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We present a theoretical survey of magnetocrystalline anisotropies in �Ga,Mn�As epilayers and compare the
calculations to available experimental data. Our model is based on an envelope function description of the
valence-band holes and a spin representation for their kinetic-exchange interaction with localized electrons on
Mn2+ ions, treated in the mean-field approximation. For epilayers with growth-induced lattice-matching strains
we study in-plane to out-of-plane easy-axis reorientations as a function of Mn local-moment concentration,
hole concentration, and temperature. Next we focus on the competition of in-plane cubic and uniaxial anisotro-
pies. We add an in-plane shear strain to the effective Hamiltonian in order to capture measured data in bare
unpatterned epilayers, and we provide microscopic justification for this approach. The model is then extended
by an in-plane uniaxial strain and used to directly describe experiments with strains controlled by post-growth
lithography or attaching a piezostressor. The calculated easy-axis directions and anisotropy fields are in semi-
quantitative agreement with experiment in a wide parameter range.
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I. INTRODUCTION

Dilute moment ferromagnetic semiconductors, such as
�Ga,Mn�As, are particularly favorable systems for the re-
search in basic spintronics phenomena and toward potential
applications in memory and information processing tech-
nologies. For typical doping levels 1%–10% of Mn the
magnetic-dipole interactions and corresponding shape
anisotropies are 10–100 times weaker in �Ga,Mn�As than in
conventional dense-moment ferromagnets. Consequently,
magnetocrystalline anisotropy plays a decisive role in the
process of magnetization reversal. Despite the low saturation
magnetization the magnetic anisotropy fields reach
�10–100 mT due to the large spin-orbit coupling.

The dependence of magnetic properties of �Ga,Mn�As
epilayers on doping, external electric fields, temperature,
and strain has been explained by means of an effective
model of Mn local moments antiferromagnetically coupled
to valence-band hole spins. The virtual-crystal k ·p ap-
proximation for hole states and mean-field treatment of
their exchange interaction with Mn d-shell moments allow
for efficient numerical simulations.1–4 The approach has
proved useful in researching many thermodynamic and
magnetotransport properties of �Ga,Mn�As samples with
metallic conductivities,3 such as the measured transition
temperatures,5–8 the anomalous Hall effect,9–12 anisotropic
magnetoresistance,9,11–16 spin-stiffness,17 ferromagnetic
domain-wall widths,18,19 Gilbert damping coefficient,20–22

and magneto-optical coefficients.1,12,20,23,24 In this study
we systematically explore the reliability of the effective
model in predicting the magnetocrystalline anisotropies of
�Ga,Mn�As epilayer and microdevices. In our comparisons to
experiment we include an extensive collection of available
published and unpublished measured data.

Section II reviews key elements of the physical model of
�Ga,Mn�As and of the corresponding effective Hamiltonian
used in our study. Special attention is given to mechanisms
breaking the cubic symmetry of an ideal zinc-blende

�Ga,Mn�As crystal. The lattice mismatch between the epil-
ayer and the substrate, producing a growth-direction strain, is
responsible for the broken symmetry between in-plane and
out-of-plane cubic axes. Microscopic mechanism which
breaks the remaining in-plane square symmetry in unpat-
terned epilayers is not fully understood. However, it can be
modeled by introducing an additional uniaxial in-plane strain
in the Hamiltonian. In Sec. II A we discuss the correspon-
dence of this effective approach and a generic k ·p Hamil-
tonian with the lowered symmetry of the p-orbital states,
which form the top of the spin-orbit coupled valence band.
Section II B provides brief estimates of the shape anisotropy
in thin-film �Ga,Mn�As epilayers and micro�nano�bar de-
vices.

Sections III and IV give the survey and analysis of theo-
retical and experimental data over a wide range of strains,
Mn moment concentrations, hole densities, and temperatures.
Section III A focuses on the easy-axis switching between the
in-plane and out-of-plane directions. Section III B studies the
competition of cubic and uniaxial in-plane anisotropies. Sec-
tion III C provides comparison based on anisotropy fields
extracted by fitting the calculated and experimental data to
the phenomenological formula for the magnetic anisotropy
energy. Section IV studies in-plane easy-axis reorientations
in systems with additional in-plane uniaxial strain introduced
experimentally by post-growth treatment of epilayers. Fi-
nally, in Sec. V we draw conclusions and discuss the limita-
tions of our theoretical understanding of magnetic anisotro-
pies in �Ga,Mn�As.

II. MAGNETIC ANISOTROPY MODELING

We use the effective Hamiltonian approach to calculate
the magnetocrystalline anisotropy energy of a system of itin-
erant carriers exchange coupled to Mn local moments. The
k ·p approximation is well suited for the description of hole
states near the top of the valence band in a �III,Mn�V semi-
conductor. The strong spin-orbit interaction makes the band
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structure sensitive to the direction of the magnetization. The
Hamiltonian reads

H = HKL + Jpd�
I

SI · ŝ�r���r − RI� + Hstr. �1�

HKL is the six-band Kohn-Luttinger Hamiltonian25 including
the spin-orbit coupling �see Appendix A�. We use GaAs val-
ues for the Luttinger parameters.26 Hstr is the strain Hamil-
tonian discussed in the following section. The second term in
Eq. �1� is the short-range antiferromagnetic kinetic-exchange
interaction between localized spin SI �S=5 /2� on the Mn2+

ions and the itinerant hole spin ŝ, parametrized by a
constant26 Jpd=55 meV nm3. In the mean-field approxima-

tion it becomes JpdNMn�S�M̂ · ŝ. The explicit form of the

6�6 spin matrices ŝ is given in Ref. 2. M̂ is the magnetiza-
tion unit vector and NMn=4x /a0

3 is the concentration of Mn
atoms in Ga1−xMnxAs �a0 is the lattice constant�. Note that
the Fermi temperature in the studied systems is much higher
than the Curie temperature so the smearing of Fermi-Dirac
distribution function is negligible. Therefore, finite tempera-
ture enters our model only in the form of decreasing the
magnitude of magnetization �M�=SBS�Jpd�ŝ� /kBT�, where BS
is the Brillouin function, �ŝ� is the hole spin-density calcu-
lated from the mean-field form of Eq. �1�.

We emphasize that the above model description is based
on the canonical Schrieffer-Wolf transformation of the many-
body Anderson Hamiltonian. For �Ga,Mn�As the transforma-
tion replaces the microscopic hybridization of Mn d orbitals
with As and Ga sp orbitals by the effective spin-spin kinetic-
exchange interaction of L=0,S=5 /2 local Mn moments with
host valence-band states.3 Therefore, the local moments in
the effective model carry zero spin-orbit interaction and the
magnetocrystalline anisotropy is entirely due to the spin-

orbit coupled valence-band holes. The M̂-dependent total-
energy density, which determines the magnetocrystalline an-
isotropy, is calculated by summing one-particle energies for
all occupied hole states in the valence band,

Etot�M� = �
n=1

m � En�k,M�f„En�k,M�…d3k , �2�

where 1�m�6 is the number of occupied bands f(En�k�) is
the Fermi distribution function at zero temperature.

A. Beyond the cubic symmetry of the GaAs host

The k ·p method provides straightforward means of incor-
porating elastic strains,1,27,28 which we now discuss in more
detail. Small deformation of the crystal lattice can be de-
scribed by a transformation of coordinates,

r�� = r� + �
�

e��r�, �3�

where e�� is the strain tensor. Expressing HKL in r� coordi-
nates leads to extra terms dependent on the strain that can be
treated perturbatively. The resulting strain Hamiltonian has
the same structure as the Kohn-Luttinger Hamiltonian with
k�k� replaced by e��. 	For detailed description of Hstr see
Eq. �B2� in the Appendix.


Lattice matching strain induced by the epitaxial growth
breaks the symmetry between in-plane and out-of-plane cu-
bic axes. Corresponding nonzero components of the strain
tensor read exx=eyy �e0=−�c11 /2c12�ezz= �as−a0� /a0, where
as and a0 are the lattice constant of the substrate and the
relaxed epilayer, respectively, and c12 and c11 are the elastic
moduli.26 Typical magnitudes are e0�10−4−10−2.

As we discuss in Sec. IV, relaxing the growth strain in
microbars in transverse direction produces a uniaxial sym-
metry breaking in the plane, described by a combination of
exx�eyy and exy strains, depending on the crystal orientation
of the microbar.4,29–31 The magnitudes range between zero
and the growth strain. Additional in-plane uniaxial aniso-
tropy effects can be also induced by piezostressors.32–35 The
typical magnitude achieved by commercial stressors36 at low
temperature is of the order of 10−4.

An unpatterned bulk �Ga,Mn�As epilayer can also show
broken in-plane symmetry, most frequently between the

	110
 and 	11̄0
 directions �see, e.g., Refs. 37–46�. For con-
venience and for direct comparison with effects mentioned in
the previous paragraph, we model this “intrinsic” in-plane
uniaxial anisotropy by exy

int. We fix its sign and magnitude for
a given wafer by fitting to the corresponding measured an-
isotropy coefficients. To narrow down the number of fitted
values for exy

int in the extensive set of experimental data which
we analyze, we assume that exy

int describes effectively a
symmetry-breaking mechanism induced during growth and
its value does not change upon the post-growth treatments,
including annealing, hydrogenation, lithography, or piezos-
tressing.

We point out that an in-plane strain has not been detected
experimentally in the bare unpatterned �Ga,Mn�As epilayers.
It is indeed unlikely to occur as the substrate imposes the
cubic symmetry. The possibility of transfer of the shear strain
from the substrate to the epilayer was ruled out by the fol-
lowing test experiment. A 50 nm �Ga,Mn�As film was grown
on GaAs substrate. An identical film was grown on the op-
posite side of the neighboring part of the same substrate.
Both samples developed uniaxial magnetic anisotropy along
a diagonal but the easy axes were orthogonal to each other. If
there were a uniaxial strain in the substrate responsible for
the uniaxial anisotropy in the epilayer, the easy axes in the
two samples would be collinear. Nevertheless, we argue be-
low that the effective modeling via exy

int provides a meaning-
ful description of the “intrinsic” uniaxial anisotropy.

We compare the effective Hamiltonian corresponding to
the exy

int strain with a k ·p Hamiltonian in which, without in-

troducing the macroscopic lattice distortion, the 	1̄10
 / 	110

symmetry is broken. In the derivation of the six-band Kohn-
Luttinger Hamiltonian originating from the As p orbitals �de-
noted by �X�, �Y�, and �Z��, the k ·p term is treated perturba-
tively to second order,

�i�Hkp�j� =
�2

m0
2 �

l��X,Y,Z


�i�k · p�l��l�k · p�j�
Ei − El

, �4�

where the diagonal terms of the unperturbed six-band Hamil-
tonian corresponding to atomic-orbital levels are set to zero.
The symmetries of the tetrahedron �zinc-blende� point group

ZEMEN et al. PHYSICAL REVIEW B 80, 155203 �2009�

155203-2



Td narrow down the number of nonvanishing independent
matrix elements, represented by Kohn-Luttinger parameters.
The summation over neighboring energy levels runs only
through the �1 and �4 states of the conduction band as other
levels are excluded due to the parity of the wave functions or
by the large separation in energy. After including the spin-
orbit interaction and transforming to a basis of total momen-
tum eigenstates, we obtain the Hamiltonian HKL 	see Eqs.
�A9� and �A10� in Appendix A
 with three independent Lut-
tinger parameters �1, �2, and �3, plus a spin-orbit splitting
parameters 	so.28,47

If the tetrahedral symmetry of the GaAs lattice is broken
the number of independent parameters increases. Let us con-
sider a perturbation to the crystal potential that removes two

of the C2 elements of group Td �rotations by 180° about the
	100
 and 	010
 axes�. The corresponding potential takes a
form V=xy
, which mixes the �1 and �4�z� states of the
conduction band considered in the summation in Eq. �4� and
leaves �4�x� and �4�y� states unchanged. �
 is a fast decreas-
ing radial function.� Such intermixing of surrounding states
represents the local symmetry lowering of the environment
of the valence-band p orbitals. The summation over the per-
turbed states ��1+��4�z�, −��1+��4�z�, �4�x�, and �4�y�
in Eq. �4� gives rise to extra terms in the Hamiltonian H̃kp.
	The original form Hkp is given in Eq. �A2� in the spin de-
generate basis listed by Eq. �A1� in Appendix A.
 Assuming
a weak local potential V, ���, we can neglect terms of
quadratic and higher-order dependence on V and obtain

H̃kp = ��v + Akx
2 + B�kz

2 + ky
2� + 2Dkxky Ckxky + D�kx

2 + ky
2� Ckxkz + Dkykz

Ckykx + D�kx
2 + ky

2� �v + Aky
2 + B�kz

2 + kx
2� + 2Dkxky Ckykz + Dkxkz

Ckzkx + Dkzky Ckzky + Dkzkx �v + Akz
2 + B�kx

2 + ky
2�
� , �5�

where

D � �X�py��4�z����1�px�X� . �6�

See Eq. �A8� in Appendix A giving the full expression for
the parameter D. Elements containing the parameter D
change the dependence of the original Kohn-Luttinger
Hamiltonian on the k vector. After considering the spin-orbit
coupling we find that the original Kohn-Luttinger Hamil-
tonian with Hstr corresponding to exy

int has the same form as

the corrected Kohn-Luttinger Hamiltonian H̃KL with the mi-
croscopic symmetry-breaking potential V included if we ne-
glect the terms containing Dk�k� dependent on the in-plane
orientation of the k vector and replace the term D�kx

2+ky
2� by

a constant term proportional to exy.
Figure 1 illustrates that the in-plane anisotropy energy

profile due to the local potential V can indeed be accurately
obtained by the mapping on the effective shear strain Hamil-
tonian. For the particular set of material parameters and exy

int

=0.01% considered in Fig. 1, the new Luttinger parameter
�4��2 /100, where �4=−2Dm0 /3�2 	see Eq. �A12� in Ap-
pendix A for the definition of �2 and the other Luttinger
parameters
. As we discuss in the following section, effective
modeling using the strain Hamiltonian with the constant exy

int

term is sufficient to capture semiquantitatively many of the
observed experimental trends. Here we have demonstrated
that the model effectively describes a microscopic
symmetry-breaking mechanism, yielding quantitatively the
same in-plane anisotropy energy profiles without the pre-
sumption of a macroscopic lattice distortion.

B. Shape anisotropy evaluation

We conclude this theoretical modeling section by briefly
discussing the role of shape anisotropy in �Ga,Mn�As thin

films and microstructures. Magnetic shape anisotropy is due
to the long-range dipolar interaction. Surface divergence of
magnetization M gives rise to demagnetizing field HD�M ,r�.
In homogeneously magnetized bodies of general shape the
demagnetizing field is a function of magnetization magnitude
and direction with respect to the sample. In ellipsoidal bodies
the function becomes linear in M and HD�M� is uniform in
the body,

Hi
D�M� = − �

j

NijMj . �7�

Tensor Nij is the so-called demagnetizing factor. In rectangu-
lar prisms the linear formula �7� is a good approximation and

FIG. 1. �Color online� Modification of the originally cubic in-
plane magnetic anisotropy by adding a uniaxial anisotropy due to
the shear strain exy or due to the local potential V=xy
. e0

=−0.3%, p=3�1020 cm−3, x=3%, �4 is the additional Luttinger
parameter resulting from the in-plane symmetry lowering and �2 is
one of the Luttinger parameters for GaAs 	see text and Eq. �A12� in
Appendix A
.
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the nonuniform demagnetizing factor can be replaced by its
spatial average. For the magnetostatic energy density of a
homogeneously magnetized rectangular prism we get

ED�M� = −
1

2

�

ij

Nij�a,b,c�MiMj , �8�

where we assume a prism extending over the volume −a
�x�a, −b�y�b, and −c�z�c in a Cartesian coordinate
system. Reference 48 shows the expression for Nij�a ,b ,c� in
such prism.

Figure 2 shows the calculated shape anisotropy energy
EA=ED�M1�−ED�M2� for a �i� thin film with a=b�c and
with magnetization out-of-plane or in-plane 	M1= �0,0 ,M�
and M2= �M ,0 ,0�
 and �ii� for a bar with a�b�c and with
magnetization in-plane 	M1= �0,M ,0� and M2= �M ,0 ,0�
. In
the former case the shape anisotropy favors in-plane easy-
axis direction while in the latter case the easy-axis tends to
align along the bar.

