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Employing instanton technique we evaluate equilibrium persistent current �PC� produced by a quantum
particle moving in a periodic potential on a ring and interacting with a dissipative environment formed by
diffusive electron gas. The model allows for detailed nonperturbative analysis of interaction effects and,
depending on the system parameters, yields a rich structure of different regimes. We demonstrate that at low
temperatures PC is exponentially suppressed at sufficiently large ring perimeters 2�R�L�, where the dephas-
ing length L� is set by interactions and does not depend on temperature. This behavior represents a clear
example of quantum decoherence by electron-electron interactions at T→0.
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I. INTRODUCTION

Electron decoherence is one of the key ingredients of the
many-body ground state in the presence of disorder and
electron-electron interactions. The existing nonperturbative
theory of this phenomenon at low temperatures in realistic
disordered conductors1–3 is rather complicated to a large ex-
tent because of the necessity to properly account for Fermi
statistics for interacting electrons. At the same time the main
physical reason for electron dephasing appears obvious al-
ready without unnecessary technical details: it is the electron
interaction with the fluctuating quantum electromagnetic
field produced by other electrons moving in a disordered
potential.

In order to be able to quantitatively describe and under-
stand the latter effect Guinea4 suggested a model which
mimics all essential features of the “real” problem of inter-
acting electrons in a disordered conductor except for the
Pauli exclusion principle. This model describes a quantum
particle moving on a ring with radius R and interacting with
quantum dissipative environment. For a system in thermody-
namic equilibrium quantum decoherence manifests itself as
effective suppression of off-diagonal density-matrix elements
beyond a certain length L�. Provided there exists nonzero
electron dephasing due to its interaction with quantum envi-
ronment at T→0, this dephasing length L� should stay finite
down to zero temperature. Hence, all effects sensitive to
quantum coherence, such as, e.g., persistent currents �PC�
and Aharonov-Bohm �AB� oscillations in mesoscopic rings,
should be suppressed by interactions as soon as the ring pe-
rimeter 2�R exceeds L�.

A great deal of information can be obtained by modeling
the environment by a bath of Caldeira-Leggett �CL� oscilla-
tors. In this case it was demonstrated5 that PC is reduced
by interactions in the ground state implying suppression of
quantum coherence exactly at T=0. For the same CL
environment Guinea4 found that AB oscillations for a
quantum particle on a ring are suppressed by the factor
�exp�−�R /L��2�, where the length L� is set by interactions
and remains finite down to T=0. A similar result was also
obtained earlier from the real-time analysis.6 Furthermore,
the problem4,6 is exactly equivalent to that of Coulomb

blockade in the so-called single-electron box where exponen-
tial reduction in the effective charging energy at large
conductances7,8 is presently considered as a well-established
result. Thus, it is now widely accepted that PC for a quantum
particle on a ring is exponentially reduced at large ring pe-
rimeters down to T=0 due to strong dephasing produced by
interaction
between the particle and the CL bath.

It appears that presently no such consensus exists for an-
other important model of the environment4 formed by a dif-
fusive electron gas. Renormalization-group arguments devel-
oped for this model4 suggest very weak power law �R−�

suppression of AB oscillations at T→0, where the factor
��1 is set by interactions. On the contrary, the combination
of semiclassics, instanton technique, and quantum Monte
Carlo �MC� analysis9 yields much stronger suppression of
quantum coherence, namely, exponential suppression
�exp�−R /L�� �with temperature independent L�� at not too
low T and power-law suppression �R−� with ��1.8 at
T→0 and for 2�R�L�.

More recently this problem was reconsidered by means of
variational approach,10 perturbation theory,11 and MC
simulations.12 In contrast to Ref. 9, either no10,11 or very
weak12 R-dependent suppression of PC was found. Note,
however, that the variational calculation10 reduces the PC
problem to that of mass renormalization in the m=0 topo-
logical sector while, as we show here, PC is determined by
other topological sectors �m�0� that are distinct from the
m=0 sector, unlike the variational result in Ref. 10. Pertur-
bative in the interaction calculations11 can also miss the cor-
rect behavior of PC at not too small R as it was already
demonstrated in Ref. 9 for the problem under consideration
and was also discussed elsewhere in a broader context.1,2

More arguments along the same lines will be presented be-
low in this paper.

As far as numerical MC results are concerned, the
authors12 ascribed the difference between their conclusions
and those of the previous work9 to insufficient Trotter num-
ber values employed in the MC analysis.9 While this particu-
lar issue definitely requires further analysis, it is worth point-
ing out that the MC data12 cover only the perturbative regime
R�L� where rather weak suppression of PC was found in
Ref. 9 as well, cf. Fig. 3 in that paper. Hence, MC results12
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for small R do not appear conclusive for the most interesting
nonperturbative regime R�L� where strong �though weaker
than exponential� interaction-induced suppression of PC was
predicted9 down to T→0.

Leaving detailed discussion of MC procedure and results
to the future, here we note that—despite significant theoret-
ical activity in the field—currently no well-controlled non-
perturbative approach is available which would allow to ana-
lytically study PC for the “particle+dirty electron-gas”
model4 in the low-temperature limit and at sufficiently large
values of R. Given both fundamental importance of the prob-
lem and remaining controversies in the literature, it is highly
desirable to formulate such an approach which would unam-
biguously resolve the whole issue. A step in this direction is
undertaken in the present work.

The structure of our paper is as follows. In Sec. II we
define our model which is essentially identical to that pio-
neered by Guinea4 except we additionally introduce a peri-
odic potential for the particle on a ring. In Sec. III we for-
mulate our main formalism and evaluate persistent current in
the ring without interactions by means of the standard instan-
ton technique. This approach is conveniently generalized to
the interacting regime in Sec. IV where we analyze suppres-
sion of both quantum coherence and PC by Coulomb inter-
action at sufficiently low temperatures down to T→0 and
arbitrarily large ring perimeters. Discussion of our main ob-
servations and conclusions is presented in Sec.V. Some tech-
nical details of our calculation are specified in Appendices A
and B.

