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Recent work has used a U�1� gauge theory to describe the physics of Fermi pockets in the presence of
fluctuating spin density wave order. We generalize this theory to an arbitrary band structure and ordering wave
vector. The transition to the large Fermi-surface state, without pockets induced by local spin density wave
order, is described by embedding the U�1� gauge theory in a SU�2� gauge theory. The phase diagram of the
SU�2� gauge theory shows that the onset of spin density wave order in the Fermi liquid occurs either directly,
in the framework discussed by Hertz, or via intermediate non-Fermi-liquid phases with Fermi surfaces of
fractionalized excitations. We discuss application of our results to the phase diagram of the cuprates.
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I. INTRODUCTION

Recent experimental advances1–7 have focused much the-
oretical attention on the evolution of the Fermi surfaces of
the cuprate superconductors as a function of carrier concen-
tration. In materials with hole density x, the overdoped re-
gime has a “large” hole-like Fermi-surface enclosing area
proportional to 1+x while the underdoped regime has dis-
played evidence for “small” Fermi pockets with an area of
order x. We refer the reader to other recent discussions8,9 for
an overview of the experimental and theoretical situation
suited for the ideas presented below. We show here in Fig. 1
the global phase diagram from Ref. 9 as a function of x,
temperature T, and applied magnetic field H.

We will be interested in the physics of the nonsupercon-
ducting metallic phases in Fig. 1, when the superconductivity
is suppressed by increasing either T or H. As is implied by
Fig. 1, we will assume15–17 that the small Fermi surfaces are
a consequence of local spin density wave �SDW� order: this
is supported by a number of recent experiments.12–14,18–20 It
is then natural to develop a theory of the electronic spectrum
in presence of �thermal or quantum� fluctuating SDW order.
We would like the electronic spectrum to be sensitive to the
presence of SDW order at short scales even though long-
range SDW order can be absent.

A U�1� gauge-theoretic approach to describing such a
fluctuating SDW state has been presented by some of us and
our collaborators in a series of papers.8,21–24 While this
theory has a number of attractive features,9 it also has some
weaknesses: �1� The theory addresses the physics of the
small Fermi pocket states only and is not connected to the
large Fermi-surface state of the overdoped regime. �2� The
pockets are described in a piecemeal fashion with separate
fermion degrees of freedom introduced at the band minimum
of each pocket. A unified formalism which treats all pockets
together for an arbitrary underlying band structure would
clearly be preferred. �3� The theory has so far focused on
commensurate SDW order with ordering wave vector K
= �� ,��. It should be generalized to arbitrary commensurate
K.

The purpose of the present paper is to present an im-
proved formalism which addresses the above issues. We will

begin in Sec. II by a reformulation of the existing U�1� gauge
theory which addresses points 2 and 3 above. Section III will
address point 1 by showing that the transition to the large
Fermi-surface state is achieved by generalizing to a SU�2�
gauge theory. We note that our SU�2� gauge theory is quite
distinct from that appearing in the discussion of spin liquid
Mott insulators with fermionic spinons25 in which the SU�2�
gauge transformation mixes and particle and hole operators.
Our theory applies to bosonic spinons in metals and the
SU�2� gauge transformations apply on states with fixed
particle number.

Although our primary motivation has been provided by
cuprate physics, our approach is very general, and should
also be applicable to a wide variety of spin density wave
transitions in other correlated electron materials.26

II. U(1) GAUGE THEORY

We begin with the popular spin-fermion model,27 for a
system where the spins have collinear ordering at an arbi-
trary commensurate wave vector K. The imaginary time ���
fermion Lagrangian is �� ,�= ↑ ,↓�

LF = �
i

ci�
† ���� − �����

− �i
af i���

a �ci� − �
i	j

tij�ci�
† cj� + cj�

† ci�� . �2.1�

Here tij are arbitrary hopping-matrix elements describing the
large Fermi surface, � is the chemical potential, �i

a is a fluc-
tuating unit-vector field �a=x ,y ,z� representing the local ori-
entation of the collinear spin order, �a are the Pauli matrices,
and f i is a fixed form factor determined by the particular
local nature of the SDW order; thus for Néel order with K
= �� ,�� we have f i��−1�xi+yi while for arbitrary commensu-
rate K we have an expression of the form

f i = �
m

fmeimK·ri + c.c., �2.2�

where m are integer and the fm are the coefficients determin-
ing the form factor. The fluctuations of the �a are controlled
by the continuum O�3� nonlinear sigma model with Lagrang-
ian
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Ln =
1

2g
�����

a�2 + v2���a�2� �2.3�

with the local constraint ��a�2=1; here g is a coupling which
tunes the strength of the quantum spin fluctuations and v is a
spin-wave velocity. The spin-fermion model27 is defined by
the Lagrangian LF+Ln for the electrons ci� and the SDW
order-parameter field �a.

