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The Heyd-Scuseria-Ernzerhof �HSE� screened hybrid density functional has been proven to yield lattice
constants and energy gaps of semiconductors in better agreement with experiment than standard local and
semilocal exchange correlation functionals. The latter underestimate the band gaps of many semiconductors
severely, i.e., in the case of ZnO the underestimation amounts to 75% of the experimental value. In this work,
we report on the structure optimization and the study of the electronic band gap of ZnO in the wurtzite phase
performed within density-functional theory using the semilocal Perdew-Burke-Ernzerhof as well as the HSE
functional. Furthermore, the phonon-dispersion relations of ZnO and the dielectric and piezoelectric properties
are calculated with both functionals and are compared to experimental findings.
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I. INTRODUCTION

In recent years, ZnO has attracted increasing interest,
since it is a good candidate for application in electronic de-
vices, either as active material or as a substrate for the
growth of other semiconductors such as GaN and SiC.1 It is
possibly ideally suited for blue/UV light-emitting diodes or
laser diodes for the next generation data-storage systems,
once n- and p-doped ZnO can be produced reliably and
reproducably.1,2 At ambient conditions, ZnO crystallizes in
the wurtzite structure and is a wide-gap semiconductor with
a direct electronic band gap of 3.2–3.4 eV.3,4 Since, ZnO has
an exciton binding energy of 60 meV,5,6 which is much
higher than that of GaN �between 21 and 25 meV�, devices
made from ZnO can operate at high temperatures more effi-
ciently. Furthermore, ZnO is found to be significantly more
stable against radiation than Si, GaAs, and GaN,7 which is an
important property that prevents wearing out during field
emission. Another advantage is that ZnO is cheaper in fabri-
cation than GaN, also for the production of thin-film materi-
als using metal-organic chemical-vapor deposition, because
there is no need for handling the toxic ammonia associated
with GaN fabrication. Substrates for thin-film growth are
also cheaper for ZnO than for GaN, and ZnO offers the pos-
sibility to grow nanostructures, e.g., for developing nano-
scale optoelectronics, from solution instead of the gas
phase.8

The properties of ZnO have been extensively investigated
by many experimental techniques as well as theoretical
methods �see, for example, review papers Refs. 1, 2, and 9�.
However, there is still a need for theoretical studies in order
to gain fundamental knowledge of its properties necessary to
develop ZnO-based materials for novel applications, i.e., in
spintronics10 or as transparent conducting oxides. With mod-
ern computational techniques, properties such as the elec-

tronic structure and the lattice dynamics can be explored on
the quantum-mechanical level. In particular, the latter deter-
mine the thermodynamic properties that are important in the
development of high-quality optoelectronic devices.

The most popular methods for calculating the structural,
electronic, and vibrational properties of extended systems are
those based on density-functional theory �DFT�. However,
the standard approximations to the exchange-correlation
�XC� energy, i.e., the local-density approximation �LDA� as
well as the generalized gradient approximation �GGA�, often
fail to describe systems with strongly localized d or f elec-
trons. The main reason for this failure is that both, LDA and
GGA, are jellium-based XC energy functionals that suffer
from �i� an incomplete cancellation of the artificial Hartree
self-interaction and �ii� the lack of the integer discontinuity
in the exchange and correlation energy upon adding an elec-
tron. As a direct consequence, for semiconductors and insu-
lators, the Kohn-Sham single-particle eigenvalue band gap
significantly underestimates the measured quasiparticle band
gap. Furthermore, these methods underestimate the binding
energy of localized d�f� states due to �i�. Consequently, they
predict d�f� states to be much too delocalized and overesti-
mate their hybridization with the anion p-derived valence
states. Both these shortcomings of LDA/GGA are particu-
larly evident for ZnO, i.e., the calculated dielectric screening
is too high compared to experiment ��LDA�5 versus �EXPT

�3.7 �Ref. 11�� and the calculated energy gap is severely
underestimated �Eg

LDA=0.7–0.8 eV versus Eg
EXPT

=3.2–3.4 eV �Refs. 3 and 4��. As we will show this has
serious consequences for many materials properties.