II. MODEL AND EFFECTIVE ACTION

We will consider a quantum particle with mass M and
electric charge e on a ring with radius R threaded by external
magnetic flux 	x, see Fig. 1. As before,4,9 it will be conve-
nient to describe the particle position by a vector
R= �R cos 
 ,R sin 
� and consider the angle 
 as a quantum
variable. In contrast to Refs. 4 and 9–12 where the quantum
particle on a ring was described only by its kinetic energy
�i.e., no potential energy was included into consideration�, in
this paper we will assume that the particle moves in a peri-
odic potential which—just for the sake of definiteness—is
chosen in the form U�
�=U0�1−cos��
��. Here � is the total

number of periods of the potential U�
� which the particle
should pass before it makes one full circle on the ring. Ac-
cordingly, a noninteracting particle on a ring is described by
the Hamiltonian

Ĥ0 =
EC�	̂ +	x�2

	0
2 + U0�1 − cos��
�� , �1�

where 	̂=−i	0� /�
 is the magnetic flux operator,
EC=1 / �2MR2�, and 	0=2�c /e is the flux quantum �here
and below we set the Planck’s constant equal to unity �=1�.

Now let us include the interaction between the particle on
a ring and an effective dissipative environment. Specifically,
we will assume that the ring is embedded in the environment
formed by the so-called “dirty electron gas.”4 The total
Hamiltonian for our system reads

Ĥ = Ĥ0 + Ĥel + Ĥint, �2�

where Ĥel is the standard Hamiltonian for electrons in a dis-

ordered conductor and Ĥint describes interaction between the
particle and the electronic environment. Fluctuating electrons
in this environment produce stochastic electromagnetic field
V described by the equilibrium correlator

�VV� = T	
n


 d3k

�2��3

4�

k2��i�n�,k�
e−i��−���+ikX, �3�

where n=2�nT is the Matsubara frequency, �� ,k�
is the dielectric susceptibility of the environment, and
X=R���−R����. Similarly to Refs. 4 and 9 we will model the
environment by three-dimensional diffusive electron gas
with

1

��,k�
�

− i + Dk2

4��
, �4�

where � is the Drude conductivity of this gas, D=vFl /3 is
the electron diffusion coefficient, and l is the electron elastic
mean-free path. Interaction between the particle on a ring
and fluctuating electrons in the environment is described by
the standard Coulomb term

Ĥint = eV̂ . �5�

In what follows we will assume that the whole system re-
mains in thermodynamic equilibrium at a temperature T. Our
first and standard step is to integrate out all environmental
degrees of freedom effectively described by the collective
variable V. In the limit of weakly disordered environment
kFl�1 to be analyzed below fluctuations of the field V can
be considered Gaussian. In this case integration over this
field is carried out exactly.4,9 After that one arrives at the
grand partition function of the system expressed as a single
path integral over the angle variable 
���

FIG. 1. �Color online� The system under consideration: a par-
ticle on a ring in the presence of a periodic potential. The ring is
pierced by the magnetic flux and the particle interacts with an ef-
fective environment formed by a dirty electron gas.

ANDREW G. SEMENOV AND ANDREI D. ZAIKIN PHYSICAL REVIEW B 80, 155312 �2009�

155312-2



Z � 	
m=−�

�

e2�im�xZm

= 	
m=−�

� 

0

2�

d
0

0

2�m

D
 exp�2�im�x − S�
�� . �6�

Here we defined �=1 /T, �x=	x /	0, and the winding-
number-projected partition functions Zm. The first term in
the exponent in Eq. �6� takes care of the magnetic flux while
the second term S�
� describes the effective action for our
interacting particle on a ring. This action consists of two
terms,

S�
� = S0�
� + Sint�
� . �7�

The term

S0�
� = 

0

�

d� 1

4EC
� �


��
�2

+ U0�1 − cos��
��� �8�

defines the action for a particle in the absence of the envi-
ronment. This action is identical to one for the Josephson
junction13 where EC plays the role of the charging energy.
The term Sint describes the effect of interaction between the
particle and the environment. For our model it has the
form4,9

Sint�
� = �

0

�

d�

0

�

d��
�2T2K�
��� − 
�����

sin2��T�� − ����
, �9�

K�z� = 1 −
1

�4r2 sin2�z/2� + 1
, �10�

where the constant �=3 / �8kF
2 l2� effectively controls the

interaction strength in our model and r=R / l. Note that
the integral in Eq. �9� is understood as a principal value.
The formal divergence at �=�� is regularized by requiring
K�0�=0 which explains the origin of the first term in Eq.
�10�. For the sake of physical consistency of our model be-
low we will set 1 /kF� l�2�R /�, where the first inequality
just means that interaction should remain weak, ��1, while
the second one implies that the distance between the neigh-
boring potential minima should be much larger than l. Ac-
cordingly, the parameter r=R / l obeys the inequality

r� �/2� . �11�

Note that it can also be convenient to rewrite the function
K�z� in terms of the Fourier series

K�z� = 	
n

an sin2�nz

2
� , �12�

where the Fourier coefficients are an��2 /�r�ln�r /n� for
1�n�r and an�0 otherwise.