As a result of the relatively low saturation magnetization
of the dilute magnetic semiconductor, the in-plane vs out-of-
plane shape anisotropy EA is only about 1.4 kJ /m3 �0.06 T�
for Mn doping x=5% and c�a /100. This is in agreement
with the limit of infinite two-dimensional sheet, where the
formula for shape anisotropy energy per unit volume simpli-
fies to EA=


0

2 M2 cos2 �. � is the angle that the saturation
magnetization M subtends to the plane normal. The in-plane
anisotropy of a bar is even weaker and decreases with rela-
tive widening of the bar.

In general, the shape anisotropies in the �Ga,Mn�As
dilute-moment ferromagnet are weak compared to the spin-
orbit coupling induced magnetocrystalline anisotropies and
can be often neglected.

III. MAGNETIC EASY AXES IN UNPATTERNED
SAMPLES

A large amount of experimental data on magnetic aniso-
tropy in �Ga,Mn�As has accumulated over the past years.

Comparison of these results with predictions of the effective
Hamiltonian model is not straightforward due to the presence
of unintentional compensating defects in �Ga,Mn�As epilay-
ers. Most importantly, a fraction of Mn is incorporated in
interstitial positions. These impurities tend to form pairs with
MnGa acceptors in as-grown systems with approximately
zero net moment of the pair, resulting in an effective local-
moment doping xef f =xs−xi.

8 Here xs and xi are partial con-
centrations of substitutional and interstitial Mn, respectively.
In as-grown materials, the partial concentration xi increases
with the total Mn concentration, xtot=xs+xi. For xtot�1.5%,
dxi /dx�0.2.8 We emphasize that in theory the Mn local-
moment doping labeled as “x” corresponds to the density of
uncompensated local moments, i.e., to xef f in the notation
used above. Mn doping “x” quoted in experimental works
refers typically to the total nominal Mn doping, i.e., to xtot.
When comparing theory and experiment this distinction has
to be considered.

Although interstitial Mn can be removed by low-
temperature annealing, xef f will remain smaller than the total
nominal Mn doping. The interstitial Mn impurities are
double donors. Assuming no other sources of charge com-
pensation the hole density is given by p= �xs−2xi�4 /a0

3.8

The concentration of ferromagnetically ordered Mn local
moments and holes is not accurately controlled during
growth or determined post growth.7 We acknowledge this
uncertainty when comparing available magnetometry results
with theory. Throughout the paper we test the relevance of
our model over a wide parameter range, focusing on general
trends rather than on matching results directly based on the
material parameters assumed in the experimental papers.

A. In-plane vs out-of-plane magnetic easy axis

In this section we study the switching between in-plane
and perpendicular-to-plane directions of the magnetic easy
axis. �Anisotropies within the growth plain of a sample are
studied in Sec. III B.� Early experiments were suggesting
that the in-plane vs perpendicular-to-plane easy-axis direc-
tion is determined exclusively by the sign of the growth-
induced strain in the sample. The in-plane easy axis �IEA�
develops for compressive growth strain e0= �as−a0� /a0�0.
Tensile growth strain, e0�0, results in the perpendicular-to-
plane easy axis �PEA�. This simple picture was subsequently
corrected by experimental results reported for example in
Refs. 37 and 49–51. Sign changes in the magnetic anisotropy
for the same sign of the growth strain were observed with
varying Mn concentration, hole density, and temperature.

An overview of theoretical easy-axis reorientations driven
by changes in the material parameters is given in Figs. 3–6.
In the plots we show the difference 	E between total hole
energy density for the magnetization lying in-plane
	Etot�M��
 and out of plane 	Etot�M��
 as a function of the
hole density and temperature. �Etot�M�� is always the smaller
of Etot for magnetization along the 	100
 and the 	110
 axis.�
We include calculations for four Mn local-moment concen-
trations to facilitate the comparison with experimental data
of different nominal Mn concentrations and different degree
of annealing, which also increases the number of uncompen-

FIG. 2. �Color online� Shape anisotropy EA=ED�M1�−ED�M2�
of a film of a thickness c and a long bar of length a and width b as
a function of the dimensionless ratio r as defined in the caption. The
curves were obtained using the demagnetizing factor approximation
of Ref. 48 for �M�=0.06 T which corresponds to Mn doping of
x=5% at T=0 K.
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sated local moments as discussed above. We note that the
calculated magnetocrystalline anisotropies are almost pre-
cisely linear in the growth strain and therefore the boundaries
between IEA and PEA in Figs. 3–6 depend only very weakly
on the magnitude of the growth strain, certainly up to the
typical experimental values �e0��1%. Magnetocrystalline
anisotropy diagrams presented in this section for a compres-
sive strain e0=−0.2% are therefore generic for all typical
strains, with the IEA and PEA switching places for tensile
strain.

Solid arrows in Figs. 3–6 mark easy-axis behavior as a
function of temperature and doping that has been observed
experimentally. The dashed arrows correspond to theoretical
anisotropy variations that have not been observed experi-
mentally. At low hole densities, increasing temperature
	marked by arrow �1�
 induces a reorientation of the easy
axis from a perpendicular-to-plane to an in-plane direction.
With decreasing x this transition shifts to lower hole densi-
ties; at x=2% the theoretical densities allowing for such a
transition reach unrealistically low values for a ferromag-
netic �Ga,Mn�As material with metallic conduction. Warm-
ing up the partially compensated samples 	marked by arrow
�2�
 has no reorientation effect and the easy axis stays in-

plane. There are no exceptions to this behavior at different
Mn concentrations. Finally, increasing temperature of a very
weakly compensated �fully annealed� sample can cause
switching of the theoretical easy direction from in-plane to
perpendicular-to-plane 	marked by arrow�3�
, with the ex-
ception of the low Mn concentrations.

The techniques used to increase the hole density in the
experimental works discussed in this section are the post-
growth sample annealing and annealing followed by hydro-
gen passivation/depassivation.50 The latter method yields
solely a change in hole density, whereas the former is asso-
ciated also with an increase in the effective Mn concentration
and a decrease in the growth strain. The growth strain is
caused to a large extent by Mn atoms in interstitial
positions,52 which are removed by the annealing. The simul-
taneous increase in hole density and effective Mn concentra-
tion due to annealing implies a transfer between the phase
diagrams of Figs. 3–6 accompanying the transitions marked
by arrows �4�–�6�. We argue that the remarkable similarity of
the four diagrams assures a meaningful qualitative compari-
son with the effect of annealing even within a given diagram.

We now discuss individual measurements and compare
with theoretical diagrams in Figs. 3–6. Reference 50 reports

FIG. 3. �Color online� Anisotropy energy 	E=E�M��−E�M��
	kJ m−3
 calculated for x=8%, e0=−0.2%, exy =0. Positive�nega-
tive� 	E corresponds to PEA �IEA�. Arrows mark anisotropy tran-
sitions driven by change of temperature or hole density.

FIG. 4. �Color online� Anisotropy energy 	E=E�M��−E�M��
	kJ m−3
 calculated for x=6%, e0=−0.2%, exy =0. Positive�nega-
tive� 	E corresponds to PEA �IEA�. Arrows mark anisotropy tran-
sitions driven by change of temperature or hole density.

FIG. 5. �Color online� Anisotropy energy 	E=E�M��−E�M��
	kJ m−3
 calculated for x=4%, e0=−0.2%, exy =0. Positive�nega-
tive� 	E corresponds to PEA �IEA�. Arrows mark anisotropy tran-
sitions driven by change of temperature or hole density.

FIG. 6. �Color online� Anisotropy energy 	E=E�M��−E�M��
	kJ m−3
 calculated for x=2%, e0=−0.2%, exy =0. Positive�nega-
tive� 	E corresponds to PEA �IEA�. Arrows mark anisotropy tran-
sitions driven by change of temperature or hole density.
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experiments in a 50 nm thick �Ga,Mn�As epilayer nominally
doped to x=6–7% and grown on a GaAs substrate under
compressive strain. The sample is first annealed to lower the
number of interstitial Mn, then hydrogenated to passivate
virtually all itinerant holes, and finally depassivated in sub-
sequent steps by annealing. The hole density was not mea-
sured, but for the given Mn doping we expect the density in
the range of p�1020–1021 cm−3 after depassivation. The
low-temperature �T=4 K� reorientation from PEA to IEA
induced by successive depassivations and detected indirectly
by anomalous Hall-effect measurement in Ref. 50 matches
the transition marked by arrow �4� in Figs. 3–5.

Magnetic hysteresis loops measured by the Hall resistivity
in Ref. 51 reveal easy-axis reorientations induced by anneal-
ing or increasing temperature in material with nominal
Mn doping x=7%. This �Ga,Mn�As epilayer was grown
on a �In,Ga�As buffer, which leads to a tensile strain. �Recall
that the anisotropy energy 	E is an odd function of the
growth strain so the IEA and PEA regions have to be inter-
changed in Figs. 3–6 when considering tensile strain.� Again,
the hole density is not known and can be estimated to
p�1020–1021 cm−3. After annealing, the material exhibits
perpendicular-to-plane easy axis at 4 K and no reorientation
occurs during heating up to 115 K �TC�120–130 K in this
material�. Such behavior corresponds to arrow �2� of Fig. 4
or Fig. 3. The as-grown sample has IEA at 4 K and PEA at
22 K. This easy-axis reorientation corresponds to arrow �1�,
again considering a tensile strain. The as-grown and an-
nealed samples both share PEA at elevated temperature.
Such a stability of the easy axis while changing the hole
density corresponds to arrow �5�. Theoretical anisotropy
variations described by arrows �3� and �6� are not observed
in Ref. 51.

Reference 37 presents measurements in compressively
strained �Ga,Mn�As epilayers grown on a GaAs substrate.
The reported nominal Mn concentrations are x=5.3% and x
=3% with compressive growth strain e0=−0.27% and e0
=−0.16%, respectively, as inferred from x-ray diffraction
measurement of the lattice parameter. The higher-doped ma-
terial was partially annealed for several different annealing
times. The hole density was not measured but likely in-
creases substantially with annealing. The as-grown x=5.3%
sample at 5 K exhibits PEA, which changes to IEA upon
warming up to 22 K. This anisotropy variation is not ob-
served for samples subject to long annealing times. Such a
result is consistent with Ref. 51 and corresponds to the the-
oretical predictions marked by arrows �1� and �2� of Fig. 5
for increasing temperature of the as-grown and annealed
samples, respectively. Again, the effect of annealing is in
good agreement with anisotropy behavior predicted for low
�high� temperature represented by arrow �4� 	arrow �5�
,
however, there is no experimental counterpart of transitions
marked by arrows �3� and �6�. The sample doped to x=3%
was not annealed and no transition from PEA to IEA is ob-
served upon warming. The behavior corresponds to arrow �2�
in Fig. 6 and 5.

Reference 53 already reports a successful comparison of
measured magnetic anisotropy and theoretical predictions.1

Among other samples, it presents a compressively
strained �Ga,Mn�As epilayer with nominal Mn concentration

x=2.3% �inferred from x-ray diffraction measurement�. A
superconducting quantum interference device �SQUID� mea-
surement of this as-grown sample shows PEA at 5 K and
IEA at 25 K, corresponding to anisotropy variation marked
by arrow �1� in Fig. 6 �occurring only for a very narrow hole
density interval�.

Reference 54 presents �Ga,Mn�As epilayers with com-
pressive and tensile strain grown on GaAs and �In,Ga�As
buffers, respectively, with nominal Mn concentration x=3%
inferred from reflection high-energy electron-diffraction os-
cillations measured during the molecular-beam epitaxy
�MBE� growth. Two of the samples were annealed and mag-
netic anisotropy was investigated at 5 K. The tensile strained
sample has its easy axis aligned perpendicular to the growth
plane and the compressively strained sample has an in-plane
easy axis. This observation is in good agreement with our
theoretical modeling.

We conclude this section by discussing magnetic anisotro-
pies in low-doped ferromagnetic �Ga,Mn�As samples which
are in the vicinity and on both sides of the transition into a
degenerate semiconductor. Transport measurements55 in the
epitaxial �Ga,Mn�As reveal insulating characteristics and the
presence of the impurity band for x�0.1%. For higher con-
centrations, 0.5�x�1.5%, no clear signatures of activation
from the valence band to the impurity band have been de-
tected in the dc transport, suggesting that the bands have
merged, yet the materials remain insulating. When the Mn
doping reaches �1.5%, low-temperature conductivity of the
film increases abruptly by several orders of magnitude and
the system in bulk turns into a degenerate semiconductor.
The onset of ferromagnetism occurs on the insulating side of
the transition at x�1%.

Magnetocrystalline anisotropy has been measured in an
insulating ferromagnetic �Ga,Mn�As/GaAs sample nominally
doped to 1% and in an already metallic sample doped to
1.5% �Ref. 56�, and in another insulating but ferromagnetic
material with nominal 1.1% doping �Ref. 57�. Note that an-
nealing has only a little effect on magnetic properties in these
low-doped materials. SQUID measurements in the 1% and
1.1% doped materials reveal PEA for all temperatures below
Tc. In the 1.5% doped sample, a transition from PEA to IEA
was observed near Tc. All these observations are consistent
with our theory results in low-doped samples, as shown in
Fig. 6.

Magnetic properties of �Ga,Mn�As epilayers in the vicin-
ity of the metal-insulator transition have not yet been thor-
oughly investigated. The results discussed above neverthe-
less confirm the perception that magnetic interactions are
established on much shorter length scales than the macro-
scopic scales governing transport properties. Magnetic aniso-
tropy is then expected to evolve smoothly across the metal-
insulator transition, as seen in the above experimental data,
and our theory has therefore a merit for ferromagnetic
�Ga,Mn�As on both sides of the transition. Its quantitative
reliability should however not be overstated in the vicinity
and on the insulating side of the transition.

B. In-plane anisotropy: Competition of cubic and uniaxial
components

As we discussed in the previous section, the magnetic
easy axis �axes� is in the plane of �Ga,Mn�As/GaAs films
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over a wide range of dopings. Experimental works in bare
�Ga,Mn�As epilayers discussed in this section show that the
in-plane magnetic anisotropy has cubic and uniaxial compo-
nents. Typically, the strongest uniaxial term is along the in-

plane diagonal �	110
 / 	11̄0
� direction. �A weak uniaxial
component along the main crystal axes �	100
/	010
� has also
been detected.45,46� The theoretical model used so far to de-
scribe the easy-axis reorientation between the in-plane and
out-of-plane alignment, assuming the growth strain, can ac-
count only for the cubic in-plane anisotropy component. In
this case we find two easy axes perpendicular to each other
either along the main crystal axes or along the diagonals,
depending on the Mn concentration and hole density, as
shown in Fig. 7. In order to account for the uniaxial compo-

nent of the in-plane 	110
 / 	11̄0
 anisotropy in bare �Ga,M-
n�As epilayers, the elastic shear strain exy is incorporated into
our model as discussed in Sec. II. �For brevity we omit the
index “int” in the following text and reintroduce the index
only when additional real in-plane strains are present due to
micropatterning or attached piezostressors.� The superposi-
tion of the two components results in a rich phenomenology
of magnetic easy-axis alignments as reviewed in Figs. 8–10.

Figure 8 shows an example with easy axes aligned close
to the main crystal axes 	100
 and 	010
 at Mn local-moment
concentration x=5%, hole density p=3�1020 cm−3, and a
weak shear strain exy =0.01%. For a stronger shear strain
exy =0.03% the cubic anisotropy is no longer dominant and
the easy axes “rotate” symmetrically toward the diagonal

	11̄0
 direction until they merge for exy �0.05%. As ex-
plained in detail in Sec. II, the magnitude and sign of the
intrinsic shear strain exy enter as free parameters when mod-
eling in-plane anisotropies of bare epilayers.

The relative strength of uniaxial and cubic anisotropy
terms depends also on the hole density and Mn concentration
as shown by Figs. 9 and 10, respectively. Both anisotropies
are nonmonotonous functions of x and p, compared to the
linear dependence of uniaxial anisotropy on the shear strain.
We do not show explicitly the effect of increasing tempera-

ture, which in the mean-field theory is equivalent to decreas-
ing the effective Mn concentration while keeping the hole
density constant �as explained in Sec. II�.