We have assumed above that �a is a real three-component
vector. Strictly speaking, for K� �� ,��, the order parameter
is a complex vector, with the overall phase representing a
“sliding” degree of freedom associated with the charge-
density wave at 2K. Indeed, there will be two complex vec-
tors representing the spin density waves along two orthogo-
nal directions on the square lattice. For simplicity, we have
ignored these complications here. Accounting for them
would require two additional complex fields, as in, e.g., Ref.
28, and we leave this generalization to future work.

A key feature of our analysis above, and of all the analy-
ses below, is that we assume that it is only the SDW order
parameter �a which varies slowly on the lattice scale. We do
not make the same assumption for the fermion field ci�,
which is allowed to have a general dispersion, with arbitrary
Fermi surfaces. Thus our expansions in spatial gradients will
only be carried out for �a and related bosonic fields. Keeping
the full spatial dependence of the fermion fields is also re-
quired to keep proper track of the constraints imposed by the
Luttinger theorem.

We will now transform the spin-fermion model into new
degrees of freedom which incorporate the change in the fer-

mion band structure due to local SDW order in a more fun-
damental way. The key to doing this is to transform the
electron-spin polarization to a rotating reference frame set by
the local orientation of the SDW order. In the context of the
cuprates, the use of such a frame of reference goes back to
the work of Shraiman and Siggia29 on the t-J model, and by
Schulz30 on the Hubbard model. Previous work by us and
others8,21–24,31–34 was motivated using the Schwinger boson
formalism, which also effectively performs the transforma-
tion to the rotating reference frame. A few years ago,
Schrieffer35 also focused attention on the advantages of
studying the spin dynamics in the rotating reference frame
defined by the SDW order. Here we shall apply this idea to
the spin-fermion model, which is generally regarded as a
weak-coupling theory. We shall show that it allows for a very
efficient and complete derivation of the Lagrangian of a low-
energy effective gauge theory, which has the same structure
as that obtained earlier8,21–24 by more cumbersome methods
starting from the strong-coupling t-J model.

To this end, we introduce a new set of fermions, 
ip with
p= �1, with their spin components p polarized along the
direction of the local SDW order. These are related to the
physical fermions ci� by spacetime-dependent SU�2� matrix
R�p

i �R†R=RR†=1� so that30

ci� = R�p
i 
ip. �2.4�

We choose R�p so that spin-fermion coupling is only along
�z and so

�i
aRp�

i† ���
a R�p�

i = �pp�
z = p�pp�. �2.5�

This relationship is equivalent to

�i
a =

1

2
Tr��aRi�zRi†� �2.6�

which shows that the SDW order parameter �i can be fully
expressed in terms of the SU�2� matrix R. Therefore, we will
now treat R as our independent degree of freedom which
determines � via Eq. �2.6�. Now, we parameterize

Ri = �zi↑ − zi↓
�

zi↓ zi↑
� � �2.7�

with ��	zi�	2=1 and we can verify that Eq. �2.6� yields the
familiar relation

�i
a = zi�

� ���
a zi� �2.8�

between the fields of the O�3� nonlinear sigma model and the
CP1 model.

We have now reformulated our theory of the spin fermion
by replacing the electrons c� and SDW order parameter �a

by the spinless fermions 
p and the complex bosonic spinors
z�. A crucial feature of the resulting effective Lagrangian for
the 
p and z� is that it is invariant under a local U�1� gauge
transformation. This follows from the invariance of Eqs.
�2.4� and �2.8� under
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FIG. 1. �Color online� From Refs. 8 and 9: proposed phase
diagram as a function of dopant density x, temperature, T, and mag-
netic field H. The onset of long-range SDW order at T=0 and high
fields in the metallic state is at x=xm while SDW order appears at
x=xs in the superconducting �SC� state at H=0. A key feature of
this phase diagram, and of our theory �Ref. 8�, is that xs	xm. This
implies the phase-transition line connecting xs and xm, predicted in
Ref. 10, where there is a field-induced onset of SDW order in the
SC state, which has been experimentally detected �Refs. 11–14�.
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zi� → zi�ei�i,


ip → 
ipe−ip�i, �2.9�

where �i has an arbitrary dependence on space and time.
Note that the 
ip have opposite charges p= �1. Associated
with this U�1� gauge invariance, we will introduce an inter-
nal dynamical gauge field A�= �A� ,A� in constructing the
effective theory.