III. PERSISTENT CURRENT IN THE ABSENCE OF
DISSIPATION

Let us first evaluate persistent current in our system in the
absence of interactions, i.e., we set the interaction constant

equal to zero �=0 everywhere in this section. In what fol-
lows we will mainly be interested in sufficiently large values
of the ring radius R. Hence, without loss of generality one
can consider the limit EC�U0. Below we will perform our
calculation for a somewhat more stringent condition

�2EC � U0 �13�

which simplifies our analysis but is by no means important
for any of our key conclusions.

In the tight binding limit, Eq. �13�, and at sufficiently low
temperatures the particle is located at the bottom of one of
the potential wells �see Fig. 1�, i.e., in the vicinity of the
points 
=2�p /�, where 0�p�� is an integer number. Ac-
cordingly, in Eq. �6� one should substitute



0

2�

d
0 → 	
p=1

� 
 d
0��
0 − 2�p/�� . �14�

The particle can move around the ring only by hopping
between the neighboring minima 
=2�p /� and

=2��p�1� /� of the periodic potential U�
�. Each of these
tunneling events is described by the well-known instanton
�kink� trajectory


̃��� =
4

�
arctan�exp���� �15�

and corresponds to the tunneling rate � /2, where

� = 8��U0EC

�
�1/2�2U0

EC
�1/4

exp�−
4

�
�2U0

EC
� �16�

and =��2U0EC. In order to evaluate the grand partition
function

Z � 	
p=1

�

�p�e−�Ĥ0�p� �17�

it is necessary to sum over all possible tunneling events of
the particle between all potential minima to all orders in �.
The minimum number of such hops should be equal to m�
for any trajectory corresponding to the winding number m.
Taking into account that effective duration of each tunneling
event is �−1 and that the total imaginary time span equals
to ��1 /T we can distinguish two different limits. In the
limit m�−1�� the average distance between instantons is
large as compared to their typical size, i.e., in this case we
are dealing with dilute instanton gas. In the opposite limit
m�−1�� instantons are very close to each other and essen-
tially merge forming a single trajectory. Below we will also
demonstrate that in the above conditions it suffices to set
m=1.

A. Dilute instanton gas

We begin with the low-temperature limit T� /�. To pro-
ceed let us evaluate a somewhat more general than in Eq.

�17� matrix element �p1�e−�Ĥ0�p2�. For this purpose we con-
sider multi-instanton trajectories
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���� =
2�p1

�
+ 	

j

� j
̃�� − � j� , �18�

where � j =�1 and � j are, respectively, the topological

charges and collective coordinates of instantons and 
̃��� is
defined in Eq. �15�. The trajectory, Eq. �18�, describes tun-
neling of the particle between the states �p1� and �p2� after m
winds around the ring provided we fix

	
j

� j = n2 − n1 = p2 − p1 + m� , �19�

i.e., we consider configurations containing totally n1+n2 in-
stantons corresponding to n1 hops clockwise and n2 hops
counterclockwise. Taking into account all possible tunneling
events restricted by the condition �19� and summing over all
winding numbers m, we obtain

�p1�e−�Ĥ0�p2� = �
�
�1/2

	
m=−�

�

e2�im�x−�/2

� 	
n1,n2=0

�
���/2�n1+n2

n1 ! n2!
�n1−n2,p1−p2−m�.

�20�

Making use of the integral representation for the Kronecker
symbol

� j,k = 

0

2� dy

2�
eiy�j−k�, �21�

after performing a summation over m with the aid of Pois-
son’s resummation formula

	
m=−�

�

e2�imx = 	
k=−�

�

��x − k� �22�

we obtain

�p1�e−�Ĥ0�p2� = � 

��2�1/2
e−�/2

�	
j=1

�

ei2��j+�x��p1−p2�/�+�� cos�2��j+�x�/��.

�23�

This formula allows to easily recover the low-lying energy
levels of our problem which contain all necessary informa-
tion in order to evaluate PC. For instance, the ground-state
energy of the particle E0��x� is obtained in a standard way
by taking the limit T=1 /�→0 in Eq. �23� which yields

E0��x� =


2
− � cos�2��x

�
� �24�

for −1 /2��x�1 /2. Equation �24� should be continued pe-
riodically outside this interval. This expression determines
the periodic dependence �with period equal to the flux quan-
tum 	0� of the ground-state energy on the magnetic flux 	x.
In the limit ��1 this dependence reduces to a set of parabo-
las

E0��x� −


2
�

2�2�

�2 minn��x − n�2. �25�

Turning back to the grand partition function, Eq. �17�, from
Eq. �23� we find

Z � 	
j=1

�

e�� cos�2��j+�x�/��. �26�

PC can now be easily obtained from the general formula

I = −
eT

2�

�

��x
ln Z , �27�

which yields diamagnetic current

I =
e�

�

	
j=1

�

sin�2��j + �x�
�

�e�� cos�2��j+�x�/��

	
j=1

�

e�� cos�2��j+�x�/��

. �28�

This expression fully determines PC in the ring at tempera-
tures T� /� and in the absence of interactions with dissi-
pative environment. The dependence of the maximum PC
value on temperature is depicted in Fig. 2.