We begin the comparison of theory and experiment by
analyzing experimental studies of in-plane magnetic aniso-
tropy in bare samples without lithographically or piezoelec-
trically induced in-plane uniaxial strain. Experimental results
are summarized in Table I. Samples are identified by nominal
Mn concentration and hole density or annealing as given by
the authors. Typically, the hole density is in the range
1020–1021 cm−3. All samples are thin �Ga,Mn�As epilayers
deposited by MBE on a GaAs substrate. According to our
calculations, the compressive growth strain has a negligible
effect on the interplay of cubic and uniaxial in-plane
anisotropies.

Table I shows the largest measured projection of the easy
axis �axes� on the main crystal directions �	100
, 	010
,
	110
, and 	11̄0
� in the corresponding sample. �Note that
unlike our theoretical calculations of the full in-plane aniso-

FIG. 7. �Color online� Magnetic anisotropy energy 	E=E�

−E	100
 as a function of the in-plane magnetization orientation M
= �M�	cos � , sin � ,0
 and its dependence on material parameters.
Magnetic easy axes �marked by arrows� change their direction upon
change of hole density p given in units u�1020 cm−3 at Mn local-
moment concentration x=5%, shear strain exy =0, and zero
temperature.

FIG. 8. �Color online� Magnetic anisotropy energy 	E=E�

−E	100
 as a function of the in-plane magnetization orientation M
= �M�	cos � , sin � ,0
 and its dependence on material parameters.
Magnetic easy axes �marked by arrows� change their direction upon
change of magnitude of shear strain exy �0 at Mn local-moment
concentration x=5%, hole density p=3�1020 cm−3, and zero
temperature.

FIG. 9. �Color online� Magnetic anisotropy energy 	E=E�

−E	100
 as a function of the in-plane magnetization orientation M
= �M�	cos � , sin � ,0
 and its dependence on material parameters.
Magnetic easy axes �marked by arrows� change their direction upon
change of hole density p given in units u�1020 cm−3, at Mn local-
moment concentration x=3%, shear strain exy =0.01%, and zero
temperature.
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tropy profile, most experiments listed in Table I report only
projections of the magnetization to the main crystal direc-
tions. Studies using anisotropic magnetoresistance �AMR� to
map the easy-axis direction precisely are discussed in Secs.
III C and IV.� Table I includes a column labeled as EAlT,
giving the largest easy-axis projection at low temperatures
�typically 4 K� and a column labeled as EAhT corresponding
to measurements at temperatures close to TC. This simplified
overview of the temperature dependence of the in-plane
anisotropies reflects the nature of available experimental
data. The ferromagnetic resonance �FMR� spectra are typi-
cally provided only at one high and one low temperature.
Moreover, available SQUID data reveal at most one transi-
tion between main crystal directions corresponding to the
largest projection of the magnetization in the whole tempera-
ture interval. Sample 25 in Table I which shows two transi-
tions is the only exception to this trend.

From Table I we infer the following general trend in the
experimentally observed in-plane anisotropies: At low tem-
peratures the in-plane anisotropy is dominated by its cubic
component. In most cases, this leads to two equivalent easy
axes aligned close to 	100
 and 	010
 directions. Only in a
few samples the cubic anisotropy yields easy-axis directions

along the 	110
/	11̄0
 diagonals at low temperature. The two
diagonals are not equivalent, however, due to the additional
uniaxial anisotropy component.43,57,59,60 At high temperatures
the uniaxial anisotropy dominates, giving rise to only one
diagonal easy axis. Finally we note that Refs. 40 and 44 do
not identify the correspondence between the in-plane diago-
nal easy axis and one of the two nonequivalent crystallo-

graphic axes 	110
 and 	11̄0
 �these measurements are
marked as � in Table I�. This ambiguity does not affect the
comparison with our modeling of unpatterned bare films
since the shear strain exy, determining which of the two di-
agonals is magnetically easier, is a free effective parameter
of the theory. Possibility of error in assigning the two non-
equivalent diagonal crystallographic axes is acknowledged
by the authors of Ref. 37, where switching roles of the di-
agonals makes the results consistent with later works of the
group.

Following the strategy for presenting experimental data in
Table I, we plot in Figs. 11–16 theoretical diagrams indicat-
ing crystallographic axes �	100
, 	110
, or 	11̄0
� with the
largest projection of magnetization as a function of the hole
density and temperature. The comparison with experimental
results in Table I is facilitated by numbered arrows added to
the diagrams, which correspond to switchings between crys-
tallographic directions with the largest projection of the easy
axis, driven by increasing temperature �horizontal arrows�
and hole density �vertical arrows�.

Figures 11–14 present diagrams for different Mn concen-
trations and for exy =0.01%. Anisotropy transitions seen in
the figures are consistent with majority of the reviewed ex-
perimental works, i.e., the arrows correspond to the experi-
mentally observed transitions and their placement in the dia-
grams is reasonably close to the relevant experimental
parameters. Figures 11–14 also demonstrate how the transi-

tion from the 	100
 to the 	11̄0
 direction moves to higher
temperatures with increasing Mn local-moment concentra-
tion.

Figures 15 and 16 address samples where the observed
transition cannot be modeled by exy =0.01%. Four of the
low-doped samples in Refs. 38–40 are modeled by a weaker
strain, whereas one of the highly doped samples in Ref. 60 is
modeled by a stronger strain.

Now we discuss in detail the theoretical diagrams in Figs.
11–14 and compare to individual samples from Table I, re-
ferred to as TI-No. Figure 11 maps in-plane magnetic aniso-
tropy at Mn local-moment concentration x=3% and shear
strain exy =0.01%. The easy-axis reorientation of the as-
grown sample TI-7 corresponds to arrow �1� in Fig. 11. Ar-
row �2� in Fig. 11 highlights the finite range of hole densities
for which the largest projection of the easy axes stays along
the 	100
 and 	010
 directions at low temperature, consistent
with the behavior of the as-grown and annealed samples TI-9
and TI-10. �Note that hole densities in samples TI-9 and
TI-10 were measured by the electrochemical capacitance-
voltage profiling.� The transition from the largest easy-axis
projection along the cube edges to the 	110
 diagonal ob-
served in as-grown sample TI-8 with increasing temperature
has no analogy in Fig. 11 or Fig. 12. The FMR measurement
does not indicate switching of the easy-axis alignment be-
tween the diagonals at any intermediate temperature. This
behavior can be explained only if the opposite sign of the
shear strain is used to model the intrinsic symmetry-breaking
mechanism. Then the easy-axis transition of TI-8 would cor-
respond to arrow �1� in Fig. 11.

The behavior of as-grown samples TI-11,13,15 corre-
sponds to arrow �2� in Fig. 12. The annealed samples TI-
12,16 exhibit the rarely experimentally observed domination
of uniaxial anisotropy for the whole temperature range. This
behavior is also consistently captured by the theory as high-
lighted by arrow �3� in Fig. 12. Sample TI-14 has a dominant
cubic anisotropy preferring 	100
/	010
 magnetization direc-
tions at low temperature and the easy axis aligns closer to the
	110
 direction at high temperatures. Similarly to sample
TI-8, this transition has no analogy in Fig. 11 or Fig. 12;

however, it can be explained assuming that the 	110
/	11̄0

symmetry-breaking mechanism has opposite sign in this ma-

FIG. 10. �Color online� Magnetic anisotropy energy 	E=E�

−E	100
 as a function of the in-plane magnetization orientation M
= �M�	cos � , sin � ,0
 and its dependence on material parameters.
Magnetic easy axes �marked by arrows� change their direction
upon change of Mn local-moment concentration x at hole density
p=3�1020 cm−3, shear strain exy =0.01%, and zero temperature.
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terial and therefore should be modeled by a negative value of
the effective strain exy. Then the easy-axis transition of TI-14
would correspond to arrow �2� in Fig. 12. Another possibility
is to assume the same sign of exy as for the above samples
and associate the transition in sample TI-14 with arrow �4� in
Figs. 13 and 14. Note, however, that the intermediate-
temperature anisotropy state with the largest magnetization
projection along the 	11̄0
 diagonal seen when following the
theory trend along arrow �4� has not been reported in the
experimental study of sample TI-14. Arrows �4�–�6� in

Fig. 12 correspond to measured anisotropy behavior driven
by increasing hole density in pairs of as-grown and annealed
samples TI-11,12, TI-13,14, and TI-15,16.

At the upper end of the investigated effective Mn concen-
tration interval the theoretical alignment of magnetic easy
axes is mapped by Figs. 13 and 14. Samples TI-17 to TI-20
nominally doped to x=7% were all annealed after growth,
passivated by hydrogen plasma, and then gradually depassi-
vated to achieve different hole densities �measured by high-
field Hall effect�. Magnetic anisotropies were determined by

TABLE I. Experimental in-plane magnetocrystalline anisotropies at low temperature EAlT, and high temperature EAhT extracted from

SQUID or FMR measurements: largest easy-axis projection along 	100
 and 	010
 axes �+�, along 	11̄0
 axis �↖ �, along 	110
 axis �↗ �,
and along one of the 	110
 / 	11̄0
 diagonals not distinguished in the experiment � � �. Nominal Mn concentrations x reported in experimental
studies are rounded down to percents. Hole density p 	 �
 is given in units of 1020 cm−3. If the hole density is unknown the as-grown and
annealed samples are indicated by “ag” and “an,” respectively. Samples are ordered according to Mn concentration and hole density
�annealed sample follows the as-grown counterpart when it exists�. The last four columns label the experimental data in a way which
facilitates direct comparison with transitions highlighted by arrows in the theory Figs. 11–16. Numbers in columns Ap, AlT, and AhT point
to corresponding theory transitions marked by horizontal arrows, vertical arrows at low T, and vertical arrows at high T, respectively. The
index n indicates correspondence of the given arrow to modeling with negative value of exy.

No. Reference
x

	%

p

	 �
 EAlT EAhT Figure Ap AlT AhT

1 38 2 ag + ↖ 15 �1� �2� �3�
2 38 2 an + ↖ 15 �1�

3 39 2 3.5 + ↖ 15 �1�

4 40 2 ag + � 15 �1�

5 58 2 1.1 + ↗ 15 �1�n

6 42 2 4 + ↗ 15 �1�n

7 37 3 ag + ↖ 11 �1�

8 41 3 ag + ↗ 11 �1�n

9 59 4 3.5 + 11 �2�
10 59 4 5 + 11

11 57 5 ag + ↖ 12 �2� �5� �6�
12 57 5 an ↗ ↗ 12 �3�

13 38 5 ag + ↖ 12 �2� �4� �6�
14 38 5 an + ↗ 12 �2�n

15 43 6 ag + ↖ 12 �2� �5� �6�
16 43 6 an ↗ ↗ 12 �3�

17 44 7 0.75 + � 13 �3�
18 44 7 2 + � 13 �3�
19 44 7 8.8 + � 13 �4�
20 44 7 12 + � 13 �4�

21 59 7 3.6 + 13 �6�
22 59 7 11 ↗ 13

23 60 8 ag + ↖ 16 �1� �3� �4�
24 60 8 an ↖ ↖ 16 �2�

25 38 8 an + ↗ 14 �4�
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FMR. The assignment of the in-plane diagonal directions to

the nonequivalent 	110
 and 	11̄0
 crystallographic axes is
not specified in this experimental work; recall that this am-
biguity is not crucial for the present discussion. The transi-
tion observed in these samples from a cubic �	100
/	010

easy directions� dominated anisotropy at low temperatures to
a uniaxial behavior at high temperatures is captured by ar-
rows �3� and �4� in Figs. 13 and 14. Importantly, the depas-
sivated higher hole density samples TI-19 and TI-20 show an
additional switching of the easy axis from one to the other
diagonal direction at intermediate temperatures, consistent
with the theoretical temperature dependence along arrow �4�.
This double transition behavior was also detected in the an-
nealed sample TI-25, where the temperature-dependent mag-
netization projections were measured by SQUID. In this ex-
periment it is identified that the easy-axis first rotates toward

the 	11̄0
 direction at intermediate temperatures and then
switches to the 	110
 direction at high temperatures, consis-
tent with the behavior marked by arrow �4� in Figs. 13 and
14.

Samples TI-21,22 are measured only at low temperature.
Easy-axis reorientation from 	100
 to 	110
 directions is
driven by an increase in hole density, which corresponds to
arrow �6� in Fig. 13 or Fig. 14. The hole density was mea-

sured by the electrochemical capacitance-voltage method.
In-plane anisotropies of samples with x�2% are modeled

in Fig. 15. To obtain the cubic anisotropy dominated region
at low temperatures and a transition to the uniaxial behavior
at high temperatures, as observed in samples TI-1 to TI-6, we
take for this low Mn doping exy =0.005%. �The effective

strain exy =0.01% would lead to easy axis along 	11̄0
 over
the entire temperature range, and for exy =0.001% the cubic
anisotropy region would extend up to very high tempera-
tures.� Arrow �1� in Fig. 15 corresponds to easy-axis switch-

ing from the 	100
 to the 	11̄0
 direction in samples TI-1,2,3.
Arrows �2� and �3� in Fig. 15 mark the behavior of the easy
axis driven by increasing hole density when annealing the
sample TI-1 to obtain the sample TI-2 at low and high tem-

peratures, respectively. Sample TI-4 assumes the 	11̄0
 diag-
onal always harder than the 	110
 diagonal. A transition from
cubic to uniaxial dominated anisotropy is observed upon in-
creasing the temperature. This behavior corresponds to arrow
�1� in Fig. 15. �The hole density of sample TI-3, p=3.5
�1020 cm−3, was determined by low-temperature high-field
Hall-effect measurements; however, it was not measured for
samples TI-1,2,4.�

Samples TI-5 and TI-6 have their easy axis aligned closer
to the 	100
/	010
 directions at low temperatures and to the

FIG. 11. �Color online� Theoretical hole density—temperature
diagrams of crystal directions with the largest projection of the
magnetic easy axis at x=3%, exy =0.01%, e0=−0.2%. Arrows mark
anisotropy behavior driven by change of temperature or hole
density explaining experimentally observed behavior surveyed in
Table I.

FIG. 12. �Color online� Theoretical hole density—temperature
diagrams of crystal directions with the largest projection of the
magnetic easy axis at x=5%, exy =0.01%, e0=−0.2%. Arrows mark
anisotropy behavior driven by change of temperature or hole
density explaining experimentally observed behavior surveyed in
Table I.

FIG. 13. �Color online� Theoretical hole density—temperature
diagrams of crystal directions with the largest projection of the
magnetic easy axis at x=7%, exy =0.01%, e0=−0.2%. Arrows mark
anisotropy behavior driven by change of temperature or hole
density explaining experimentally observed behavior surveyed in
Table I.

FIG. 14. �Color online� Theoretical hole density—temperature
diagrams of crystal directions with the largest projection of the
magnetic easy axis at x=9%, exy =0.01%, e0=−0.2%. Arrows mark
anisotropy behavior driven by change of temperature or hole
density explaining experimentally observed behavior surveyed in
Table I.
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	110
 direction at higher temperatures, similarly to sample
TI-8. The SQUID measurement of magnetization projections
for the whole range of temperature does not indicate the

easy-axis alignment close to the 	11̄0
 direction at any inter-
mediate temperature. The hole density of the sample TI-5,
p=1.1�1020 cm−3, is measured by Hall effect �at room tem-
perature� and its Mn concentration is inferred from x-ray
diffraction measurement of the lattice constant. The hole
density of the sample TI-6 is p=4�1020 cm−3 �measured by
the electrochemical capacitance-voltage method at room
temperature�, and we estimate the Mn concentration from the
reported critical temperature, TC=62 K, after annealing. The
described experimental behavior does not correspond to pre-
dicted anisotropy transitions for relevant hole densities, Mn
local-moment concentrations, and positive shear strain. The
behavior can be explained, however, if the opposite sign of
the shear strain is used to model the intrinsic symmetry-
breaking mechanism at low Mn concentration. Then the
easy-axis transition of TI-5,6 would correspond to arrow �1�
in Fig. 15.

Finally we comment on the less frequent behavior ob-
served in the annealed sample TI-24. While its as-grown
counterpart TI-23 shows the commonly seen transition from

the cubic dominated anisotropy to the uniaxial anisotropy
with increasing temperature, marked by arrow �1� in Fig. 16,
the annealed material has its easy axis aligned close to the

	11̄0
 direction over the entire studied temperature range.
Arrow �2� in Fig. 16 provides an interpretation of this behav-
ior if we increase the magnitude of the effective shear strain.
At exy =0.03% the cubic anisotropy dominated region is al-
ready strongly diminished and for exy =0.05% it vanishes
completely. Arrows �3� and �4� then highlight within the
same diagram the consistent description of the evolution of
the experimental anisotropies, both at low and high tempera-
tures, from the as-grown low hole density sample TI-23 to
the annealed high hole density sample TI-24.