We can now insert Eqs. �2.4� and �2.8� into Eqs. �2.1� and
�2.3� and obtain the desired effective theory of fluctuating
Fermi pockets. As noted earlier, we will assume that the zi�
are slowly varying but allow the fermion fields 
ip to have an
arbitrary dependence on spacetime. First, from Eq. �2.3�, we
obtain, by a familiar method,36 the CP1 model for the z�

Lz =
1

g
�	��� − iA��z�	2 + v2	��− iA�z�	2� . �2.10�

The fermion Lagrangian LF in Eq. �2.1� yields some inter-
esting structure. The hopping term can be written as

− �
i	j

tij��zi�
� zj���
i+

† 
 j+ + 
 j−
† 
i−� + �zj�

� zi��

�
i−
† 
 j− + 
 j+

† 
i+� + ����zj�
� zi�

� ��
i+
† 
 j− − 
 j+

† 
i−�

+ ����zi�zj���
i−
† 
 j+ − 
 j−

† 
i+�� . �2.11�

Now, from the derivation of the CP1 model36 we know that

zi�
� zj� 
 eiAij �2.12�

and this is easily incorporated into the first two terms in Eq.
�2.11�, yielding terms which are gauge invariant. Then for
the fermion sector, we have the Lagrangian

L
 = �
p=�1

�
i


ip
† ��� − � + ipA� − pfi�
ip

− �
p=�1

�
i	j

tij�eipAij
ip
† 
 jp + e−ipAij
 jp

† 
ip� . �2.13�

For A�=0, L
 describes the band structure in terms of the
Fermi pockets and the interactions arise from the minimal
coupling to the A� gauge field. Finally, we need to consider
the last two terms in Eq. �2.11�. These are the analog of the
“Shraiman-Siggia” couplings;29 this evident from their form
expanded to leading order in the derivative of the z�

Lss = �
k,p,q

�p ·
���k�

�k
z↓�q − p/2�z↑�q + p/2�
−

†

�k + q�
+�k − q� + c.c., �2.14�

where ��k� is the single-particle dispersion of the large
Fermi-surface state

��k� = − �
j

tije
ik·�rj−ri�. �2.15�

The Lagrangian Lz+L
+Lss in Eqs. �2.10�, �2.13�, and
�2.14� is our final and general form of the U�1� gauge theory
of the fluctuating spin density wave state. Note that it is
applicable for an arbitrary band structure ��k� and for an
arbitrary SDW wavevector K: thus we have satisfied points

2 and 3 in Sec. I. After diagonalizing the band structure of
L
 in Eq. �2.13� and projecting to the resulting lowest energy
electron and hole pocket states, the present model reduces to
those considered in our previous work.8,21–24 Note also that
this model is specialized to the fluctuating pocket state and
there is no natural way of restoring the large Fermi surface:
the coupling to the local SDW order in Eq. �2.13� has a fixed
magnitude set by the f i.

The phase diagram of the theory Lz+L
 contains phases
�A� and �B� in Fig. 2 appearing in Sec. III. These are the
Fermi liquid SDW �with �z���0� and “algebraic charge liq-
uid” �with �z��=0� phases, respectively, and will be dis-
cussed further in Sec. III.

III. SU(2) GAUGE THEORY

The structure of the Shraiman-Siggia term, Lss, exposes a
shortcoming of the U�1� theory. In the gradient expansion,
this term is of the same order as the U�1� gauge-field term in
L
 in Eq. �2.13�. It is only the collinear nature of the local
spin order which imposes the U�1� gauge structure while Lss
is associated with spiral spin correlations.29 However, once
we are in the large Fermi-surface state, the memory of the
collinear spin correlations should disappear. Thus, if we are
to recover the large Fermi-surface state, we will have to treat
all the terms in Eq. �2.11� at an equal footing.