Equation �28� is further simplified at temperatures above
and below the interlevel distance �� /�2. In the limit
T�� /�2 the leading contribution to the partition function is
defined by configurations with minimal number of instan-
tons. Hence, in the sum over winding numbers in Eq. �6� it is
sufficient to keep only the terms with m=0,�1 terms. For
the term with m=0 it is necessary to sum over all configu-
rations, whereas for the case m=�1 only configurations
with � instantons contribute. After some algebra we get

Z0 = �e−�/2I0���� , �29�

where I0�x� is the modified Bessel function of imaginary ar-
gument. For m=�1 we find

Κ�5
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Κ�20
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FIG. 2. �Color online� Maximum value of PC as a function of
temperature for different values of �. Inset: The magnetic-flux value
�max at which PC reaches its maximum value as a function of T /�.
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Z�1 = �
�����

2��!
e−�/2. �30�

As a result we obtain

I = IC0�T�sin�2��x� , �31�

where

IC0�T� =
e��

�2T��−1� ! I0��/T�
. �32�

At low temperatures T�� /�2 Eq. �28� reduces to a
simple formula

I =
e�

�
sin�2��x

�
�, − 1/2��x � 1/2, �33�

which also trivially follows from Eq. �24�. This formula
demonstrates that at T=0 the magnitude of PC in our system
is proportional to � while its flux dependence deviates from
the simple sinusoidal form for all ��1. In particular, in the
limit ��1 this dependence approaches a sawtooth one

I = IC0 minn��x − n�, IC0 = 2�e�/�2. �34�

Comparing the expressions for PC derived above with
those for a free particle on a ring9–12 we observe that the
main physical difference between these two models is the
presence of two distinct energy scales,  and �, in our case
whereas only one energy scale EC remains in the limit
U0=0. Otherwise significant features of the effect are essen-
tially the same in both models. Indeed, at high temperatures
�T�� here and T�EC for U0=0� the dependence of PC on
the magnetic flux 	x is sinusoidal with the period 	0 and its
amplitude decreases with increasing T, cf. our Eq. �32� with
Eq. �11� in Ref. 9. In the low-temperature limit �T�� /�2

here and T�EC for U0=0� the dependence I��x� strongly
deviates from sinusoidal �except for a special case �=1�. In
the limit ��1 the sawtooth dependence, Eq. �34�, is identi-
cal to that for the case U0=0 where one has IC0�EC.

Finally, let us compare the dependence of the PC ampli-
tude IC0 on the ring radius R obtained in these two cases.
Provided the parameter � is fixed and does not change with
R, Eqs. �16� and �34� yield exponential decay of IC0 with
increasing R since EC�1 /R2. This exponential decay is due
to the fact that for larger R the potential profile changes in a
way that the particle should tunnel at a longer distance
2�R /� between the two neighboring states �p� and �p�1�.
Alternatively, one can keep the distance between the adjacent
potential minima 
=2�p /� and 
=2��p�1� /� unchanged
while increasing R. This is achieved by varying the param-
eter � with R as ��R. Under this condition the tunneling
rate �, Eq. �16�, becomes independent of R and the magni-
tude of PC IC0, Eq. �34�, decreases with increasing R as
IC0�1 /R2 exactly as in the case U0=0. Note, however, that
due to the restriction, Eq. �13�, this regime can apply only at
not too large values of R.

B. Merged instantons

Now let us turn to the case of higher temperatures
 /��T� which can be realized in the limit ��1. In this

case the leading contribution to the partition function origi-
nates from one multi-instanton trajectory. This trajectory of
merged instantons ��m���� can easily be evaluated due to the
presence of the integral of motion which is the classical en-
ergy Em corresponding to the winding number m. This energy
is fixed by the periodic boundary condition

1

T
=�MR2

2



0

2��m� d


�Em + U0�1 − cos��
��
�35�

and the trajectory ��m���� is obtained from the equation

� − �0 =�MR2

2



0

��m� d


�Em + U0�1 − cos��
��
. �36�

Making use of the standard quasiclassical technique one ar-
rives at the following expression for the partition function

Z = 	
m=−�

� �−
�2S�Em�

�Em
2 �−1/2e2�im�x−�m�S�Em�+Em/T

T�2��m�3
, �37�

where

S�E� =
1

�EC



0

2�

�E + U0�1 − cos��
��d
 �38�

is the classical action. As before, the leading contribution to
this partition functions comes from the lowest winding num-
bers m=0,�1. For m=0 one recovers the oscillatorlike ex-
pression

Z0 =
�

2 sinh


2T

� �e−/�2T�, �39�

whereas for m=�1 the instanton trajectory approaches the
straight line in which case the integrals can be easily evalu-
ated and yield

Z�1 = ��2�U0T

2 e−2�2U0T�2/2
. �40�

With the aid of these results one again arrives at the expres-
sion for PC in the form �31� with

IC0�T� = 2eT�2�U0T

2 exp� 
2T

−
2�2U0T�2

2 � . �41�

Different regimes considered in this section can also be
summarized graphically by means of the diagram depicted in
Fig. 3.

IV. EFFECT OF ELECTRON-ELECTRON INTERACTIONS

A. Renormalization of the tunneling amplitude

Now let us turn on interactions and analyze the effect of
fluctuations in a dissipative environment. To this end we
again employ the above instanton technique. Evaluating the
path integral in Eq. �6� in the limit, Eq. �13�, and for
T� /� we follow the same scheme and substitute the tra-
jectory, Eq. �18�, describing quantum tunneling of the par-
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ticle between different potential minima into the full effec-
tive action, Eq. �7�. As before, let us fix the winding number
equal to m. Then we again arrive at configurations of totally
k instantons restricted by the condition �19� where we now
also set p1= p2= p. Evaluating the interaction term Sint, Eqs.
�9� and �10�, on multi-instanton trajectories, Eq. �18�, after
some algebra �see Appendix A� we obtain

Sint������ = 4��rk/�

− 2� 	
a,b=1,a�b

k

�a�bg��ab�ln sin��T��b − �a��
�T−1 � ,

�42�

where

g��� = K�� + 2�/�� + K�� − 2�/�� − 2K��� �43�

and

�ab =
2�

�
	
j=a

b

� j −
�

�
��b + �a� . �44�

We observe that the interaction term, Eq. �42�, consists of
two different contributions. One of them, 4��rk /�, de-
scribes interaction-induced suppression of quantum tunnel-
ing of the angle variable 
 between different potential
minima. This term yields effective r-dependent renormaliza-
tion of the tunneling amplitude

�→ �r = �e−4��r/�. �45�

The remaining contribution in Eq. �42� describes logarithmic
interaction between different instantons which occurs for �
�2 due to the presence of a dissipative environment. This
logarithmic interaction is absent for �=1 in which case
g����0.