To summarize this section, our theoretical modeling
provides a consistent overall picture of the rich phenomenol-
ogy of magnetocrystalline anisotropies in unpatterned
�Ga,Mn�As epilayers. Our understanding is limited, however,
to only a semiquantitative level, owing to the approximate
nature of the mean-field kinetic-exchange model, ambiguities
in experimental material parameters of the studied films, and
unknown microscopic origin of the in-plane uniaxial
symmetry-breaking mechanism. We remark that the effective
shear strain we include to phenomenologically account for

the experimental 	110
 / 	11̄0
 uniaxial anisotropy scales with
Mn doping �exy �0.005x�. It brings additional confidence in
this modeling approach as it is most likely the incorporation
of Mn which breaks the cubic symmetry of the lattice. The
magnitude of the effective strain parameter falls into the
range 0.005%�exy �0.05%, and the anisotropy behavior
consistent with most experimental works is modeled with
positive sign of exy.

We conclude this section by a remark on numerical simu-

lations of the 	110
 to 	11̄0
 easy-axis transition performed in
Ref. 38. The physical model employed by the authors of
Ref. 38 is identical to ours; nevertheless, the results of the
calculations do not quantitatively match ours, as illustrated in
Fig. 17. We have clarified with the authors of Ref. 38 the
numerical origin of the discrepancy. This helpful exercise
has provided an independent confirmation of the accuracy,
within the applied physical model, of the theoretical results
presented in the current paper. 	To compare Fig. 17 to the
original plot in Ref. 38 use the conversion to units of nor-
malized anisotropy field Hun /M =2�E	11̄0
−E	110
� / �
0M2�.


C. Anisotropy fields

Having analyzed the in-plane and out-of-plane anisotro-
pies based on the direction of easy axes, we turn our atten-
tion to the relative strength of the anisotropy components,
i.e., to the anisotropy energies. The components of magneto-
crystalline anisotropy can be described in terms of a simple
phenomenological model separating the free-energy density

F�M̂� into components of distinct symmetry. Each compo-
nent is described by a periodic function with a corresponding
coefficient. We find that angular dependencies of the energies
obtained from our microscopic modeling can be approxi-
mated accurately even in the first and second orders of ex-
pansion into periodic functions of uniaxial and cubic sym-
metries, respectively.

FIG. 15. �Color online� Theoretical hole density—temperature
diagrams of crystal directions with the largest projection of the
magnetic easy axis at x=2%, exy =0.005%, e0=−0.2%. Arrows
mark anisotropy behavior driven by change of temperature or hole
density explaining experimentally observed behavior surveyed in
Table I.

FIG. 16. �Color online� Theoretical hole density—temperature
diagrams of crystal directions with the largest projection of the
magnetic easy axis at x=7%, exy =0.03%, e0=−0.2%. Arrows mark
anisotropy behavior driven by change of temperature or hole
density explaining experimentally observed behavior surveyed in
Table I.
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The coefficients can be determined experimentally, e.g.,
by analyzing the FMR spectra44,54,58,61 from AMR �Refs. 62
and 63� or by fitting SQUID magnetometry data to an appro-
priate phenomenological formula for anisotropy energy.39,60

In this subsection we extract the relevant coefficients from
the calculated anisotropies, track their dependence on mate-
rial parameters, and compare theory to experiment on this
level.

We start with identifying the types of anisotropy terms
considered in our expansion of the anisotropy energy. The
cubic anisotropy due to the crystal symmetry of the zinc-
blende structure is described using terms invariant under
permutation of the coordinate indices x, y, and z. The inde-
pendent first-, second-, and third-order cubic terms read:
Kc1�nx

2ny
2+nx

2nz
2+nz

2ny
2�, Kc2�nx

2ny
2nz

2�, and Kc3�nx
4ny

4+nx
4nz

4

+ny
4nz

4�, respectively, where nx=cos � sin �, ny =sin � sin �,
and nz=cos � are components of the magnetization unit vec-

tor M̂ �the angles � and � are measured from the 	001
 and
	100
 axis, respectively�. See Appendix C for details on the
mutual independence of all cubic terms.

As mentioned in previous sections, the cubic anisotropy
of the host crystal lattice is accompanied by different types
of uniaxial anisotropy. A generic term corresponding to

uniaxial anisotropy along a given unit vector Û depends on

the even powers of the dot product �M̂ · Û�. The first and

second-order terms read: Ku1�M̂ · Û�2 and Ku2�M̂ · Û�4. The
particular cases of uniaxial anisotropy terms and their corre-
spondence to lattice strains will be described later in this
section.

Before we present the calculated values of the cubic an-
isotropy coefficient, we introduce the so-called anisotropy

fields, which are often used in literature instead of the energy
coefficients. In this section we plot the anisotropy fields in
Oersteds �Oe� to make the comparison with experiment more
convenient. The relation of the anisotropy fields Ha to the
energy coefficients Ka reads: Ha=2Ka /M.

Figure 18 shows Hc1 and Hc2 as functions of hole density
p and Mn local-moment concentration x at zero temperature.
Both coefficients oscillate as function of the hole density p.
As discussed in detail in Ref. 2 the anisotropies tend to
weaken with increasing population of higher bands, which
give competing contributions. Consistent with this trend the
amplitude of the oscillations increases with increasing x and
decreasing p. The upper limit of the hole density p=NMn
corresponds to no charge compensation �recall, NMn�2.21x
in 1020 cm−3 for x in percent�.

Our modeling predicts the extremal magnitude of the
second-order cubic term Hc2 a factor of two smaller than the
extremal magnitude of the first-order term Hc1. Upon in-
creasing the hole density the amplitude of oscillations of Hc2
decreases faster than in case of Hc1. The third-order cubic
anisotropy field Hc3 is negligible compared to Hc1 and Hc2
for all studied combinations of the material parameters. To
our knowledge, Hc2 and Hc3 have not been resolved experi-
mentally. We emphasize that the second-order cubic term
does not contribute to the anisotropy energy for magnetiza-
tion vectors not belonging to the main crystal plains. The
dependence of all three calculated cubic terms on the lattice
strains of typical magnitudes �up to 1%� is negligible.

Now, we focus on classification of distinct uniaxial aniso-
tropy components and their relation to lattice strains lower-
ing the underlying cubic symmetry of the zinc-blende struc-
ture. We have already mentioned that typically the strongest

FIG. 17. �Color online� In-plane uniaxial anisotropy as a func-
tion hole density at zero temperature, exy =0.05%, and e0=0 calcu-
lated �a� in this work and �b� in Ref. 38. Curves are labeled by the
valence-band spin-splitting parameter BG�JpdNMnS /6 to allow for
simple comparison with Ref. 38. �BG=4.98x in meV and in percent,
respectively.� Dashed intervals of the horizontal axis mark regions
where a change of temperature �inversely proportional to BG� can

lead to the 	1̄10
↔ 	110
 easy-axis reorientation.

(b)

(a)

FIG. 18. �Color online� Lowest order cubic anisotropy field Hc1

and second-order cubic anisotropy field Hc2 calculated as functions
of hole density p �up to zero compensation p=NMn� and Mn local-
moment concentration x at zero temperature.
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symmetry-breaking mechanism is the growth strain �intro-
duced in Sec. II�. It is relevant for the in-plane versus out-
of-plane alignment of the magnetic easy axis. We have also
mentioned the in-plane uniaxial anisotropy between the 	110

and the 	11̄0
 axes. Its origin is not known; however, we
have modeled it using the shear strain, which is about a
factor of ten weaker than the typical growth strain.

Some �Ga,Mn�As epilayers45,46 also show a very weakly
broken symmetry between the main crystal axes 	100
 and
	010
. We will introduce here a uniaxial strain that can ac-
count for this type of anisotropy; however, our main motiva-
tion for introducing this third strain tensor is to complete an
in-plane strain basis. This basis is used in Sec. IV to describe
all types of lattice in-plane strains induced experimentally by
growth and post-growth processing of the �Ga,Mn�As epil-
ayers. Once the strain tensors and corresponding anisotropy
contributions to the free energy are introduced, it will be
shown that the chosen basis has the advantage of collinearity
of the strain and of the resulting anisotropy component. Fi-
nally, in this subsection the numerical data and comparison
with experiment will be presented for the bare unpatterned
epilayers. The patterned structures will be discussed in Sec.
IV.

First, we recall the growth strain introduced in Eq. �3�. It
is usually referred to as the biaxial pseudomorphic strain as it
is due to the lattice mismatch between the substrate and the
epilayer. The doped crystal is forced to certain dimensions by
the substrate in the two in-plane directions whereas it can
relax in the perpendicular-to-plane direction, keeping the re-
quirement of zero net force acting on the crystal: 0=c12exx
+c12eyy +c11ezz. The corresponding strain tensor

eg =�
e0 0 0

0 e0 0

0 0 − 2
c12

c11
e0
� �9�

describes an expansion �contraction� along the 	100
 and
	010
 axes for positive �negative� e0 accompanied by a con-
traction �expansion� along the 	001
 axis. Parameters c11 and
c12 are the elastic moduli. The growth strain enters our model
via the strain Hamiltonian Hstr 	see Eq. �1�
 and induces a
uniaxial anisotropy component, which can be described
in the lowest order by an energy term −K	001
nz

2

=−K	001
 cos2 �.
The shear strain, first introduced in Sec. II A, is repre-

sented by a tensor

es = �0 � 0

� 0 0

0 0 0
� . �10�

Positive �negative� � corresponds to turning a square into a
diamond with the longer �shorter� diagonal along the 	110

axis. We have used this type of strain as the “intrinsic” shear
strain exy

int to model the difference in energy for magnetization
aligned with the two in-plane diagonals. It results in uniaxial
anisotropy along the diagonals, described in analogy to the

growth strain by a term −K	110
�ny −nx�2 /2=−K	110
 sin2��
−� /4�sin2 �.

Finally, we write down the third element of the in-plane
strain basis,

eu = �� 0 0

0 − � 0

0 0 0
� . �11�

Positive �negative� � corresponds to turning a square into
a rectangle where expansion �contraction� along the 	100

axis is accompanied by a contraction �expansion� along
the 	010
 axis of the same magnitude. Much like in case of
the growth strain and the shear strain, the requirement of
zero net force acting on the crystal is kept but this time it
results in ezz=0. The strain eu induces uniaxial anisotropy
along the main crystal axes, described by a term −K	100
ny

2

=−K	100
 sin2 � sin2 �.
Let us remark that strain tensors in Eqs. �9�–�11� are ex-

pressed in Cartesian coordinates fixed to the main crystallo-
graphic axes. Strains es and eu for �=� are related by a
rotation about the 	001
 axis by � /4; however, the cubic
crystal is not invariant under such rotation so the two strains
induce anisotropies with magnitudes K	100
 and K	110
, which
are different in general. The growth strain eg, the shear strain
es, and the uniaxial strain eu can be characterized by a single
direction of deformation and induce uniaxial anisotropy
components aligned with that particular direction. We found
that higher order uniaxial terms are small unless we approach
experimentally unrealistic large values of exchange splitting
�large x� and hole compensation �low p�.

In total, we can write our phenomenological formula ap-
proximating accurately the calculated free-energy density of
an originally cubic system subject to three types of strain as
a sum of distinct anisotropy components,

F�M̂� = Kc1�nx
2ny

2 + nx
2nz

2 + nz
2ny

2� + Kc2�nx
2ny

2nz
2� − K	001
nz

2

−
K	110


2
�ny − nx�2 − K	100
ny

2. �12�

By definition of the terms, a positive coefficient K	001
 pre-
fers perpendicular-to-plane easy axis �PEA�; positive K	110

and K	100
 prefer easy axis lying in-plane �IEA� aligned

closer to 	11̄0
 and 	010
 axis, respectively. Note that the
anisotropy terms entering the phenomenological formula fol-
low a sign convention consistent with existing
literature.44,54,58,61

We now provide the microscopic justification for the
choice of the elements es and eu of the in-plane strain basis
and corresponding phenomenological uniaxial terms. This
will be based on symmetries of the Kohn-Luttinger Hamil-
tonian HKL and the strain Hamiltonian Hstr as shown in Eqs.
�A11� and �B2�, respectively, which relates the band struc-
ture to a general in-plane strain with the components exx, eyy,
and exy.

First let us point out that the basis element eg �the growth
strain� is invariant under rotation about the 	001
 axis and
according to our calculation does not influence the in-plane
direction of the easy axis �in the linear regime of small de-
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formations�. We continue by showing that for es and eu, the
strains and the corresponding magnetocrystalline anisotropy
components are indeed collinear and that this collinearity
applies only for the special cases of uniaxial symmetries
along the in-plane diagonals or main axes. Let us assume a
rotation of the tensor eu by an arbitrary angle � about the
	001
 axis,

eu��� = R�
T�� 0 0

0 − � 0

0 0 0
�R� = �� cos 2� � sin 2� 0

� sin 2� − � cos 2� 0

0 0 0
� ,

�13�

where R� is the rotation matrix and � is measured from the
	100
 axis. �The same analysis applies to a rotation of es�.
The parameters exx=−eyy =� cos 2� and exy =� sin 2� enter
the strain Hamiltonian 	see Eq. �B2� in Appendix B
 only via
the matrix element

cs =
a2

2
�3�eyy − exx� + ia3exy = − �	a2

�3 cos 2� − ia3 sin 2�
 ,

�14�

where a2
�3�a3 are strain Luttinger constants. Moreover, the

strain component exy quantifying the shear strain enters only
Im�cs�, whereas the components exx=−eyy enter only Re�cs�.
According to our calculation the imaginary and real part of cs

generate independent uniaxial anisotropy components along
the 	110
 and 	100
 axis, respectively. Their combined effect
can be understood based on an analogy of the in-plane rota-
tion of the strain tensor eu and an in-plane rotation of a k
vector.

As mentioned in Sec. II the Kohn-Luttinger Hamiltonian
HKL and the strain Hamiltonian Hstr have the same structure.
We write here explicitly the matrix component c of the
Hamiltonian HKL analogous to cs as a function of the in-
plane angle of the k vector k= �k�	cos � , sin � ,0
. The ele-
ment reads

c =
�3�2

2m
	�2�kx

2 − ky
2� − 2i��3kxky�
 =

�3�2

2m
k2	�2 cos 2�

− i�3 sin 2�
 , �15�

where again �2��3 are Luttinger constants describing a cu-
bic crystal. For �2=�3 the Hamiltonian HKL has spherical
symmetry. Similarly, if a2

�3=a3, the strain Hamiltonian Hstr
is spherically symmetric and the contributions of Im�cs� and
Re�cs� to the anisotropy of the system combine in such a way
that the resulting uniaxial term is collinear with the strain
eu��� rotated with respect to the crystallographic axes by an
arbitrary in-plane angle �.

Clearly, the underlying cubic symmetry of the host crystal
causes a noncollinearity of the uniaxial strain along a general
in-plane direction and the corresponding anisotropy compo-
nent. Moreover, the misalignment is a function of Mn local-
moment concentration, hole density and temperature. We dis-
cuss further this misalignment in more detail in Sec. IV. Here
we point out the distinct exception when � is an integer
multiple of � /4 and either the real or the imaginary part of cs

vanish rendering the strain Hamiltonian effectively spheri-
cally symmetric. We choose quite naturally the simple forms
of eu��� with �=0 and �=� /4 as elements of the in-plane
strain basis. For a different choice of the basis elements than
in Eqs. �10� and �11�, setting up the phenomenological for-
mula would be more complicated.

We can now resume our discussion of the interplay of the
cubic and uniaxial anisotropy components. Adding the
uniaxial terms leads to rotation or imbalance of the original
�cubic� easy axes as shown in Sec. IIIB in Fig. 7.

Figure 19 shows H	110
=2K	110
 /M and H	100

=2K	100
 /M as functions of hole density p and Mn local-
moment concentration x at zero temperature. Both anisotropy
fields depend on material parameters in a qualitatively very
similar manner. Moreover, we observe similar dependence
on the doping parameters also in case of the field H	001
 �not
plotted�. All the three fields oscillate as functions of hole
density. The period of the oscillation is longer than in case of
Hc1. In general, the amplitude of the oscillations decreases
with decreasing Mn local-moment concentration.