To fix this problem, we note that the parameterization in
Eq. �2.4� actually introduces a SU�2� gauge invariance under
which

R → RU†; 
 → U
 . �3.1�

Thus the SU�2� gauge transformation acts on the second in-
dex of R �denoted by p� while the ordinary SU�2� spin-

(A)

(B)

(C)

(D)

FIG. 2. �Color online� Mean-field phase diagram of SU�2�
gauge theory. The phases �a� and �b� are also obtained within the
U�1� gauge theory of Sec. II as is the transition between them. The
phases �c� and �d�, and all other transitions, require the SU�2� gauge
theory. The Fermi-liquid phases �a� and �c� also appear as the non-
superconducting ground states in Fig. 1 at large H. The non-Fermi-
liquid phases �b� and �d� could appear as intermediate phases at T
=0 and large H �they are not shown in Fig. 1�. We have argued
previously �Refs. 8, 22, and 24� that phase �b� describes the cross-
overs at T�0, H=0 for x	xm in Fig. 1. We suggest here that phase
�d� may be useful in the description of the strange metal in Fig. 1;
alternatively, as is indicated in Fig. 1, the strange metal may simply
be a reflection of the quantum criticality of the transition between
the Fermi-liquid phases �a� and �c�.
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rotation symmetry acts on the left index of R �denoted by ��.
We will distinguish the SU�2� gauge and SU�2� spin-rotation
invariances by using the symbols p , p� and � ,� for their
respective spinor indices. Using the parameterization in Eq.
�2.4� on the coupling between the SDW order and the fermi-
ons in Eq. �2.1�, we find that it can be written as

�
i

Ni
�f i
ip

† �pp�
� 
ip�, �3.2�

where we have introduced a field Ni
�, which transforms as a

adjoint under the SU�2� gauge transformation. Again, we
will distinguish the SU�2� gauge and SU�2� spin rotation
invariances by using the symbols �=x ,y ,z and a for their
respective adjoint indices. From Eq. �2.1� we find that

Ni
� =

1

2
�i

a Tr��aRi��Ri†� . �3.3�

This relationship is equivalent to

�i
a =

1

2
Ni

� Tr��aRi��Ri†� . �3.4�

Only for N�= �0,0 ,1� does Eq. �3.4� yield the relation Eq.
�2.8�. Let us now summarize the structure of our effective
gauge theory. The theory has SU�2�gauge � SU�2�spin
� U�1�em charge invariance along with additional constraints
from the lattice space-group symmetry. Its matter content is:
a fermion 
 transforming as �2,1,1� and with dispersion ��k�
from the underlying lattice band structure. A relativistic
SU�2� matrix field R �with R†R=1� transforming as �2 ,2 ,0�,
representing the local orientational fluctuations of the SDW
order. The notation indicates that R transforms under
SU�2�gauge under right multiplication and under SU�2�spin un-
der left multiplication. A relativistic real scalar N transform-
ing as �3,1,0�, measuring the local SDW amplitude.

The symmetries allow a Yukawa coupling between N and

, which is just the coupling in Eq. �3.2�. Note that this
coupling has a space dependence �eiK·r, which can under-
stood to be a consequence of the nontrivial transformation of
the SDW order parameter, and hence of N�, under the square
lattice space group.

Now, we can introduce a SU�2� gauge field A�
� = �A�

� ,A��
and use the above constraints to write down our low-energy
effective action for the SDW fluctuations. The fields R and
N� will have conventional kinetic-energy terms familiar from
relativistic non-Abelian gauge theory, similar to those in Lz

LR =
1

g
�	��R�p − iA�

�R�p��p�p
� 	2 + v2	�R�p − iA�R�p��p�p

� 	2� ,

�3.5�

LN = ���N
� − 2i��mnA�

mNn�2 + ṽ2��N� − 2i��mnAmNn�2

+ s�N��2 + u��N��2�2,

where g, r, and u are couplings which tune the strength of
the SDW fluctuations. For the fermions, 
ip, we now have a

lattice Lagrangian which is similar to Eq. �2.13� but invariant
SU�2� gauge transformations

L̃
 = �
i


ip
† ���� − ���pp� + iA�

��pp�
� − f iNi

��pp�
� �
ip�

− �
i,j

tij
ip
† �ei��A�·�ri−rj��pp�
 jp�. �3.6�

Apart from the generalization of the U�1� gauge field to
SU�2�, the main difference from Eq. �2.13� is that the cou-
pling of the fermions to the SDW order has a magnitude
determined by the field N�. Thus a phase in which N� fluc-
tuates near zero can have a large Fermi surface given by the
underlying band structure.