At not too low temperatures T��r /�2 interinstanton in-
teractions just provide further renormalization of the tunnel-
ing amplitude �r→�r�1+2�K�2� /��ln�2�T /��. One can
also write down the renormalization group �RG� equation

d�r

d ln 
= 2�K�2�/���r, �46�

which yields both r- and T-dependent renormalized tunnel-
ing amplitude of the form

�R = �r� T


�2�K�2�/��

. �47�

At even lower temperatures T��r /�2 interactions again
yield renormalization of the tunneling amplitude which now

becomes �r→�r�1+2�K�2� /��ln
2�re

�

 �. The corresponding
RG Eq. �46� remains the same but relevant energy scale now
becomes

�R = �r��r


� 2�K�2�/��

1−2�K�2�/��
. �48�

Equation �48�—together with Eq. �45�—defines the renor-
malized tunneling amplitude in the limit T→0 and for
��2. In the particular case �=2 our results reduce to those
established for the so-called spin-boson model with Ohmic
dissipation.14,15

We also note that Eq. �48� is formally applicable for
��1 / �2K�2� /���, while for larger values of the interaction
strength � and at T=0 the tunneling amplitude is renormal-
ized to zero, �R=0. This is the consequence of the quantum
dissipative phase transition which—similarly to other
models13–15—occurs at the critical interaction strength
�c=1 / �2K�2� /����1 /2 and implies localization of a quan-
tum particle in one of potential wells at any � exceeding the
critical value �c. Accordingly, no PC can flow at T=0 and
��1 / �2K�2� /���. This formal conclusion, however, does
not appear to be of substantial physical significance, since
the applicability range of our model is restricted to small
values of ��1.

Finally, we should point out that, employing a regular
perturbation theory in �, already in the first order one recov-
ers additional terms which cannot be captured within the RG
Eq. �46�. The corresponding analysis is presented in Appen-
dix B.

B. Suppression of PC by interactions

It turns out that the behavior of PC may be quite different
depending both on temperature and on the parameter �.
Therefore, it is appropriate to distinguish several different
cases.

1. One potential minimum �=1

As we already discussed, in the case �=1 logarithmic
interaction between instantons is absent and the only effect
of interactions is r-dependent renormalization of the tunnel-
ing amplitude, Eq. �45�. Accordingly, for PC in this case we
obtain

I = e�e−4��r sin�2��x� . �49�

This result is valid at all temperatures in the range T�. It
demonstrates that for �=1 Coulomb interaction yields expo-

FIG. 3. �Color online� Different regimes for PC in the noninter-
acting case. The regions I �lowest T� and II �higher T� are described
within the dilute instanton gas approximation �Eqs. �31�–�33�, re-
spectively�, whereas the high temperature region III corresponds to
the case of merged instantons, Eqs. �31� and �41�. The dashed lines
T�� /�2 and T� /� indicate the crossover between these
regimes.
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nential suppression of PC down to T=0 provided the ring
perimeter 2�R exceeds an effective dephasing length

L� � l/� , �50�

which is set by the effective interaction strength � and does
not depend on temperature. Note that exactly the same length
scale was found in the absence of the periodic potential
U0=0 in Ref. 9.

2. Not too low temperatures and ��2

In the case ��2 instantons interact logarithmically
and—in addition to Eq. �45�—at not too low temperatures
the tunneling amplitude is renormalized according to Eq.
�47�. Combining these two equations and substituting the
renormalized tunneling amplitude �R into Eq. �32� instead of
� we obtain

I = IC�T�sin�2��x� , �51�

where

IC�T� = �IC0�T�� T


�2��K�2�/��

e−4��r, T�/� ,

IC0�T�e−4��r, T�/�
� �52�

and IC0�T� in the corresponding limits is defined, respec-
tively, in Eqs. �32� and �41�. In this case we again recover the
same exponential suppression of PC at ring perimeters
2�R�L� with temperature-independent dephasing length
defined in Eq. �50�. At the same time, the pre-exponent in the
expression for IC depends on temperature as a power law
IC�T��T− with  =��1−2�K�2� /���−1. For ��2 and
small values of the interaction strength ��1 we have
 �0, i.e., IC�T� grows with decreasing temperature. This
growth, though somewhat weaker than in the noninteracting
case, Eq. �32� �since  ��−1�, implies that Eqs. �51� and
�52� can be trusted only at T��R /�2 whereas at even lower
temperatures one expects a crossover to a different regime to
be discussed below. We also note that qualitatively similar
behavior of PC at not too low temperatures follows from the
numerical analysis9 of the model with U0=0.

3. Zero temperature limit and ��2

In order to evaluate PC in the limit T��r /�2 we will
make use of Eq. �B14� for the free energy. Combining this
expression with Eq. �27� and observing that the difference
�R−�r���1 in the last term in Eq. �B14� can be safely
neglected within the accuracy of our calculation �since it
only produces extra terms ��2�, we obtain

I =
e�R

�
�sin�2��x

�
� − �	

n=−r

r

an sin��n

�
�cos�2��x + �n

�
�

�ln�sin��n

�
�sin�2��x + �n

�
��� , �53�

where �R is defined in Eqs. �45� and �48�. This result allows
to make the following observations.