The uniaxial fields are linearly dependent on the strain
from which they originate, unless the strains are very large
��1%�. For the shear strain of the value exy =��0.01%,
which is the typical magnitude in our modeling, and zero
temperature, the extremal values of H	110
 are an order of
magnitude smaller than the extremal values of Hc1
�103 Oe. For typical compressive growth strain e0�
−0.2% of an as-grown 5% Mn-doped epilayer and zero tem-
perature the extremal values of H	001
 are of the same order
as Hc1. When the magnitude of the uniaxial strain along

(b)

(a)

FIG. 19. �Color online� Calculated anisotropy fields H	110
 and
H	100
 as functions of hole density p �up to zero compensation p
=NMn� and Mn local-moment concentration x at zero temperature
and e0=−0.2%. For H	110
 the in-plane strains are �=0.01% and
�=0 �exy =0.01%, exx=eyy =e0�, while H	100
 is found for �=0 and
�=0.01% �exy =0, exx=e0+0.01%, eyy =e0−0.01%�.
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	100
 axis is set to �exx−eyy� /2=exy, or equivalently �=�,
H	100
 is approximately a factor of two smaller than H	110
.

To quantify the observed similarity in the calculated de-
pendencies of the uniaxial anisotropy coefficients on x, p,
and strains, we can write approximate relationships,

K	001
�x,p,e0� � q	001
�x,p�e0,

K	100
�x,p,�� � q	100
�x,p�� ,

K	110
�x,p,�� � q	110
�x,p�� . �16�

Note that each anisotropy component depends only on one
type of strain, which is due to the choice of the basis in the
strain space 	see Eqs. �9�–�11�
. �Such exclusive dependence
of a particular uniaxial anisotropy component on the corre-
sponding strain is, indeed, obtained also from simulations of
systems subject to combinations of all three types of strain.�
The linearity of anisotropy coefficients as functions of lattice
strains is limited to small elastic deformations of the lattice.
The approximation cannot be used for strains greater than
1% as revealed also by calculations in Ref. 1. Experiment
confirms the linear behavior in case of the growth strain up
to e0� �0.3%.62 Linear dependence on in-plane uniaxial
strains is corroborated by experiments discussed in Sec. IV.

In addition to the linearity with respect to strain, we ob-
serve universal dependence of the three uniaxial anisotropy
coefficients on hole density and Mn local-moment concen-
tration. It can be expressed using the anisotropy functions

q	001
�x,p� � q	100
�x,p� � 0.43q	110
�x,p� . �17�

The anisotropy function q	110
�x , p� due to shear strain is ap-
proximately twice as large as the anisotropy functions
q	100
�x , p� and q	001
�x , p�. A general property of these func-
tions is that at medium hole densities a relative compression
yields a tendency of the easy axis to align with that direction.
On the other hand, for very low and high hole densities, the
magnetization prefers alignment parallel to the direction of
lattice expansion.

We caution that Eqs. �16� and �17� are included to pro-
mote the general understanding of the anisotropic behavior
of the strained crystal but are not precise. The relative error
of the approximation given by Eq. �17� averaged over the x-p
space shown in Fig. 19 is less than 20%; however, the rela-
tive error can be much larger at a given combination of x and
p, where the anisotropy coefficients fall to zero.

To finish the analysis of the theoretical results we include
Fig. 20 to improve the legibility of the data. The individual
curves correspond to cuts through the three-dimensional
plots in Figs. 18 and 19 at fixed Mn local-moment concen-
trations. As already mentioned, the dependence of anisotropy
fields on hole density is oscillatory. Note that the critical hole
densities, where the sign inversion occurs, shift away from
the extremal values, i.e., zero hole density and zero compen-
sation p=NMn, with increasing x.

Neglecting the complexity of the dependence of the band
structure on M �whether changed by doping or temperature�,
one would expect the cubic anisotropy coefficient Kc1 to be
proportional to M4 and uniaxial anisotropy coefficients

K	001
, K	100
, and K	110
 to M2. In Fig. 20 we can identify
intervals of hole density where any change in Mn concentra-
tion, and therefore in M, does not induce a sign change in the
anisotropy fields and the functional forms of Ka�M� are
roughly consistent with the above expectations. For other
hole density intervals, however, the behavior is highly non-
trivial and the function Ka�M� can even change sign.

We now proceed to the discussion of how the theoretically
expected phenomenology detailed above is reflected in ex-
periments in bare unpatterned �Ga,Mn�As epilayers. The ex-
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FIG. 20. �Color online� Anisotropy fields Hc1, H	110
, and H	100


as function of hole density �up to zero compensation p=NMn� at
four Mn local-moment concentrations x, zero temperature and
growth strain e0=−0.2%. For H	110
 the in-plane strains are �
=0.01% and �=0, while H	100
 is found for �=0 and �=0.01%.
�The field Hc1 is not a function of lattice strains but the same values
as for calculation of H	110
 were used.� “Critical” hole densities,
where the anisotropy fields change sign, are dependent on Mn local-
moment concentration.
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perimental results44,54,58,61 are often analyzed using the fol-
lowing version of the phenomenological formula:

F�M̂� = − 2�M2 sin2 � − K2� cos2 � −
1

2
K4� cos4 �

−
1

2
K4�

3 + cos 4�

4
sin4 � − K2� sin2�� − �/4�sin2 � ,

�18�

where angle � and � are measured, as above, from the 	001

and 	100
 axis, respectively. The first term in Eq. �18� corre-
sponds to the shape anisotropy described in Sec. II B and not
included in Eq. �12�. The uniaxial anisotropy coefficients
K2� and K2� correspond to the coefficients K	001
 and K	110

in the phenomenological formula Eq. �12�, respectively. To
identify the third and fourth terms in Eq. �18� we rewrite
those terms as 	see also Eq. �C1�
,

−
1

2
K4��3 + cos 4�

4
sin4 � + cos4 �� −

1

2
�K4� − K4��cos4 �

= −
1

2
K4��nx

4 + ny
4 + nz

4� −
1

2
�K4� − K4��nz

4

= Kc1�nx
2ny

2 + nx
2nz

2 + nz
2ny

2� −
1

2
K	001
2

nz
4 + c , �19�

where c is an angle-independent constant. From here we see
that the coefficient K4� corresponds to the lowest-order cubic
coefficient Kc1 in Eq. �12� and K4�−K4� �K	001
2

corre-
sponds to the second-order uniaxial anisotropy coefficient

Ku2 for Û � 	001
. We point out that omission of the second-
order cubic term �and other higher order terms� can make the
determination of K	001
2

from fitting the data to the phenom-
enological formula in Eq. �18� unreliable. Moreover, the ac-
curate extraction of the coefficient K	001
2

can be difficult in
samples with large value of the first-order coefficient K	001
.

54

We therefore only note that K	001
2
extracted from the

experiment44,58,61 never dominates the anisotropy, consistent
with our calculations, and do not discuss the coefficient fur-
ther in more detail.

The predicted strong dependence of K	001
, K	110
, and Kc1
on hole density, Mn local-moment concentration, and tem-
perature is consistently observed in many experimental pa-
pers. We start with experiments where the out-of-plane an-
isotropy is studied. Measurements focusing mainly on the
in-plane anisotropies are discussed at the end of this section
and in Sec. IV for patterned or piezostrained samples.

The coefficient K	001
 is extracted in Ref. 62 using detailed
angle-resolved magnetotransport measurements at 4 K for
different growth strains in as-grown and annealed, 180 nm
thick samples with identical nominal Mn concentration x
�5%. The growth strain ranging from e0=−0.22% �com-
pressive� to e0=0.34% �tensile� is achieved by MBE growth
of �Ga,Mn�As on �In,Ga�As/GaAs templates. The observed
linear dependence of K	001
 on e0 agrees on the large range of
e0 with the prediction given in Eq. �16�. The calculated and
measured gradients are of the same order of magnitude and

sign, and depend on the hole density. The offset at zero strain
in the measured dependence of K	001
 on e0 in Ref. 62 is due
to the shape anisotropy.

Reference 44 presents 50 nm thick annealed samples with
nominal Mn doping x=7%. All the samples are first passi-
vated by hydrogen and then depassivated for different times
to achieve different hole densities while keeping the growth
strain the same. The FMR spectroscopy is carried out for
in-plane and out-of-plane configurations. There is qualitative
agreement of calculation and measurement on the level of
the directions of the easy axes as discussed in the previous
subsection. The sign change of the uniaxial anisotropy fields
driven by increase of temperature is observed. The measured
coefficients K	001
 and Kc1 are of the same order of magni-
tude as the calculated ones and K	001
�Kc1 is consistent with
the weaker growth strain in annealed samples.

Reference 61 presents an as-grown 6 nm thick film nomi-
nally doped with Mn to x=6%, grown on Ga0.76Al0.24As bar-
rier doped with Be. Increasing the Be doping increases the
hole density without changing the Mn local-moment concen-
tration. The fitting of the FMR spectra is done using the
coefficients K	001
 and Kc1 and the g-factor of the Mn. The
anisotropy field corresponding to the coefficient K	001

reaches value as high as �6000 Oe at 4 K. Large values of
K	001
 is consistent with expected large growth strain in a thin
as-grown sample.52,64 However, for the measured K	001
 our
calculations would imply strain e0�1% which is an order of
magnitude larger than typical strains in as-grown x=6%
�Ga,Mn�As materials. Other effects are therefore likely to
contribute to K	001
 in this sample. �Confinement effect or
inhomogeneities are among the likely candidates.� The ex-
perimental K	001
 �Kc1� increases �decreases� with increasing
hole density which is in agreement with our modeling of
highly compensated samples.

Observation of qualitatively consistent behavior of the
anisotropies with the theory but unexpectedly large magni-
tudes of the anisotropy fields applies also to thick samples
studied by FMR in Refs. 54 and 58. Temperature dependence
of the anisotropy fields is studied by FMR in Ref. 58 for a
low-doped �x�2%� as-grown 200 nm thick �Ga,Mn�As film.
Only the combined contribution of shape anisotropy and
K	001
 was resolved. The easy axis stays in-plane for all stud-
ied temperatures which is consistent with predicted crystal-
line anisotropy as well as the shape anisotropy dominating at
weak growth strains. The uniaxial in-plane anisotropy is of
the predicted magnitude but its sign corresponds to modeling
by the less frequent negative intrinsic shear strain.

Ref. 54 discussed in Sec. III A on the level of easy-axis
orientation shows, among other samples, 300 nm thick an-
nealed epilayers with nominal Mn concentration x=3% de-
posited on GaAs and �Ga,In�As substrate under compressive
and tensile growth strain, respectively. The strain is mea-
sured by x-ray diffraction; however, the predicted linear de-
pendence of K	001
 on the growth strain 	Eq. �16�
 cannot be
tested due to different saturation magnetization and TC in
both samples. Both Refs. 54 and 58 report the coefficient Kc1
in the 300 nm and 200 nm thick samples an order of magni-
tude larger than the calculated one which can65 be attributed
to sample inhomogeneities in these thick epilayers. Refer-
ence 54 studies also 120 nm thick, annealed, and as-grown
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epilayers with x=8% deposited on GaAs. The coefficient
K	001
 doubles its value at low temperature on annealing.
Both K	001
 and Kc1 in the thinner samples have values of the
order predicted by theory for material with Mn doping x
=8%.

Now we analyze experiments focusing on the in-plane
anisotropy where the relevant anisotropy coefficients are Kc1
and K	110
. Note that the experimental papers discussed be-
low mostly19,34,39,63 use the notation with the in-plane mag-

netization angle � measured from the 	11̄0
 axis. To avoid
any confusion we write the in-plane form of Eq. �12� using
the original anisotropy coefficients and the angle �=�
+� /4,

F�M̂� = −
Kc1

4
sin2 2� + K	110
 sin2 � . �20�

To facilitate the comparison with experiment we use the no-
tation of Eq. �20� consistently in the remaining parts of this
paper.

The magnetic easy axes lie closer to the 	100
 or 	010

direction than to any diagonal when Kc1�0 and �2K	110

�Kc1. Negative Kc1 always leads to diagonal easy axes. We
include Fig. 21 to elucidate the combined effect of Kc1 and
K	110
 on the in-plane direction of the easy axes. The angle
�EA�x , p�, plotted as a function of Mn concentration and hole

density at zero temperature minimizes the free energy F�M̂�.
The local minima at �=0° �black� and �=90° �white� are
formed for negative Kc1. When K	110
 is positive �negative�,
the global minimum is at �=0° ��=90°�. The higher energy
local minimum disappears for �Kc1�= �K	110
�. Only one en-
ergy minimum forms for �Kc1�� �K	110
� and for positive
�negative� K	110
 the easy axis is at �=0° ��=90°�. The in-
terface of black and white regions is an evidence of a dis-
continuity of the function �EA�x , p� due to switching of the
sign of K	110
 when Kc1�0. The gray �colored online� re-
gions in Fig. 21 correspond to competition of cubic and
uniaxial anisotropy when Kc1�0 and �Kc1�� �K	110
�. Then
there are two easy axes at �EA and 180°−�EA forming “scis-

sors” closing at the 	11̄0
 axis. �The darker the color, the
more closed the scissors.�

To demonstrate the typical scaling of in-plane anisotropy
components with temperature, we discuss the 50 nm thick
as-grown �Ga,Mn�As epilayer with Mn concentration x
=2.2% determined by x-ray diffraction and secondary-ion
mass spectrometry, presented in Ref. 39. The anisotropy co-
efficients K	110
 and Kc1 are obtained by fitting to the M�H�
loop with magnetic field along the hard direction. They can
be compared to Fig. 22, which shows the calculated aniso-
tropy fields as functions of temperature for two values from
the interval of hole densities corresponding to the as-grown
sample. For p=2.5�1020 cm−3 both the calculated and mea-
sured Kc1 is greater than K	110
 at low temperatures but be-
comes smaller than K	110
 at T�TC. The calculated Kc1 is an
order of magnitude smaller than the experimental one, how-
ever, there is agreement on the level of the temperature-
dependent ratio of Kc1 and K	110
. On the contrary, Fig. 22
shows a nonmonotonous dependence of Kc1 on temperature
for p=1.5�1020 cm−3. This singular behavior is not mea-
sured in Ref. 39 but it is reported in a more systematic study
in Ref. 44.

The temperature dependence of anisotropy coefficients
K	110
 and Kc1 is studied by planar Hall effect in Ref. 66. The
mutual behavior of the two coefficients observed in the as-
grown �Ga,Mn�As epilayer with nominal Mn concentration
x�4% and TC=62 K is qualitatively the same as in Ref. 39.
Kc1 becomes smaller than K	110
 at T=26 K which is in
agreement with our modeling. No sign change of Kc1 is re-

FIG. 21. �Color online� Angle � of the easy axis with respect to

the 	11̄0
 axis as function of hole density p �up to zero compensa-
tion p=NMn� and Mn local-moment concentration x at zero tem-
perature, e0=−0.2%, and �=0.01%;
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FIG. 22. �Color online� Calculated anisotropy fields Kc1 and
K	110
 as function of temperature and magnetization at two hole
densities �given in units u�1020 cm−3�, Mn concentration x=2%,
strains e0=−0.2%, �=0.005%. Irregular behavior is observed for
the lower hole density.
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ported in this experimental work. Again, the calculated Kc1 is
an order of magnitude smaller than the experimental one.

Reference 44 resolves the in-plane coefficients Kc1 and
K	110
 in four samples with nominal Mn doping x=7% and
different hole densities. In samples with lower hole densities
the dependence of Kc1 and K	110
 is qualitatively consistent
with Ref. 39, however, both coefficients change sign when
temperature is increased in samples with higher hole densi-
ties �p�1021 cm−3, TC=130 K�. Our model predicts such
sign change for a short interval of high hole compensations
and a larger interval of low hole compensations as shown in
Fig. 20�a�.

Another type of temperature scaling of Kc1 and K	110
 is
observed in a 50 nm thick, annealed sample with nominal
Mn doping x=7% and TC=165 K.60 K	110
 is larger than Kc1
on the whole temperature interval �T=4–165 K�. Both co-
efficients are positive, decrease on increasing temperature,
and their magnitudes are of the same order of magnitude as
the calculated anisotropies. The stability of sign of K	110
 is
observed theoretically for higher “intrinsic” shear strain as
discussed in Fig. 16 in Sec. III B.