We are now in a position to discuss the mean-field phase

diagram of the SU�2� gauge theory LR+LN+ L̃
. Initially, we
take a simple-minded approach by allowing Higgs conden-
sates of one or both of the bosonic fields R and N. This
allows four possible phases which are sketched in Fig. 2. As
will become clear below, there are no other phases that can
generically be expected.

Note that a phase which breaks SU�2� spin-rotation in-
variance requires condensation of both R and N: this is clear
from Eq. �3.4� which shows that both condensates are re-
quired for a nonzero SDW order parameter �. The other
three phases preserve SU�2� spin symmetry and we now dis-
cuss the various possibilities.

�A� The Higgs phase, noted above, with �R��0 and �N�
�0. In this case both spin-rotation symmetry and SU�2�
gauge symmetry is broken, and there are no gapless gauge
bosons. So this phase is a Fermi liquid and is the conven-
tional SDW state with Fermi pockets. It appears in Fig. 1 as
the ground state at large H and x	xm.

�B� Higgs phase with �N��0 but spin SU�2� symmetry
preserved because �R�=0. We can always choose N�

��0,0 ,1� by a gauge transformation and we then find that a
U�1� subgroup of the SU�2� gauge group remains unbroken
because the A�

z photon remains gapless. Thus at low energies

we have a U�1� gauge theory and the fermion Lagrangian L̃


in Eq. �3.6� becomes equivalent to L
 in Eq. �2.13�. Thus
this phase reduces to the non-Fermi-liquid phase of the U�1�
gauge theory, which is the algebraic charge liquid of Refs. 8
and 22–24. The fermions have a Fermi-pocket dispersion and
the gapless U�1� photon produces non-Fermi-liquid behavior
at the Fermi surface. This phase is not shown in Fig. 1 but it
is a possible ground state for large H near x=xm. This phase
has also played a key role in our previous studies8,22,24 of the
physics at H=0, x	xm, and T�Tc.

�C� SU�2� confining phase: this is the Fermi liquid with
the large Fermi surface. We can also think of this phase as
the Higgs phase of a condensate which transforms as a SU�2�
fundamental, i.e., �R��0. Also this phase should have �N�
=0 to preserve spin-rotation invariance. Note that the con-
densate of R alone does not break SU�2� spin invariance
because the condensate can be rotated into an arbitrary di-
rection by a SU�2� gauge transformation. This phase appears
in Fig. 1 as the ground state at large H and x�xm.

�D� A novel phase with no fields condensed. This is also
an algebraic charge liquid but there are a triplet of gapless
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SU�2� photons. The fermions have a large Fermi-surface dis-
persion with non-Fermi-liquid behavior along the Fermi sur-
face; this is in contrast to the small Fermi pockets in phase
�B�. This phase is not shown in Fig. 1 but like phase �B�, it is
a possible ground state for large H near x=xm. The existence
of critical behavior across the entire large Fermi surface,
with no pocket-like structures, also makes this state a pos-
sible starting point for describing the strange metal phase of
Fig. 1.

Going beyond these mean-field considerations, it is clear
that all these phases are unstable to pairing and a supercon-
ducting instability.8,22–24 However, it is still meaningful to
ask whether the metallic states and critical points remain
stable, after superconductivity has been suppressed, e.g., by
an applied magnetic field.

Note that the discussion for phases �A� and �B� reduces to
that in the U�1� theory. The stability of these phases was
established in Ref. 23 and it was noted that the �A�-�B� tran-
sition was in the O�4� universality class.

It is clear that the Fermi-liquid state �C� is stable. Let us
then consider the transition from state �C� to the SDW state
�A�. Note that neither of these states have gapless gauge
bosons and both are conventional Fermi liquids. Indeed, the
order parameter for the �A�-�C� transition is the vector N�;
we can always choose the gauge R=1 and then this order
parameter is seen from Eq. �3.4� to be the conventional SDW
order parameter �a. It should now be clear that the effective
theory for the �A�-�C� transition reduces to the well-known
Hertz theory.37 It is quite remarkable that after the detour to
fractionalized degrees of freedom, our theory has produced
the same answer as that expected from “Landau-Ginzburg”
reasoning. We should note that key open question remain for
the Hertz SDW transition in two spatial dimensions: Abanov
and Chubukov38 have shown that the theory has an infinite
number of marginal operators and the nature of the quantum
critical point remains open.