First, taking into account the dependence of �R on r we
conclude that exactly at T=0 and at sufficiently large ring

perimeters PC is exponentially suppressed as

I � exp−
4��r

��1 − 2�K�2�/���� , �54�

i.e., in this case for any fixed value � we can define an
effective zero-temperature dephasing length

L̃� = L���1 − 2�K�2�/��� . �55�

This result demonstrates that in the limit of weak interactions
��1 the effective length, Eq. �55�, turns out to be approxi-

mately � times longer than L�, i.e., L̃���l /�. Should, how-
ever, we assume that ��r, no finite dephasing length could
be defined from Eq. �54�, although also in this case even for
small � PC can suffer exponentially strong suppression by
electron-electron interactions due to the condition �11�.

Second, the result, Eq. �53�, demonstrates that at T→0
the effect of electron-electron interactions on PC does not
just reduce to renormalization of the tunneling amplitude
�→�R. We observe that Eq. �53� also contains additional
terms evaluated here within the first-order perturbation
theory in �. This r-dependent first-order contribution turns
out to be singular at values of �x close to �1 /2 and at all
other half-integer numbers which indicates insufficiency of
the first-order perturbation theory, at least for such values of
�x. Higher-order terms of the perturbation theory in the in-
teraction may contain similar �or even stronger� singularities
and, on top of that, may grow with increasing r. Hence, at
T→0 no perturbation theory in � can in general be trusted,
in particular, at sufficiently large r. A more detailed analysis
of this issue is beyond the scope of the present paper. Here
we only conjecture that such analysis might yield an addi-
tional dependence of PC on the ring radius r not accounted
for in the expression for �R. It is quite likely that such kind
of r dependence of PC at T=0 was also observed within a
numerical treatment9 in the case U0=0. Additional support
for this conjecture is provided by the exact solution pre-
sented below.

4. Toulouse limit

As we already pointed out, for �=2 our problem is ex-
actly mapped onto the well known spin-boson model with
Ohmic dissipation.14,15 In this case interaction between in-
stantons is given by Eq. �A9� and the grand partition function
reads �see also Appendices A and B�

Z�z;�� = 	
n=0

�

��r cos z�2n

0

�

d�1

�1

�

d�2 . . . 

�2n−1

�

d�2n

�exp�4� 	
j�k=1

2n

�− 1� j+kln sin��T��k − � j��
�T−1 �� .

�56�

In order to nonperturbatively evaluate PC at all values of r
and at all temperatures including T=0 we can profit from the
exact solution known for the particular value of the interac-
tion strength �=1 /4, the so-called Toulouse limit.
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Introducing the parameter 1
2�!�z� =

�r
2 cos2 z

T one can conve-
niently write down the exact expression for the partition
function, Eq. �56�, with �=1 /4 in the form

Z�z;�� = exp�

�T/

�

dx
1 − e−x/2�!�z�

x sinh x � . �57�

This result allows to immediately establish PC which reads

I =
e�r

2

2
sin�2��x�


�T/

�

dx
e−

x�r
2

T
cos2���x�

sinh x
. �58�

At not too low temperatures �T��r we obtain

I =
e�2

2
e−�r ln

2

�T
sin�2��x� . �59�

In low-temperature limit T→0 one finds

I =
e�r

2

2
sin�2��x�


�

�

dy
e−

y�r
2

2
cos2���x�

y
. �60�

Evaluating the integral in Eq. �60� we arrive at the final
result

I =
e�2

2
e−�r�r + ln� 2e−�

��2 cos2���x�
��sin�2��x� .

�61�

We observe that both at nonzero temperatures and exactly at
T=0 the above exact expressions for PC demonstrate its ex-

ponential suppression at ring perimeters exceeding L�= L̃�
�these two length scales coincide for �=2 and �=1 /4, see
Eq. �55��. In addition, the result, Eq. �61�, demonstrates that
at T=0 �a� the dependence of PC on r deviates from purely
exponential �which is in agreement with our above conjec-
ture� and �b� the dependence of PC on �x deviates from
purely sinusoidal and contains the logarithmic singularity at
half-integer values of �x, cf. also Eq. �53�.

V. DISCUSSION

In this paper we proposed a model which allows for de-
tailed nonperturbative treatment of the effect of electron-
electron interactions on PC in normal nanorings at low tem-
peratures. Our investigation employs a well-controlled
instanton technique and yields a rich structure of different
regimes. The main features observed within our analysis can
be summarized as follows: �i� Coulomb interaction yields
R-dependent renormalization of the tunneling amplitude, Eq.
�45�, which, in turn, results in exponential suppression of PC
at large enough R, �ii� logarithmic interaction between in-
stantons yields additional renormalization of the tunneling
amplitude described by the RG Eq. �46�, and �iii� electron-
electron interactions generate yet additional contributions not
captured by Eqs. �45� and �46�, see Eq. �53� and Appendix B.
These contributions may become particularly important at
T→0 indicating the failure of the naive perturbation theory
in the interaction at sufficiently large R.

Although the effect �iii� still requires additional nonper-
turbative analysis, already �i� and �ii� result in exponential
suppression of PC at any temperature including T→0 for
any given � and at ring perimeters exceeding the dephasing
length set by interactions and defined in Eqs. �50� and �55�.
Note that the length scale identical to Eq. �50� also follows
from the earlier nonperturbative analysis9 developed for the
case U0=0. Thus, similarly to Ref. 9 the decoherence effect
in our model is controlled by the parameter

�r � �	
n=1

r

nan

rather than by � or � ln r as it was sometimes suggested in
the literature in the case U0=0.