The temperature dependence of domain-wall properties of
a 500 nm, as-grown �Ga,Mn�As film with Mn doping x
=4% is studied by means of the electron holography in Ref.
19. The width and angle of the domain walls were deter-
mined directly from the high-resolution images. The ratio of
the anisotropy coefficients K	110
 /Kc1 was extracted from
these observations combined with Landau-Lifshitz-Gilbert
simulations. The Nèel type domain walls evolve from
near-90° walls at low temperatures �T=10 K� to large-angle

	11̄0
-oriented walls and small-angle 	110
-oriented walls at
higher temperatures �T=30 K�. The angles of domain walls
aligned with particular crystallographic directions reveal po-
sitions of the magnetic easy axes. The “scissors” of the easy
axes �described in discussion of Fig. 21� are closing around

the 	11̄0
 axis on increasing temperature consistent with our
modeling.

The domain-wall width is inversely proportional to the
effective anisotropy energy barrier between the bistable
states on respective sides of the domain wall: K	110


ef f

�Kc1 /4−K	110
 /2 �	110
-oriented walls� and K	11̄0

ef f �Kc1 /4

+K	110
 /2 �	11̄0
-oriented walls�. The width of the

	11̄0
-oriented wall in Ref. 19 initially increases with tem-
perature and then saturates at high temperature while the
	110
-oriented wall width keeps increasing with temperature
until it becomes unresolvable. This observation corresponds
well to the theoretical prediction and can be qualitatively
understood by considering the approximate magnetization
scaling of Kc1�M4, K	110
�M2, and magnetic stiffness
�M2.

Finally, Refs. 63 and 67 present �Ga,Mn�As field-effect
transistors �FETs�, where hole depletion/accumulation is
achieved by gating induced changes in the in-plane easy-axis
alignment. In Ref. 63 the Mn-doped layer is 5 nm thick with
Mn doping x=2.5% and hole density p�1
�1019–1020 cm−3. The direction of magnetic easy axes was
detected by AMR at T=4 K. The 20% variation in the hole
density achieved by applying the gate voltage from −1 to 3 V

is determined from variation of the channel resistance near
TC. This value was a starting point for simulations of the
depletion at T=4 K giving hole density changes 	p�5
�1019 cm−3. The measured Kc1 is negative and its magni-
tude decreases with depletion. The theoretical magnitude
��10 mT� and sign of Kc1 for the relevant hole density
range, as well as the variation of Kc1 with varying hole den-
sity, are consistent with the experiment. Recall that negative
Kc1 corresponds to diagonal easy axes captured by two
black/white regions in Fig. 21. Samples reported in Refs. 43,
57, 59, and 60 �see also Sec. III B� with diagonal easy axes at
low temperatures fall into the right region with lower hole
compensations, whereas the sample in Ref. 63 is a rarely
observed example of diagonal easy axes at high compensa-
tion and low temperature corresponding to the left black/
white region in Fig. 21.

The magnitude of the K	110
 constant measured in Ref. 63
was modeled by assuming a small strain parameter exy and,
in agreement with experiment, it was found that K	110
 is only
weakly dependent on the hole density. In Ref. 67, on the
other hand, K	110
 changes significantly upon gating. In our
modeling, this is explained by the larger Mn local-moment
density x�10% in the measured film, as compared to the
weakly Mn-doped �Ga,Mn�As used in Ref. 63. We point out,
however, that the theoretical constant Kc1 becomes also more
sensitive to the variation of the hole density at higher x,
which is not seen in the experimental data in Ref. 67. This
discrepancy can be attributed to the limited reliability of our
theory, describing uniform bulk �Ga,Mn�As, for ultrathin
films utilized in the FET structures. Applying the gate volt-
age does not yield uniform variation of the hole density in
the entire film but only affects a �1 nm thick layer of
�Ga,Mn�As adjacent to the gate.

IV. SAMPLES WITH POST-GROWTH CONTROLLED
STRAINS

In the previous section, we discussed three types of lattice
strain and calculated corresponding types of uniaxial aniso-
tropy components. In the bare, unpatterned epilayers we
could analyze and compare to experiment only anisotropies
induced by the growth strain and by the unknown symmetry-
breaking mechanism modeled by the “intrinsic” shear strain.
The calculations including the model shear strain allow us
also to estimate the magnitude of real in-plane lattice strains,
controlled post-growth by patterning or piezostressing, that
can induce sizable changes of anisotropy. In this section we
investigate samples where these post-growth techniques are
used to apply additional stress along any in-plane direction.
We will focus primarily on stresses along the main crystal
axes and in-plane diagonals. We will also comment on the
procedure for determining the lattice strain from specific
geometrical parameters of the experimental setup. Where
necessary, we distinguish the externally induced strain and
the intrinsic shear strain, which models the in-plane
symmetry-breaking mechanism already present in the bare
epilayers. Returning to the notation of Sec. II we denote the
latter strain by the symbol exy

int. For better physical insight and
to relate with discussion in previous section we will map the
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anisotropies on the phenomenological formulas by decom-
posing the total strain matrix into the three basis strains 	Eqs.
�9�–�11�
. We will then write the corresponding anisotropy
energy terms as in Sec. III C, assuming linearity between the
respective basis strains and anisotropy energy components
	see Eq. �16�
. Experiments will be discussed based on mi-
croscopic anisotropy calculations with the total strain tensor
directly included into the Hamiltonian.

We begin this section by discussion of the in-plane
uniaxial strain induced by post-growth lithography treatment
of Mn-doped epilayers grown under compressive lattice
strain. Narrow bars with their width comparable to the epil-
ayer thickness allow for anisotropic relaxation of the lattice-
matching strain present in the unpatterned film. An expan-
sion of the crystal lattice along the direction perpendicular to
the bar occurs while the epilayer lattice constant along the
bar remains unchanged. Parameters sufficient for determina-
tion of the induced strain are the initial growth strain e0 and
the thickness to width ratio t /w of the bar. In the regime of
small deformations the components of the induced strain are
linearly proportional to the growth strain. The strain tensor
for a bar oriented along the 	100
 axis reads,

e	100

r = e0�

− � + 1 0 0

0 1 0

0 0
c12

c11
�� − 2� � , �21�

where the lattice relaxation is quantified by � which is a
function of t /w and can vary over the bar cross section. We
calculate the distribution of � over the cross section of the
bar using Structural Mechanics Module of Comsol �standard
finite element partial differential equation solver, www.com-
sol.com�. Since the macroscopic simulations ignore the mi-
croscopic crystal structure, they apply to bars oriented along
any crystallographic direction. We therefore introduce a co-
ordinate system fixed to the bar: x� axis lies along the relax-
ation direction transverse to the bar, y� axis along the bar,
and z� axis along the growth direction. We approximate the
bar by an infinite rectangular prism with translational sym-
metry along the y� axis, attached to a thick substrate.

Figure 23 shows the spatial dependence of the function
��x� ,z�� for a given thickness to width ratio and compressive
growth strain e0�0. Only the area of the bar is plotted,
whereas the strain induced in the patterned part of the sub-
strate is not shown. �The substrate relaxation is not directly

related to the microscopic simulation of the anisotropy en-
ergy.� In wide bars �t /w�1� the relaxation is very nonuni-
form, whereas narrow bars �t /w�1� are fully relaxed. Figure
24 shows still a fairly nonuniform relaxation for t /w=0.4
with large relaxation at the edges. We point out in this case
that the resulting anisotropy can be very sensitive to the de-
tails of the etching �vertical undercut/overcut profile�.

The nonuniform strain distribution in wider bars can in
principle force the system to break into magnetically distinct
regions. However, experiments show rather that the whole
bars behave as one effective magnetic medium. Because of
the linearity between the strain and the anisotropy 	see
Eq. �16�
 we can model the mean magnetic anisotropy by
considering the spatial average of e	100


r over the bar cross
section. The inset of Fig. 24 shows the averaged value �̄ as a
function of the width to thickness ratio. It confirms that the
effect of relaxation can reach magnitudes necessary to gen-
erate significant changes in the magnetic anisotropy. In very
narrow bars the induced uniaxial anisotropy can override the
intrinsic anisotropies of the unpatterned epilayer and deter-
mine the direction of the easy axis.

If the bar is aligned with the 	100
 or 	010
 crystal axis,
the strain e	100


r in Eq. �21� with the average relaxation mag-
nitude �̄ can be used directly as input parameter of the mi-
croscopic calculation 	see Eq. �B2� in Appendix B
. Alterna-
tively, the total strain tensor can be decomposed into the
growth basis strain from Eq. �9� and the uniaxial basis strain
introduced in Eq. �11�

e	100

r �e0, �̄� = eg�ẽ0� + eu��̃� , �22�

ẽ0 = e0�1 −
�̄

2
� , �23�

�̃ = − e0
�̄

2
. �24�

Their effects on the magnetic anisotropy can be considered
separately utilizing the results shown in Sec. III C.

Now we discuss the introduction of uniaxial in-plane
anisotropies by a piezoactuator attached to the sample. In
this case, the �Ga,Mn�As film is assumed to follow the de-

FIG. 23. Spatial dependence of the strain coefficient � due to
lattice relaxation in a narrow bar with t /w=0.4 and compressive
growth strain e0�0, simulated values of � are plotted for the cross
section of the bar.
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FIG. 24. �Color online� Sections of ��x� ,z�� in Fig. 23 at fixed
values of z� �given next to the curves in relative units� of a thin bar.
Inset shows the average strain �̄�t /w� as a function of the thickness
to width ratio.
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formation of the stressor. �The substrate is usually thinned to
achieve better transmission of the piezostrain to the studied
epilayer. Macroscopic Comsol simulations predict transmis-
sion of approximately 70% of the piezostrain in a substrate
with thickness to lateral size ratio t / l�0.1 and transmission
of approximately 90% of the piezostrain for t / l�0.02.� The
net effect of the piezostressing on normal GaAs epilayers has
been investigated experimentally for example in Ref. 36 for
a standard PbZrTiO3 �PZT� piezoactuator. The induced strain
can reach magnitudes �10−4 at low temperatures, which are
sufficient to induce observable anisotropies in �Ga,Mn�As, as
shown in Sec. III C. The deformation is linearly proportional
to applied voltage on the transducer and increases with in-
creasing temperature.

The dependence of uniaxial anisotropies due to additional
piezostrains is analogous to the behavior of relaxed mi-
crobars, however, the form of the strain tensor induced by
the stressor is typically more complex. Let us first assume a
strain tensor with components in the Cartesian coordinate
system fixed to the orientation of the piezostressor: x� axis
lies along the principal elongation direction, z� axis is per-
pendicular to plane of the thin film. We denote the deforma-
tion along the x� axis by � and the simultaneous deformation
along the y� axis by ��. Note that shear strains are typically
not considered when describing the action of a piezostressor.
The third parameter describing the strained �Ga,Mn�As epil-
ayer is the growth strain e0. Our analysis takes into account
only structures that can be parametrized by these three val-
ues. The strain tensor in the dashed coordinate system reads

e	100

p =�

� + e0 0 0

0 �� + e0 0

0 0 −
c12

c11
�2e0 + � + ��� � . �25�

Components of this tensor are considered uniform in the
studied epilayer. If the principal elongation direction of the
piezostressor is aligned with the 	100
 crystallographic axis
the strain tensor e	100


p can be used directly as an input of the
microscopic simulation. Similarly to the strain induced by
lattice relaxation, e	100


p can be decomposed into the growth
basis strain and the uniaxial basis strain

e	100

p �e0,�,��� = eg�ẽ0� + eu��̃� , �26�

ẽ0 = e0 +
1

2
�� + ��� , �27�

�̃ =
1

2
�� − ��� . �28�

Again, the results shown in Sec. III C can then be used when
analyzing the resulting magnetocrystalline anisotropies. Re-
call that eg has a minor effect on the in-plane anisotropy and
can therefore be omitted when discussing in-plane magneti-
zation transitions.

So far we have described induced strains aligned with the
	100
 crystal axis. In case of a lattice relaxation or piezos-
tressor aligned at an arbitrary angle �, the following trans-

formation of the total strain tensor e	100

r or e	100


p to the crys-
tallographic coordinate system applies:

e�
r�p� = R�

Te	100

r�p� R�, �29�

where the rotation matrix reads

R� = � cos�� − �/4� sin�� − �/4� 0

− sin�� − �/4� cos�� − �/4� 0

0 0 1
� . �30�

The angular shift by −� /4 is because we measure the angle

� from the 	11̄0
 axis. This convention was introduced in
Sec. III C before Eq. �20� and is used consistently in this
section for all in-plane angles. The rotated total induced
strain can be used directly as the input strain matrix for the
microscopic calculation or it can be decomposed into all
three elements of the in-plane strain basis. In case of the
relaxation-induced strain, we obtain

e�
r �e0, �̄� = eg�ẽ0� + eu��̃� + es��̃� , �31�

ẽ0 = e0�1 −
�̄

2
� , �32�

�̃ = − e0
�̄

2
sin 2� , �33�

�̃ = e0
�̄

2
cos 2� . �34�

In case of the rotated piezostressor, the same decomposition

follows; however, the effective strain magnitudes �̃ and �̃
depend on different real experimental parameters,

e�
p �e0,�,��� = eg�ẽ0� + eu��̃� + es��̃� , �35�

ẽ0 = e0 +
�� + ���

2
, �36�

�̃ =
�� − ���

2
sin 2� , �37�

�̃ = −
�� − ���

2
cos 2� . �38�

Considering the linear dependence of the anisotropy coeffi-
cients on the corresponding strain elements 	see Eq. �16�
,
we can write the part due to post-growth induced strains of
the phenomenological formula for the free energy as a func-
tion of angles � and �,

Fu�M̂� = K	110
���sin2 � + K	100
���sin2�� + �/4�

� q	110
�̃���sin2 � + q	100
�̃���sin2�� + �/4� , �39�

where we use the notation analogous to Eq. �16� in Sec.

III C. The relation of the effective parameters �̃ and �̃ to the
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experimental parameters of microbars or stressors oriented
along arbitrary crystallographic direction is given by Eqs.
�33� and �34� or Eqs. �37� and �38�, respectively. The linear-
ity of the anisotropy constants K	100
, K	110
, and K	001
 on
corresponding strain coefficients and the form of the strain
tensors in Eqs. �31� and �35� allow us to factor out the �
dependence of Ku’s. Figures 18–20 together with Eqs. �31�
and �35� can therefore be used for analyzing magnetic
anisotropies induced by micropatterning or piezostressors
oriented along any crystallographic direction.

The full angular dependencies of the anisotropy energy
calculated directly from the total strain tensor included into
the Kohn-Luttinger kinetic-exchange Hamiltonian for several

combinations of �̃ and �̃ are plotted in Fig. 25. Recall that
analogous in-plane angular dependencies of the anisotropy
energy were presented in Figs. 8–10, where only the compe-
tition of the growth strain eg and shear strain es with the
cubic anisotropy of the host lattice was considered.

Figure 25�a� shows four angular dependencies of the an-
isotropy energy for x=3% and p=3�1020 cm−3. The curves
are marked by the values of the effective strain components.

The solid curve for weak shear strain �̃=0.01% and no
uniaxial strain �̃=0 has two local minima close to the main
crystal axes indicating dominant cubic anisotropy with Kc1
�0 for the considered x and p. The easy axes are shifted due
to the positive shear strain toward the 	11̄0
 axis which is the
direction of relative lattice compression, consistently with
the discussion in Sec. III C for samples with medium hole
densities. Additional uniaxial strain �̃=−0.025% results in
only one global minimum easy axis rotating toward the 	100

direction which is again the direction of relative lattice com-
pression.

The dashed curve in Fig. 25�a� corresponding to strong
shear strain �̃=0.09% and no uniaxial strain �̃=0 has only
one global minimum at the 	11̄0
 diagonal, indicating domi-
nation of the uniaxial anisotropy over the underlying cubic
anisotropy. Addition of the uniaxial strain �̃=−0.025% leads
to rotation of the easy axis toward the direction of relative
compression �	100
 for �̃�0�.

Curves plotted in Fig. 25�b� differ in the material param-
eters but share the same weak shear strain �̃=0.01% and the

same uniaxial strain �̃=−0.025%. The solid curve for x
=3% and p=4�1020 cm−3 falls into the range of hole den-
sities where the cubic anisotropy coefficient Kc1 is positive
so the easy axes in the absence of in-plane strains align par-

allel to the main crystal axes. Adding the uniaxial strain �̃
yields only one global minimum along the 	100
 direction

and the shear strain shifts the easy axis toward the 	11̄0

diagonal. Again, for both strains the easy axes tend to align
along the direction of lattice compression for these medium
doping parameters.