Finally, we turn to the issue of the stability of the non-
Fermi-liquid phase �D� with gapless SU�2� photons. Corre-
sponding issues have been discussed in the literature39 for
the non-Abelian gauge theory of quark matter in three spatial
dimensions and we discuss the two-dimensional case here.
We recall that in the presence of the Fermi surface, the lon-
gitudinal component of the SU�2� gauge boson is Debye
screened, leaving only the transverse component at low en-
ergies. This transverse component is, in turn, Landau
damped, so that the gauge sector of the Lagrangian has a
dynamical critical exponent z=3, rendering the bare self-
interactions of the gauge bosons irrelevant. Moreover, a
gauge boson can only interact efficiently with the patch of
the Fermi surface that is tangent to its momentum. This in-
teraction is singular enough to destroy the Fermi liquid: at
one loop the fermion acquires a self-energy that scales as
�2/3. The form of the one-loop effective action leads one to
hypothesize an anisotropic z=3 scaling40 under which �
�k�

3 and k��k�
2, where k� and k� are the components of the

fermion momentum parallel and perpendicular to the Fermi
surface. The self-interactions of the gauge bosons are irrel-
evant under this scaling as well.

We would like to caution the reader that the above discus-
sion is based on a one-loop analysis. Higher loop diagrams

can still cause nonperturbative effects at low energy. In Ref.
41, in order to introduce a small parameter for expansion, the
author studied a simplified situation with N copies of identi-
cal Fermi patches coupled with a U�1� gauge boson. In the
large-N limit the gauge coupling is not flowing under the
renormalization group and the system has a deconfined
phase, which obeys the same scaling as the one-loop result.
This conclusion carries over directly to the SU�2� case. How-
ever, when there is a full Fermi surface even the large-N
limit becomes much more complicated. We will leave a more
detailed investigation of the stability of the phase �D� to
future study.

IV. CONCLUSIONS

The physics of doped antiferromagnets has been a subject
of intense study since the discovery of the cuprate supercon-
ductors. At low doping in the ordered antiferromagnet, we
obtain metallic Fermi-liquid states with Fermi pockets. Much
theoretical work has focused on the fate of these pockets
when the quantum and thermal fluctuations of the antiferro-
magnetic �or SDW� order start to increase. These issues have
usually been addressed21–24,29–34 using the strong coupling
perspective of the t-J model, appropriate to a doped Mott
insulator. The claimed discovery of electron pockets in the
hole-doped cuprates,6 suggested8,9 that a weak-coupling per-
spective may also be useful. Here we used the “spin-
fermion” model27 to provide an efficient derivation of the
same effective U�1� gauge theory that appears in the strong-
coupling approach. Our approach had the added advantages
of being applicable to arbitrary band structures and ordering
wave vectors. The main idea8,24,29,30,35 behind our analysis
was to transform the electron-spin polarization to a rotating
frame of reference determined by the local orientation of the
SDW order.

In the second part of the paper we addressed the transition
from the Fermi pocket SDW state to the large doping Fermi
liquid with a large Fermi surface. We showed that such a
transition required embedding the U�1� gauge theory into a
SU�2� gauge theory. Unexpectedly, the SU�2� gauge theory
displayed a direct transition between Fermi-liquid states with
and without SDW order, which was described by the same
effective low-energy theory as that obtained by Hertz,37 and
Abanov and Chubukov.38 Thus our formalism, expressed in
terms of fractionalized degrees of freedom, can also effi-
ciently describe the transition between confining states. The
SU�2� theory also allowed for intermediate fractionalized
phases between the Fermi-liquid states with and without
SDW order, as is shown in Fig. 2.

In the cuprates, the possibility remains open that the frac-
tionalized phases of Fig. 2 are present as stable T=0 phases
in high magnetic fields between the underdoped and over-
doped regimes in Fig. 1 �they are not shown in Fig. 1�. Irre-
spective of whether they are present at T=0, the fractional-
ized phases provide a useful description of the finite
temperature crossovers. We have previously described8,9,22,24

the use of the U�1� fractionalized phase �B� in the under-
doped regime: we showed that it reproduces all qualitative
features of the phase diagram in Fig. 1 for x	xm, including
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the crucial shift between xs and xm. With the improved for-
malism presented here for arbitrary band structure and order-
ing wave vector, we hope that more quantitative tests of this
theory will be possible, especially for the fermion spectral
functions in the underdoped regime.22 Finally, the SU�2�
fractionalized phase �D� offers a possible framework for de-
veloping a theory of the strange metal; such a description
would be an alternative to the possibility9 indicated in Fig. 1:
the strange metal reflects the quantum criticality between the
Fermi-liquid phases �A� and �C�.
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