It is worthwhile to stress that exponential dependence of
PC on R of the form I�exp�−AR� by itself does not yet
necessarily imply decoherence. For instance, even in the ab-
sence of interactions PC I��, Eq. �33�, can decrease expo-
nentially with increasing R provided the parameter � is fixed
to be independent of the ring radius. Obviously, quantum
coherence is not destroyed in this case. Exponential
reduction in PC with increasing R at T→0 can also occur
in superconducting nanorings due to proliferation of quan-
tum phase slips.16,17 Also in that case the dependence
I�exp�−AR� can be interpreted just as a nontrivial
coordinate-dependent renormalization effect.17

An important qualitative difference between nanorings
with dissipation considered in Sec. IV and the two last ex-
amples is that in our problem dissipation explicitly violates
time-reversal symmetry �thus causing genuine decoherence
of a quantum particle�, while no such symmetry is violated in
superconducting nanorings16,17 or in the absence of dissipa-
tion �Sec. III�. Hence, quantum coherence remains fully pre-
served in the last two cases despite exponential suppression
of PC at large R.

One can discriminate between decoherence and pure
renormalization in a number of ways. For instance, one can
drive the system out of equilibrium and investigate its relax-
ation by means of a real-time analysis. This approach was
employed in Refs. 9 and 18 where a finite dephasing time
��=L� /v was found at T=0 with L� defined in Eq. �50� and
v being the particle velocity. This observation allows to un-
ambiguously identify quantum decoherence.

Another way5 amounts to analyzing fluctuations of PC in
the ground state of an interacting system. For instance, one

can study the correlator ��Î− �Î��2�, where Î is the current

operator which expectation value �Î� defines PC in the
ground state. Within the model5 it was demonstrated that,
while the average PC in the ground state decreases with in-
creasing interaction strength, its fluctuations increase, thus
implying genuine decoherence rather than pure renormaliza-
tion. A similar situation occurs within the model studied
here.

Following4 here we intentionally disregarded Fermi statis-
tics by suppressing electron exchanges between the ring and
the environment. The question arises if inclusion of the Pauli
principle into the model could alter our main conclusion
about nonvanishing electron decoherence at zero tempera-
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ture. Golubev and one of the present authors addressed this
issue by developing two entirely different nonperturbative in
the interaction techniques.1,2 Both these methods yield the
same conclusion: Although Fermi statistics is crucially im-
portant for other properties of a dirty interacting electron gas,
it practically does not affect interaction-induced quantum de-
coherence at T→0. Quantitative agreement was
demonstrated9 between the corresponding results derived for
the models with1 and without9 the Pauli principle.

Despite all these developments �including recently ob-
tained exact solution of the problem2� it is sometimes argued
in the literature that the Pauli principle can preclude from
electron decoherence at T→0. E.g., this conclusion was
reached on the basis of the first-order perturbation theory in
the interaction.19 Insufficiency of such kind of perturbation
theory for the problem in question was repeatedly demon-
strated elsewhere1,2,9,20 and was also observed here within
the model considered. More recently, von Delft and
coauthors21 reiterated the same incorrect conclusion.19 Un-
fortunately the analysis21 is fundamentally flawed since it
violates causality effectively implying that dynamics of in-
teracting electrons would be affected by photons coming
both from the past and from the future. Hence, the results21

cannot be considered seriously. For more details on this issue
we refer the reader to the paper.22
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APPENDIX A: INSTANTON GAS IN THE PRESENCE OF
INTERACTIONS

Let us analyze the effect of electron-electron interactions
on the dilute instanton gas employed in our work. Combin-
ing Eqs. �9� and �12� we can rewrite the dissipative part of
the action describing such interactions within our model in
the following form

Sint�
� = −
�

2 	
n

an

−�/2

�/2

d�

−�/2

�/2

d��

�
�2T2�1 − ein
�����1 − e−in
�����

sin2��T�� − ����
. �A1�

Substituting multi-instanton trajectories ����, Eq. �18�, into
Eq. �A1� and employing the approximation

1 − ein���� � 	
j

e2�in/�	
l=1

j−1
�l�1 − ein�j
̃��−�j�� � 	

j

Cjfnj���

�A2�

appropriate for well-separated instantons with the aid of the
identity

�2T2

sin2��T�� − ����
=

�2

�� � ��
ln�sin��T�� − ����� �A3�

we obtain

Sint��� = −
�

2 	
n

an 	
j1,j2

Cj1
C̄j2


−�/2

�/2

d�

−�/2

�/2

d��fnj1
� ��� f̄ nj2

� ����

�ln�sin��T�� − ����� . �A4�

Let us first consider the terms in the above sum which cor-
respond to j1= j2. They are

−
�

2 	
n

an

−�/2

�/2

d�

−�/2

�/2

d��fnj� ��� f̄ nj� ����ln�sin��T�� − ����� .

�A5�

Since an effective instanton width 1 / is much smaller than
the inverse temperature � it is possible to split the contribu-
tion, Eq. �A5�, into regular and singular �in the limit T→0�
parts, respectively,

Sreg = −
�

2 	
n

an

−�

�

d�

−�

�

d��
�2

�� � ��
cos�n�
̃��� − 
̃������

�ln��� − ���� �
4��r

�
�A6�

and

Ssing = − 2�	
n

an sin2��n

�
�ln

�T


= − 2�K�2�

�
�ln

�T


.

�A7�

Consider now the remaining terms with j1� j2. Provided the
distance between instantons remains much larger than their
width �1 / we find

− �	
n

an 	
j1�j2

R�Cj2
C̄j1

�1 − e
2�in
�

�j2��1 − e− 2�in
�

�j1��

�ln�sin��T�� j2
− � j1

��� . �A8�

Performing summation over n in Eq. �A8� and combining the
result with Eqs. �A6� and �A7� we arrive at Eq. �42�.

Let us note that in the particular case �=1 the
logarithmic interaction between instantons vanish while
in the case of �=2 and for large enough r we get

Sint���=2��r�n1+n2�+ S̃��� where the logarithmic interin-

stanton interaction S̃��� takes the form

S̃��� = − 4� 	
j1�j2

�− 1� j1−j2ln sin��T�� j2
− � j1

��

�T−1 � .