The dashed curve in Fig. 25�b� for x=5% and p=8
�1020 cm−3 can be described by a negative Kc1 correspond-
ing to diagonal easy axes in the unstrained bulk epilayer. The
additional shear strain �̃ makes the 	110
 direction the global
minimum easy axis. Note that for these values of x and p the
easy axis prefers to align with the direction of lattice expan-

sion. Consistently, the uniaxial strain �̃ rotates the easy axis
toward the direction of relative lattice expansion, i.e., toward
the 	010
 axis. Finally, the dash-dotted curve for x=5% and
high hole density p=12�1020 cm−3 corresponds to positive
Kc1 and again, when the in-plane strains are included the
easy axes prefer the direction of relative lattice expansion. To
summarize the discussion of Figs. 25�a� and 25�b�, the pre-
ferred alignment of the in-plane easy axis with either the
lattice contraction or expansion direction depends on x and
p. For a given doping it has always the same sense for both

the shear strain �̃ and the uniaxial strain �̃ and is uncorre-
lated with the sign of the cubic anisotropy component. These
conclusions are independent of the growth strain, at least for
its typical values �e0��1%.

Now we analyze experimental studies that control the in-
plane strain by means of post-growth lithography. Refs. 30
and 31 present structures with the shear and uniaxial strain
induced locally by anisotropic relaxation of the compressive
growth strain. Reference 30 studies an L-shaped channel

with arms aligned along the 	11̄0
 and 	110
 directions pat-
terned by lithography in a 25 nm thick �Ga,Mn�As epilayer

(a) x = 3%, p = 3 × 1020cm−3, ẽ0 = −0.3% when

λ̃ = 0, ẽ0 = −0.275% when λ̃ = 0.025%

(b) λ̃ = −0.025%, κ̃ = 0.01%, ẽ0 = −0.275%

−

.

FIG. 25. �Color online� Magnetic anisotropy energy 	E=E�

−E	100
 as a function of the in-plane magnetization orientation M
= �M�	cos � , sin � ,0
 and its dependence on material parameters.
Effects of the shear strain and the uniaxial strain combine linearly
�a�. Magnetic easy axes �marked by arrows� change their direction
upon change of Mn local-moment concentration x, and hole density
p �in units u�1020 cm−3� for a fixed uniaxial and shear strain �b�.
Both plots assume zero temperature.

MAGNETOCRYSTALLINE ANISOTROPIES IN �Ga,Mn�As:… PHYSICAL REVIEW B 80, 155203 �2009�

155203-21



with nominal Mn concentration x=5%. Hole density p=5
�1020 cm−3 was estimated from high-field Hall measure-
ments. This patterning allows relaxation of the growth
lattice-matching strain in direction perpendicular to the chan-
nel. Therefore, the generated uniaxial strains in each arm of
the L-shaped channel have opposite signs. The induced shear
strain is added to �subtracted from� the intrinsic shear strain

in the arm fabricated along the 	11̄0
 �	110
� axis. The mag-
nitude of the induced strain increases with decreasing width
of the channel. A large effect on magnetic easy-axes orienta-
tion has been observed in a 1 
m wide channel while only
moderate changes have been found in a 4 
m bar. In both
cases the easy axes of the unpatterned epilayer rotated in the
direction perpendicular to lattice expansion. The sense and
magnitude of the easy-axis reorientations in the relaxed mi-
crobars are consistent with theory prediction for the relevant
values of x, p, and microbar geometry.

References 4 and 29 show lithographically induced
uniaxial anisotropy along the 	100
 or 	010
 axis in arrays of
narrow bars. Reference 4 presents 200 nm wide bars fabri-
cated in an as-grown 70 nm thick film with Mn concentration
x=2.5% determined by x-ray diffraction. Reference 29 re-
ports lattice relaxation in 200 nm wide, 20 nm thick bars in
an as-grown material with nominal Mn concentration x
=4%. In both studies the unpatterned epilayers have two
equivalent easy axes close to main crystal axes. After the
anisotropic relaxation of the growth strain in the nanobars
the easy axis corresponding to the relaxation direction is lost,
whereas the other easy axis is maintained. This behavior is in
agreement with our simulations on the relevant interval of
dopings and patterning induced strains.

The anisotropies induced in the relaxed structures in Refs.
4 and 29–31 can be predicted using the results of Sec. III C
directly. Bearing in mind the negligible effect of the growth
strain, the relevant part of the strain tensor describing the
relaxation along the main crystal axes has the form of the
uniaxial basis strain eu, as shown in Eq. �22�, and corre-
sponds to the anisotropy component with the previously cal-
culated coefficient K	100
. The relaxation along the diagonals
is described by the strain tensor: e	110


r �e0 , �̄�=es��̃� with �̃
= �

1
2e0�̄, where we again neglected the contribution from

the growth strain eg. It induces uniaxial anisotropy compo-
nent quantified by the coefficient K	110
. Note that the intrin-
sic shear strain exy

int in the modeling is independent of the
externally introduced lattice distortion and needs to be added
to the total strain tensor if the corresponding anisotropy is
present in the unpatterned epilayer. As mentioned before, the
simulated rotation of easy-axis directions in the relaxed mi-
crobars is in good agreement with the measured behavior.

The piezostrain is also applied in most cases along the
main crystal axes or diagonals. In Ref. 32 a PZT piezoelec-
tric actuator is attached to a 30 nm thick �Ga,Mn�As epilayer
grown on a GaAs substrate thinned to 100 
m. The princi-
pal elongation direction of the actuator is aligned with the
	110
 crystallographic direction. The nominal Mn concentra-
tion of the as-grown epilayer is 4.5%. The relative actuator
length change is approximately 4�10−4 at T=50 K �mea-
sured by a strain gauge� for the full voltage sweep �from
−200 to 200 V�. Such piezostrain induces a rotation of the

easy axis by 	�EA�65°. Our modeling predicts 	�EA of the
same order for relevant material and strain parameters. The
easy axis rotates toward the 	110
 �	11̄0
� direction upon
contraction �elongation� along the 	110
 axis in agreement
with the behavior observed in the relaxed microbars and with
our modeling.

Reference 33 extends the piezostressed �Ga,Mn�As study
in Ref. 32 to low temperatures. Again, PZT piezoactuator is
attached to a Hall bar along the 	110
 crystallographic direc-
tion. The 30 nm thick, as-grown �Ga,Mn�As epilayer grown
on GaAs substrate has nominal Mn concentration 4.5% and
TC=85 K. A strain gauge measurement shows almost linear
dependence of the piezostrain in the Hall bar on temperature
�in the range 5–50 K�. The anisotropy coefficients K	110
 and
Kc1 are extracted from the angle-dependent magnetoresis-
tance measurement as a function of temperature for three
voltages �−200, 0, and 200 V�. At high temperatures the rela-
tive elongation of the structure is again approximately 4
�10−4 and the corresponding uniaxial anisotropy dominates
over the intrinsic uniaxial anisotropy along the 	110
 axis.
Close to 5 K the action of the piezo is negligible so the
intrinsic uniaxial anisotropy is stronger than the induced one,
however, the total in-plane anisotropy is dominated by the
cubic anisotropy. The measured and calculated induced an-
isotropy along the 	110
 direction are of the same sign and
order of magnitude for the considered temperatures.

Reference 35 presents a 15 nm thick, annealed sample
doped to x=8%, subject to piezostressing along the 	010

axis. The anisotropy coefficients are extracted from trans-
verse AMR. The PZT actuator induces relative elongation
ranging from 1.1�10−3 for voltage 200 V to 0.7�10−3 for
−200 V, measured by a strain gauge. The difference of the
limits is again approximately 4�10−4 but all values are
shifted toward tensile strain most likely due to different ther-
mal dilatation in the sample and the actuator. The lattice
expansion along the 	010
 direction leads to alignment of the
easy axis along the 	100
, in agreement with our modeling
and with the experimental studies discussed in this section.
The extracted cubic anisotropy field is roughly a factor of
two lower compared to studies of samples with high hole
compensation sharing the value �1000 Oe at different
nominal Mn concentrations.39,61,66 The low critical tempera-
ture TC=80 K suggests lower effective Mn concentration in
Ref. 35. Our calculations for lower Mn local-moment con-
centration and high hole compensation predict the anisotropy
coefficients Kc1 and K	100
 induced by the piezostrain in cor-
respondence with the measured coefficients.

Finally, we discuss a piezostrain induced along a general
in-plane direction. In Ref. 34 the principal elongation direc-
tion of the PZT piezo actuator is tilted by angle �=−10°

�with respect to the 	11̄0
 axis�. The 25 nm thick, as-grown
�Ga,Mn�As epilayer with nominal Mn concentration x=6%
is grown on a GaAs substrate, which was thinned before
attaching of the stressor to �150 
m. The anisotropies are
determined from SQUID and AMR measurements at 50 K.
The uniaxial strain caused by differential thermal contraction
of the sample and the piezo on cooling �at zero applied volt-
age� is of the order 10−4. The uniaxial strains generated at the
voltage �150 V are �� �2�10−4 and ���−� /2 at 50 K.
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The tilt of the piezo with respect to the crystal diagonal re-
sults in a complicated interplay of the intrinsic and induced
anisotropy. The easy axis of the bare sample aligns with the

	11̄0
 axis due to strong intrinsic uniaxial anisotropy with
K	110
�Kc1�0. This easy axis rotates to an angle �EA=65°
upon attaching of the piezo and cooling to 50 K. Application
of +150 V to the stressor causes the easy axis to rotate fur-
ther to �EA=80° while for −150 V the axis rotates in the
opposite direction to �EA=30°. Note that the negative volt-
age weakens the total piezostrain and allows domination of

the intrinsic anisotropy with easy axis closer to the 	11̄0

axis.

The hole compensations expected in Ref. 34 are in the
range p /NMn=0.6–0.4 and the relevant range of effective
Mn concentrations is x=3–5%. K	110
 measured in the bare
epilayer is modeled by exy

int=3–2�10−4 �slightly weaker than
the strain induced in the structure at zero piezovoltage�. The
in-plane anisotropy energies calculated on this parameter in-
terval using the total strain tensor �induced and “intrinsic”
components� are in good quantitative agreement with the
easy-axis orientations measured at the three piezo voltages.
Figure 26 shows calculated curves for one representative
combination of x, p, and exy

int from the relevant interval, for
the fixed tilt of the stressor �=−10°, and for a range of
induced strains �. The curves are marked also by the volt-
ages as we infer a simple linear relationship between � and
the voltage to facilitate comparison with the experimental
paper.

The anisotropy behavior shown in Fig. 26 can be de-
scribed as a smooth rotation of the global energy minimum
upon increase of � rather than the “scissors” effect shown in
Fig. 8 in Sec. III B. The total induced strain now contains
both components es and eu as written in Eq. �26�. The

uniaxial basis strain eu present due to the tilt of the stressor
diminishes significantly one of the local minima typically
occurring because of interplay of a positive cubic and a small
uniaxial anisotropy component along a crystal diagonal. The
remainder of the weaker local minimum is observed theoreti-
cally for � corresponding to voltages �−100 V when the es

component of the induced strain and the “intrinsic” shear
strain compensate each other. One would expect domination
of cubic anisotropy with two equivalent local minima close
to the main crystal axes if the stressor had purely diagonal
alignment. The eu component of the total strain of the tilted
stressor makes the local minimum closer to the 	010
 axis
less pronounced �marked by arrow in Fig. 26�.

For completeness, we discuss the free-energy phenomeno-
logical formula used in Ref. 34 to describe the in-plane an-
gular dependence of the induced anisotropy. The decompo-
sition of the total induced strain in Eq. �26� into the strain
basis introduced in Eqs. �9�–�11� is not considered in that
work. Instead, the induced anisotropy is described by a
single uniaxial term K� sin2��−�� added to the phenomeno-
logical formula rather than terms with coefficients K	110
 and
K	110
 from Eq. �39�. Effectively, this corresponds to a
change of variables from K	110
 and K	110
 to K� and �. The

angle � is measured from the 	11̄0
 axis and it rotates the
additional uniaxial anisotropy term so that it describes the
effect due to the tilted stressor. One may assume collinearity
of the resulting anisotropy component with the principal
elongation direction of the piezo. However, this simple situ-
ation is observed both theoretically and experimentally only
when the stressor is aligned with the main crystal axes or
diagonals. The misalignment for arbitrary orientation of the
induced strain is due to the underlying cubic symmetry of the
system incorporated into our microscopic band-structure cal-
culation in the form of the band parameters �2, �3, a2, and
a3. It has been explained in Sec. III C that the collinearity of
the in-plane strain and corresponding anisotropy occurs only
for the strains es or eu 	see Eqs. �10� and �11�
. For any other
stressor orientation, ���, which is reflected on the level of
the anisotropy functions by the inequality, q	100
�x , p�
�q	110
�x , p�. It expresses the difference in the effect on
magnetic anisotropy between straining the lattice along the
main crystal axis and along the diagonals 	see Eq. �17� in
Sec. III C
.

The transformation from variables K	110
�x , p ,�� and
K	110
�x , p ,�� to K��x , p ,�� and ��x , p ,�� in the phenom-
enological formula in Eq. �39� for −� /2���� /2 reads,

Fu�M̂� = K	110
���sin2 � + K	100
���sin2�� + �/4�

= K� sin2�� − �� , �40�

where

��x,p,�� =
1

2
arctan�−

K	100


K	110

� ,

K��x,p,�� = − K	110
 cos 2� + K	100
 sin 2� . �41�

Considering the approximate relation q	100
=0.43q	110
 the
formulas in Eq. �41� simplify to
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FIG. 26. �Color online� Calculated magnetic anisotropy energy
	E=E�−E	11̄0
 as a function of the in-plane magnetization angle �

measured from the 	11̄0
 axis at T=5 /8TC, e0=0, exy
int=0.017%, x

=5%, and p=5�1020 cm−3. The curves are labeled by �, the in-
duced strain along the principal elongation direction of the piezo
tilted by angle �=−10°, and by the corresponding voltage. �The
relationship of � and voltage is inferred from Ref. 34 to allow for
direct comparison with experiment.� The easy axis rotates smoothly
upon sweeping the voltage. For −100 V a shallow local energy
minimum forms due to the underlying cubic anisotropy �marked by
arrow�.
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��x,p,�� =
1

2
arctan� q	100
�x,p�sin 2�

q	110
�x,p�cos 2�
�

=
1

2
arctan�0.43 tan 2�� ,

q��x,p,�� � q	110
�x,p�cos 2� cos 2�

+ 0.43q	110
�x,p�sin 2� sin 2� , �42�

where K�=q���−��� /2. �The same transformation of vari-
ables can be used in case of strains induced along arbitrary
in-plane direction by relaxation in a narrow bar 	see Eqs.
�33� and �34�
. Then we obtain K�=−q�e0�̄ /2.


Note that in the representation of Fu�M̂� via K	110
 and
K	110
 the dependence on � can be simply factored out and
the dependence on x and p is contained only in the functions
q	110
 and q	100
. For our general discussion presented in this

paper it is therefore the more convenient form than Fu�M̂�
expressed via K� and �.

We conclude that the in-plane alignment of the easy axis
in patterned or piezostressed samples can be described on a
semiquantitative level by our modeling similarly to the bare
�Ga,Mn�As epilayers.

V. SUMMARY

The objective of this work was to critically and thor-
oughly inspect the efficiency of a widely used effective
Hamiltonian model in predicting the magnetocrystalline
anisotropies in �Ga,Mn�As. We have provided overview of
the calculated anisotropies which show a rich phenomenol-
ogy as a function of Mn concentration, hole density, tem-
perature and lattice strains, and compared it to a wide range
of experimental works on the level of the magnetic easy-axis
direction and on the level of anisotropy fields. The large
amount of analyzed results compensates for the common un-
certainty in sample parameters assumed in experiment and
allowed us to make systematic comparisons between theory
and experiment on the level of trends as a function of various
tunable parameters. Generically, we find this type of com-
parison between theory and experiment in diluted magnetic
semiconductors much more meaningful than addressing iso-
lated samples, given the complexity of these systems and
inability of any theoretical approach applied to date to fully
quantitatively describe magnetism in these random-moment
semiconducting ferromagnets.

In Sec. II we introduced the mean-field model used
throughout the study, estimated the relative strength of the
shape anisotropy, and discussed the correspondence of the
shear strain, modeling the broken in-plane symmetry mea-
sured in most �Ga,Mn�As epilayers, with a microscopic
symmetry-breaking mechanism.

