomposite
is actually equal to or higher than that of the bulk. We have
tried many different types of GB scattering models, but none
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predict the level of increase in Seebeck coefficient that is
observed; only by increasing the effective mass are we able
to obtain a satisfactory fit for all the properties. However,
whether the material actually does have a different effective
mass from the bulk is not clear, and more investigation into
the transport properties and band structure of nanocomposite
p-type Si0.8Ge0.2 is necessary.

VI. DISCUSSION

We used the model calculations to better understand the
effects of GB scattering on the thermoelectric properties. To
start, we examine the nanocomposite and bulk experimental
data more closely. For both the n-type and p-type materials,
the nanocomposite electrical conductivity is reduced from
the calculated value without GB scattering at room tempera-
ture, but the difference decreases as the temperature in-
creases. This is expected because the phonon-scattering rate
goes as T3/2 and thus becomes large compared to the other
scattering mechanisms at high temperature, making the influ-
ence of GB scattering less significant as the temperature in-
creases. Crucially, the phonon GB scattering rate is always
much larger than the other phonon-scattering rates over the
entire temperature range. Thus, while the nanocomposite
electrical conductivity approaches that of the bulk at high
temperature, the lattice thermal conductivity is still much
lower than that of the bulk, leading to a net increase in ZT
which is most pronounced at high temperature. Unfortu-
nately, this also implies that improving the electrical proper-
ties at high temperature is difficult because the mobility is
always limited by phonon scattering, especially in the p-type
material.

The model can provide additional information about GB
scattering. An interesting observation is that the GB poten-
tials required to fit the data are several times higher than
those predicted from the Poisson equation. Even with a very
high trap density of Nt=1�1013 cm−3 and a relatively lower
doping concentration ND=1�1020 cm−3, the magnitude of
the GB potential is only predicted to be about 20 meV. How-
ever, the value required to fit the data is 45 meV. There could
be several reasons for this. One likely possibility is that there
are many more defects present than were accounted for in the
model. TEM images show there are a variety of nanoprecipi-
tates and composition variations that could also act as
electron-scattering sites.17–19 In the model only scattering
sites from the nanoscale grain boundaries are taken into ac-
count but if the density of scattering sites is actually larger
than this, the magnitude of the GB potential required to fit
the data would decrease.

Another possibility is that nanocomposites have more dis-
ordered GB regions and thus more trapping states than have
been previously measured for microcrystalline materials. The
nanocomposite materials studied here are doped far beyond
the solubility limit for the host material Si0.8Ge0.2 with the
result that a large fraction of the inserted dopants are rejected
from lattice sites and are forced into other regions of the
material such as the GB. As an example, the p-type nano-
composite sample is doped with 5% B, or 2.5�1021 cm−3,
but the measured carrier concentration is only 2.6

�1020 cm−3, indicating that most of the dopants do not oc-
cupy substitutional sites in the lattice. It has been previously
hypothesized that dopants might affect the number of trap-
ping states in the GB, though if and to what extent the trap-
ping states are modified is not known.54 Unfortunately, it is
not easy to determine the number of trapping states with
common methods, such as capacitance measurements, due to
the very small size of the grains.

Yet another possibility is that the grains are becoming so
small that the volume fraction of GB is not negligible, mak-
ing the material essentially composed of two phases, one
being the host material and the inclusion phase being the GB
material. Since the GB is expected to have very low mobility,
the combined material’s mobility will be lower than would
be predicted from a scattering model alone.

While it is clear that many questions remain concerning
transport in nanocomposites, the results discussed here do
suggest several strategies and research topics which could
lead to further improvements in ZT. One obvious topic for
further research is determining how to fabricate nanocom-
posites with fewer defects and cleaner grain boundaries. If
the number of defects or number of trapping states could be
reduced, the GB scattering rate would be reduced and the
mobility would increase, especially in the room temperature
to intermediate temperature range. Understanding the reason
for the mobility reduction and adjusting fabrication condi-
tions to minimize it would thus be very helpful.

Another possible research topic is based on the observa-
tion that the lattice thermal conductivity has been reduced so
far that it is nearing the electronic thermal conductivity; in
the n-type case the electronic thermal conductivity is actually
larger than the lattice component at high temperature. Unfor-
tunately, this means that further reducing the lattice thermal
conductivity will yield only marginal improvements in ZT as
the lattice thermal conductivity approaches the electronic
thermal conductivity. Research on ways to reduce the elec-
tronic and bipolar thermal conductivities such that ZT is in-
creased would thus also be very useful.63

The final topic we discuss is the validity of the Boltzmann
equation for highly doped thermoelectric materials. The
Boltzmann equation is an equation for particle transport and
neglects wave effects. For this approximation to be satisfied,
it can be shown that the necessary condition is that the elec-
tron MFP be much longer than the wavelength.25 However,
as shown in Fig. 5, for highly doped Si0.8Ge0.2 the electron
MFP is predicted to be even shorter than its wavelength,
making the applicability of the Boltzmann equation some-
what questionable. The prediction of the wavelength being
longer than the mean-free path may also be caused by the
inaccuracy of scattering models, which are mostly derived
assuming that the doping level is not too high. Thermoelec-
tric materials are very highly doped and are usually degen-
erate, however, and their electrical properties are sometimes
closer to those of metals than to semiconductors. Thus while
the Boltzmann equation has been successful in explaining
most of the experimental data, a predictive capability for the
transport properties of nanocomposites will require a more
powerful formalism.
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VII. CONCLUSION

In this paper we have used the Boltzmann equation under
the relaxation-time approximation to calculate the thermo-
electric properties of nanocomposite Si1−xGex alloys. The
strong grain-boundary scattering mechanism in nanocompos-
ites is accounted for using phonon and electron grain-
boundary scattering models. We find that the calculations are
in excellent agreement with the reported properties for the
n-type nanocomposite but the experimental Seebeck coeffi-
cient for the p-type nanocomposite is larger than the model’s
prediction. Increasing the hole effective mass gives a better
fit, possibly indicating the valence band in the nanocompos-
ite is different from that of the bulk material. We also find
that dopant precipitation is an important process in both
n-type and p-type nanocomposites, in contrast to bulk SiGe,
where dopant precipitation is most significant only in n-type

materials. Finally, the model shows that the grain-boundary
potential required to fit the data is several times larger than
the value obtained using the Poisson equation. This suggests
that an improvement in electrical properties is possible by
reducing the number of defects in the grain or reducing the
number of electrical trapping states at the grain boundaries.
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