�A9�

Hence, the partition function for our model with �=2 is for-
mally equivalent to that for the well-known spin-boson
model with Ohmic dissipation.14,15

APPENDIX B: PERTURBATION THEORY

Let us rewrite the partition function of our problem as
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Z = �	
n=0

�

	
�1=�1

. . . 	
�n=�1

��
2
�n


0

�

d�1

�1

�

d�2 . . . 

�n−1

�

d�n

� 	
m=−�

�

e2�im�x−Sint�������	
i
�i,m�

. �B1�

With the aid of the Poisson’s resummation formulas Eq. �B1�
can be transformed to

Z = �

0

2� dz

2� 	
m=−�

�

e2�im�x−im�zZ�z;��

= 	
k=1

�

Z�2���x − k�/�;�� , �B2�

where

Z�z;�� = 	
k=0

�

	
�1=�1

. . . 	
�k=�1

��r

2
�n


0

�

d�1

�1

�

d�2 . . . 

�n−1

�

d�n

�eiz 	
j=1

k
�j+2� 	

a�b=1

k
�a�bg��ab�W��a−�b� �B3�

and

W��a − �b� = ln sin��T��b − �a��
�T−1 � = − 	

n=−�

�

Wne2�inT��a−�b�.

�B4�

Expanding the exponent in Eq. �B3� one recovers the pertur-
bation series for Z�z ;��. Extending the definition of the Fou-
rier coefficients an to negative n in such a way that a−n=an
and �0=0 we may write

g��ab� = 2	
n=1

r

an sin2��n

�
�cos�n�ab�

= 	
n=−r

r

an sin2��n

�
�ein�ab. �B5�

With the aid of this equation it is easy to define all orders of
the perturbative expansion Z=Z�0�+Z�1�+¯, where

Z�0��z;�� = e−2��r sin2�z/2� �B6�

and

Z�1��z;�� = − 2��r
2 	

n=−r

r

an sin2�z +
�n

�
�sin2��n

�
�

�

0

�

d�1

�1

�

d�2Z0�z;�1�Z0�z +
2�n

�
;�2 − �1�

�Z0�z;� − �2�W��2 − �1� . �B7�

The last term can also be represented graphically by the dia-
gram in Fig. 4.

Performing the Fourier transformation of the partition
function

Z�z,�� = 

−�

� d"

2�
e−i"�Z̃�z,"� �B8�

and introducing the self-energy #̃ as a sum of all irreducible
diagrams, we obtain

Z̃�z,"� =
1

− i" + 2�r sin2�z/2� − #̃�z;"�
. �B9�

To the first order in the interaction one finds

#̃1�z;"� = 2��r
2 	

n=−r

r

an sin2�z +
�n

�
�sin2��n

�
�

� 	
k=−�

�
Wk

− i" − 2�ikT + 2�r sin2� z

2
+
�n

�
� ,

�B10�

where W0=ln�2�T /� and Wk=1 /2�k� for k�0. Performing
summation over k, we get

#̃1�z;"� = 2��r
2 	

n=−r

r

an sin2�z +
�n

�
�sin2��n

�
�

�

ln
2

�T
+ � +

1

2
$�1 +

" + 2i�r sin2� z

2
+
�n

�
�

2�T
� +

1

2
$�1 −

" + 2i�r sin2� z

2
+
�n

�
�

2�T
�

− i" + 2�r sin2� z

2
+
�n

�
� , �B11�

where $ is the digamma function and ��0.577 is the Euler constant. Substituting this expression into Eq. �B9�, we observe

that Z̃�z ,"� has a pole at "p=−2i�r sin2�z /2�+�"p, where

FIG. 4. �Color online� First-order diagram of the perturbation
theory in �.

ANDREW G. SEMENOV AND ANDREI D. ZAIKIN PHYSICAL REVIEW B 80, 155312 �2009�

155312-10



�"p = i��r 	
n=−r

r

an sin�z +
�n

�
�sin��n

�
�

� ln
2�T


+ � +

1

2
$�1 +

i�r

�T
sin�z +

�n

�
�sin��n

�
��

+
1

2
$�1 −

i�r

�T
sin�z +

�n

�
�sin��n

�
��� . �B12�

Combining the above results with Eq. �B8� one arrives
at the final perturbative in the interaction expression
for the partition function. Of particular interest is the
low-temperature limit T��r /�2. In this case one has
$�1+z�� ln�z�+O�1 /z� and the free energy reduces to

− T ln Z = 2�r sin2���x

�
�

− ��r 	
n=−r

r

an sin��n

�
�sin�2��x + �n

�
�

� �ln
2�e�


+ ln�sin��n

�
�sin�2��x + �n

�
��� .

�B13�

It is straightforward to observe that the first logarithmic term
in the square brackets simply yields the renormalization

�r→�r�1+2�K�2� /��ln
2�re

�

 � and does not alter the depen-
dence of PC on the flux �x. Hence, this perturbative contri-
bution can be absorbed in the first term in Eq. �B13� simply
by substituting �R instead of �r, where �R is defined in Eq.
�48�.

The second logarithmic term in the square brackets in Eq.
�B13� contains an additional flux dependence which turns
singular at �x close to the half-integer numbers. Clearly, this
perturbative contribution cannot be just reduced to the renor-
malization, Eq. �48�. As a result, we obtain

− T ln Z = 2�R sin2���x

�
�

− ��r 	
n=−r

r

an sin��n

�
�sin�2��x + �n

�
�

�ln�sin��n

�
�sin�2��x + �n

�
�� . �B14�

Employing this expression we arrive at Eq. �53�.
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