In Sec. III we focused on modeling and experiments in
bare unpatterned epilayers. The in-plane and out-of-plane
magnetization alignment was studied. For compressively
strained samples the generally assumed in-plane anisotropy
is found to be complemented by regions of out-of-plane an-
isotropy at low hole densities and low temperatures. This

observation is corroborated by available experimental data
showing in-plane anisotropy in most of the studied epilayers
but also the occurrence of the out-of-plane easy axis in ma-
terials with high hole compensation. At the same time, the
model predicts out-of-plane easy axis for high hole densities
at all Mn concentrations which has yet not been observed
experimentally.

Next, the competition of cubic and uniaxial in-plane an-
isotropy components was investigated. Wealth of experimen-
tally observed easy-axis transitions driven by change of tem-
perature or hole density finds corresponding simulated
behavior. The following general trend is observed in most
samples: at low temperatures the easy axes are aligned close
to the main crystal axes, while at high temperatures there is
always diagonal alignment. This trend is in good agreement
with our calculation, however, at low hole densities the cal-
culated and measured easy-axis transitions are more consis-
tent than at higher hole densities where the measured phe-
nomena match the predictions assuming hole densities
typically a factor of two lower than in the experiment.

We next introduced anisotropy fields corresponding to the
crystal symmetry and to three distinct uniaxial strains. We
extracted these anisotropy fields from the calculated data and
found their dependence on material parameters. We observed
linear dependence of the uniaxial anisotropy fields on the
corresponding strains. Analyzing experiments which deter-
mine the anisotropy fields from FMR, AMR, or SQUID mea-
surements allowed for detailed comparison of the cubic an-
isotropy component and two uniaxial anisotropy components

�due to growth and the 	110 / 	11̄0

 symmetry breaking�.
The measured and calculated anisotropy fields are of the
same order of magnitude ��102–103 Oe� in most samples.

Finally, in Sec. IV we investigated structures where the
post-growth patterning or piezostressing was used to induce
additional strains along any in-plane direction. The interplay
of the intrinsic and induced anisotropies was studied. We
discussed the procedure for obtaining the strain Hamiltonian
from the parameters describing the experimental setup and a
finite element solver was employed to find the inhomoge-
neous lattice relaxation in the patterned epilayers. Induced
anisotropies were calculated directly using the total strain
tensor. Alternatively, we also introduced a decomposition of
the total strain matrix for any of the studied materials and
device configurations into three basis strains and their addi-
tive effect on the total anisotropy. We found an overall semi-
quantitative agreement of theory and experiment on the level
of easy-axis reorientations due to induced strains.

The limitations of the theory approach employed in this
paper have been thoroughly discussed in Ref. 2. The model,
which treats disorder in the virtual-crystal approximation and
magnetic interactions on the mean-field level is expected to
be most reliable at lower temperatures and in the �Ga,Mn�As
materials with metallic conductivity. We have shown that
despite the limitations, the model captures on a semiquanti-
tative level most of the rich phenomenology of the magne-
tocrystalline anisotropies observed in �Ga,Mn�As epilayers
and microdevices over a wide parameter range. We hope that
our work will provide a useful guidance for future studies of
magnetic and magnetotransport phenomena in �Ga,Mn�As
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based systems in which magnetocrystalline anisotropies play
an important role.

Note added. Recently, an extensive comparison of the ex-
perimental and theoretical transitions from PEA to IEA in-
duced by growth strain has been presented in an independent
work in Ref. 68.
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APPENDIX A: SYMMETRIES OF THE KOHN-
LUTTINGER HAMILTONIAN

Different representations of the six-band Kohn-Luttinger
Hamiltonians are used in literature. Here, the notation of
Ref. 2 is used and extended.

The states at the top of the valence band have p-like char-
acter and can be represented by the l=1 orbital momentum
eigenstates �l ,ml�. In the basis of combinations of orbital
angular-momentum eigenstates,

�X� =
1
�2

��1 − 1� − �11�� ,

�Y� =
i

�2
��1 − 1� + �11�� ,

�Z� = �10� , �A1�

the Kohn-Luttinger Hamiltonian for systems with no spin-
orbit coupling can be written as

Hkp = ��v + Akx
2 + B�ky

2 + kz
2� Ckxky Ckxkz

Ckykx �v + Aky
2 + B�kx

2 + kz
2� Ckykz

Ckzkx Ckzky �v + Akz
2 + B�kx

2 + ky
2�
� , �A2�

where

A =
�2

2m0
+

�2

m0
2 �

i��X,Y,Z


��X�px�i��2

�v − �i
, �A3�

B =
�2

2m0
+

�2

m0
2 �

i��X,Y,Z


��X�py�i��2

�v − �i
, �A4�

C =
�2

m0
2 �

i��X,Y,Z


�X�px�i��i�py�Y� + �X�py�i��i�px�Y�
�v − �i

, �A5�

and �v is the energy of the valence-band p orbitals.
The simple form is due to the symmetry of the zinc-

blende crystal structure. The summation in elements A, B,
and C runs only through the �1 and �4 states of the conduc-
tion band as other levels are excluded by the matrix element
theorem combined with the tetrahedron symmetry.69 The
only nonzero momentum operator expectation values with
neighboring states are

�X�py��4�z�� = �Y�pz��4�x�� = �Z�px��4�y�� ,

�X�px��1� = �Y�py��1� = �Z�pz��1� . �A6�

Due to the reflection symmetry with respect to the �110�
planes it holds also,69

�X�py��4�z�� = �Y�px��4�z�� . �A7�

If the tetrahedral symmetry of the GaAs lattice is broken
by the potential V=xy
 as described in Sec. II A, the states
�1 and �4�z� of the conduction band considered in the sum-
mation in Eq. �4� are mixed, whereas states �4�x� and �4�y�
are left unchanged. In the perturbed basis ��1+��4�z�,
−��1+��4�z�, �4�x�, and �4�y�, we obtain terms containing

the parameter D in the Hamiltonian H̃kp 	see Eq. �5� in Sec.
II A.
 A weak local potential V, ��� was assumed so terms
of quadratic and higher order dependence on V could be
neglected. Therefore the expression for parameters A, B, and
C does not change. Using Eqs. �A6� and �A7� allows also for
a compact expression of the parameter D,

D = ��X�py��4�z����1�px�X� ,

� =
�2

m0
2��� 1

�v − ��c1 + 	�
−

1

�v − ��c4 − 	�� , �A8�

where �c1 and �c4 are the energies of the conduction band �1
and �4 states, respectively. The small energy 	 is quadrati-
cally dependent on the size of the potential V but we include
it to express the shift of the perturbed energy levels.

To include spin-orbit coupling we use the basis formed by
combinations of orbital angular momentum,

�1� � �j = 3/2,mj = 3/2� ,

�2� � �j = 3/2,mj = − 1/2� ,
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�3� � �j = 3/2,mj = 1/2� ,

�4� � �j = 3/2,mj = − 3/2� ,

�5� � �j = 1/2,mj = 1/2� ,

�6� � �j = 1/2,mj = − 1/2� . �A9�

The spin-orbit correction to the six-band Hamiltonian is di-
agonal in this basis and can be parametrized only by a single
parameter 	so.2 The six-band Kohn-Luttinger Hamiltonian in
the representation of vectors �A9� reads

HKL =�
Hhh − c − b 0

b
�2

c�2

− c� Hlh 0 b −
b��3
�2

− d

− b� 0 Hlh − c d −
b�3
�2

0 b� − c� Hhh − c��2
b�

�2

b�

�2
−

b�3
�2

d� − c�2 Hso 0

c��2 − d� −
b��3
�2

b
�2

0 Hso

�.

�A10�

The Kohn-Luttinger eigenenergies are hole energies �mea-
sured down from the top of the valence band�. The matrix
elements of HKL are listed in Ref. 2. Here we focus on the
modification of these elements due to incorporating the mi-
croscopic potential V=xy
,

H̃hh =
�2

2m0
	��1 + �2��kx

2 + ky
2� + ��1 − 2�2�kz

2 + 6�4kxky
 ,

H̃lh =
�2

2m0
	��1 − �2��kx

2 + ky
2� + ��1 + 2�2�kz

2 + 2�4kxky
 ,

H̃so =
�2

2m0
	�1�kx

2 + ky
2 + kz

2� + 4�4kxky
 + 	so,

b̃ =
�3�2

m0
��3kz�kx − iky� +

�4

2
kz�ky − ikx�� ,

c̃ =
�3�2

2m0
��2�kx

2 − ky
2� − 2i��3kxky +

�4

2
�kx

2 + ky
2��� ,

d̃ = −
�2�2

2m0
	�2�2kz

2 − kx
2 − ky

2� − 2�4kxky
 , �A11�

where we neglect the higher-order effect of broken symmetry
on standard Luttinger parameters and add a new parameter
�4,

�1 = −
2m0

3�2 �A + 2B� ,

�2 = −
m0

3�2 �A − B� ,

�3 = −
m0

3�2C ,

�4 = −
2m0

3�2 D . �A12�

APPENDIX B: LATTICE STRAINS AND MICROSCOPIC
POTENTIAL

We incorporate the lattice strain into the k ·p theory fol-
lowing Ref. 28, which shows that HKL and the 6-band strain
Hamiltonian have the same structure given in Eq. �A10�.
Components of the strain tensor e�� introduced in Eq. �3�
play role of the k-vector components. The replacements in
matrix elements of Eqs. �A11� 	or rather of Eq. �A9� in
Ref. 2
 read

k�k� → e��, −
�2

2m0
�1 → a1,

−
�2

2m0
�2 →

a2

2
, −

�2

2m0
�3 →

a3

2�3
, �B1�

where a1, a2, and a3 are the elastic constants. Their values
are different to Luttinger parameters �1, �2, and �3 as they
originate from the first-order momentum operator perturba-
tion due to strain and second-order perturbation treatment of
the k ·p term, respectively. The strain Hamiltonian has the
following elements �in the hole picture�:

Hhh
s = − �a1 +

a2

2
��exx + eyy� − �a1 − a2�ezz,

Hlh
s = − �a1 −

a2

2
��exx + eyy� − �a1 + a2�ezz,

Hso
s = − a1�exx + eyy + ezz� ,

bs = − a3�ezx − iezy� ,

cs =
a2

2
�3�eyy − exx� + ia3exy ,

ds =
�2

2
a2	2ezz − �exx + eyy�
 . �B2�

Now we compare the effect of microscopic symmetry
breaking described by including the �4 dependent terms into
the Hamiltonian HKL to the effect of a uniform lattice strain
incorporated as Hstr with matrix elements given in Eqs. �B2�,
in case of an in-plane k vector. First, we write the strain
Hamiltonian Hstr as a sum of a contribution corresponding to
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the in-plane shear strain along the 	110
 axis and the growth
strain introduced in Sec. III C by Eqs. �10� and �9�, respec-
tively. Their magnitudes are denoted by exy and exx=eyy

�e0. Then we write the correction HV=H̃KL−HKL to the

six-band Kohn-Luttinger Hamiltonian due to the microscopic
potential V=xy
 breaking the tetrahedral symmetry of the
crystal as a sum of terms with different dependence on the
in-plane direction of the k vector,

Hstr = a3exy�
0 − i 0 0 0 i�2

i 0 0 0 0 0

0 0 0 − i 0 0

0 0 i 0 i�2 0

0 0 0 − i�2 0 0

− i�2 0 0 0 0 0

� + a2e0
c11 + 2c12

c11 �
0 0 0 0 0 0

0 2 0 0 0 �2

0 0 2 0 − �2 0

0 0 0 0 0 0

0 0 − �2 0 1 0

0 �2 0 0 0 1

� , �B3�

HV = −
�3�2

2m0
�4�kx

2 + ky
2��

0 − i 0 0 0 i�2

i 0 0 0 0 0

0 0 0 − i 0 0

0 0 i 0 i�2 0

0 0 0 − i�2 0 0

− i�2 0 0 0 0 0

� +
�2

m0
�4kxky�

3 0 0 0 0 0

0 1 0 0 0 − �2

0 0 1 0 �2 0

0 0 0 3 0 0

0 0 �2 0 2 0

0 − �2 0 0 0 2

� , �B4�

where c11 and c12 are the elastic moduli.26,28

Note that by resetting the reference energy in Eq. �B4� by

subtracting 3 �2

m0
�4kxky from the Hamiltonian HV and the fol-

lowing substitutions:

a3exy → −
�3�2

2m0
�4�kx

2 + ky
2�, − a2e0

c11 + 2c12

c11
→

�2

m0
�4kxky ,

�B5�

we can identify the two components of the strain Hamil-
tonian in Eq. �B3� with the two components of the Hamil-
tonian HV in Eq. �B4�. The important difference, however, is
the dependence on k vector in case of HV. The first term of
HV depends on the magnitude of the k vector, not on its
in-plane orientation. The second term of HV has the same
structure as the second term of Hstr �which incorporates the
effect of the growth strain�, however, it does depend on the
in-plane direction of the k vector so it generates a uniaxial
in-plane anisotropy component that contributes to the energy
profile �shown in Fig. 1� similarly to the first term of Eq.
�B4� �contrary to the negligible uniaxial in-plane anisotropies
corresponding to the growth strain�.

APPENDIX C: CUBIC ANISOTROPY TERMS

The angular dependence of the magnetocrystalline aniso-
tropy energy can be approximated by a series of terms of
distinct symmetry. In Sec. III C we introduced a simple phe-
nomenological formula consisting of the low order terms of
the cubic and uniaxial symmetry. Here we explain the choice
of the independent cubic terms.

We write the terms using the components of the magneti-

zation unit vector M̂: nx=cos � sin �, ny =sin � sin �, nz
=cos �, where our angles � and � are measured from the
	001
 and 	100
 axis, respectively. The cubic symmetry re-
quires invariance under the permutation of the coordinate
indices x, y, and z. The simplest term satisfying the condition
is equal to unity: nx

2+ny
2+nz

2=1. The first-order cubic term
can be derived from its second power,

�nx
2 + ny

2 + nz
2�2 = 2�nx

2ny
2 + nx

2nz
2 + ny

2nz
2� + nx

4 + ny
4 + nz

4. �C1�

We obtained two lowest-order cubic terms which are mutu-
ally dependent. Therefore it is enough to choose only one of
them. In case of Eq. �12� the lowest-order cubic anisotropy
term reads: Kc1�nx

2ny
2+nx

2nz
2+nz

2ny
2�, where Kc1 is an energy

coefficient.
The second-order term can be derived from the first-order

term,

�nx
2ny

2 + nx
2nz

2 + ny
2nz

2��nx
2 + ny

2 + nz
2�

= nx
4ny

2 + nx
4nz

2 + nx
2ny

4 + ny
4nz

2 + nx
2nz

4 + ny
2nz

4 + nx
2ny

2nz
2. �C2�

The two second-order terms and the first-order term are mu-
tually dependent. Again, only one term describes fully the
second-order component of the cubic anisotropy. We choose
Kc2�nx

2ny
2nz

2� to be included into our approximate formula in
Eq. �12�.

The derivation of the independent third-order term can
start from the first-order term:
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�nx
2ny

2 + nx
2nz

2 + ny
2nz

2��nx
2 + ny

2 + nz
2�2

= 5�nx
4ny

2nz
2 + nx

2ny
4nz

2 + nx
2ny

2nz
4�

+ 2�nx
4ny

4 + nx
4nz

4 + ny
4nz

4�

+ nx
6ny

2 + nx
6nz

2 + nx
2ny

6 + ny
6nz

2 + nx
2nz

6 + ny
2nz

6, �C3�

from the second-order term �nx
4ny

2+nx
4nz

2+nx
2ny

4+ny
4nz

2+nx
2nz

4

+ny
2nz

4��nx
2+ny

2+nz
2�, producing the same three cubic terms as

in Eq. �C3� with different prefactors, or from �nx
2+ny

2+nz
2�4,

producing an extra third-order term nx
8+ny

8+nz
8. Note that

these three ways of derivation also represent three constric-
tions relating the resulting four distinct cubic third-order
terms to lower-order terms. Therefore we can choose only
one independent third-order term.

This derivation procedure can be continued to higher or-
ders but fitting our microscopic data to the phenomenologi-
cal formula yields a negligible magnitude even for the third-
order term coefficient.

APPENDIX D: USED CONSTANTS

Table II lists all material parameters used in our codes for
�Ga,Mn�As.
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