An alternative to conventional �semi� local XC function-
als are hybrid density functionals.12 These functionals are
characterized by admixing a certain amount of exact, nonlo-
cal HF exchange energy to the �semi� local �GGA� LDA
exchange energy. The DFT-GGA/LDA correlation energy is
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straightforwardly added. The fraction of HF exchange is usu-
ally 1

4 , which is justified by the adiabatic connection
theorem.13 Hybrid density functionals can be divided into
two groups, i.e., �i� the Perdew-Burke-Ernzerhof �PBE�
-based ones and �ii� the semiempirical �three-parameter�
functionals �B3LYP and B3PW91� �Ref. 12� that have been
extensively applied in quantum chemistry. In contrast to the
latter, the former are nonempirical, in the sense that the num-
ber of parameters is identical to those in the parent function.
The PBE0 �Ref. 14� and the recently developed Heyd-
Scuseria-Ernzerhof �HSE� functional15,16 belong to this cat-
egory. The main advantage of HSE is the separation of the
exact HF exchange into a short-range �SR� and a long-range
�LR� part to avoid the expensive computation of the slowly
decaying exchange interactions. The LR part of the HF ex-
change is replaced by the corresponding density-functional
counterpart. The separation is accomplished through a de-
composition of the Coulomb kernel

1

r
= S��r� + L��r� =

1 − erf��r�
r

+
erf��r�

r
, �1�

where the screening parameter � defines the range separa-
tion. This enables the wide and routine application of the
HSE hybrid functional to condensed-matter systems. The ex-
pression for the HSE exchange-correlation energy is given
by

Exc
HSE =

1

4
Ex

HF,SR��� +
3

4
Ex

PBE,SR��� +
3

4
Ex

PBE,LR + Ec
PBE.

�2�

For �=0, HSE reduces to the hybrid functional PBE0,
whereas for �→�, HSE becomes identical to PBE. HSE
with a finite value of � can be regarded as an interpolation
between these two limits. It has been found that the optimal
value for the screening parameter � is 0.207 Å−1, yielding
almost identical total energies as the PBE0 functional. This
particular HSE functional is called HSE06 in the literature
and used throughout this work.16

The HSE functional has been proven to yield results in
good agreement with experiment for a wide range of solids
including metals, semiconductors, and insulators as well as
molecules.16–22 The main purpose of the work presented
herein, is to investigate ground-state properties of ZnO and
to access to what extent HSE06 improves upon PBE GGA.23

This includes the electronic structure, which is important for
the development of optoelectronic devices, and the vibra-
tional properties that determine the thermodynamic proper-
ties of this material, i.e., the internal energy, the thermal
conductivity, the entropy, and the Gibbs free energy, as well
as the dielectric polarizability and piezoelectric tensors.
Moreover, this work constitutes an extension of our previous
interest in the ZnO system.24–27

The remaining part of the paper is organized as follows.
Section II describes the computational methodology used in
this study. Section III presents the results of the calculations
as well as their discussion. Finally, conclusions are given in
Sec. IV.

II. COMPUTATIONAL DETAILS

The calculations were performed within the projector-
augmented wave �PAW� method �Refs. 28 and 29� as imple-
mented in the VASP 5.1 package.30 The structure optimiza-
tion, the band structure, and the phonon calculations were
performed using the PBE functional23 as well as the screened
hybrid density functional HSE06,16 in the following simply
abbreviated as HSE. More details on the parameters used for
generating the PAW potentials are given in Table I. The
Gaussian smearing method was chosen with a smearing
width of 0.1 eV. The sampling of the Brillouin zone was
performed using a Monkhorst-Pack scheme.31 The applied k
mesh for the structure optimization was 8�8�6 corre-
sponding to a k spacing of 0.4 Å−1. For the structure opti-
mization, the internal degrees were relaxed at each volume,
and the volume dependence of the total energy was fitted to
a Murnaghan equation of state. The band structures E�k�
were computed on a discrete k mesh following high-
symmetry directions in the Brillouin zone.

The calculations of the phonon-dispersion relations ��q�
were performed with the direct method,32 which uses the
Hellmann-Feynmann forces calculated for a supercell. The
symmetry inequivalent atoms were displaced by + /
−0.015 Å. This method is also referred to as supercell or
frozen phonon approach. Convergence tests with respect to
the k mesh on the primitive cell show that an accuracy of 0.1
THz for the highest optical zone-center phonon frequency is
achieved with a 3�3�2 k mesh. For this reason, 2�2
�2 supercells in combination with 2�2�1 k meshes have
been employed for calculating the phonon-dispersion curve.
In the supercell approach, only phonon frequencies ��q� for
q vectors that are commensurate with the supercell are ob-
tained exactly, and ��q� is interpolated for all remaining q
vectors. Thus, the larger the supercell, the more accurate dis-
persion relations are obtained. However, for large supercells
HSE calculations are computationally not yet feasible.
Therefore and for the sake of comparison, the 2�2�2 su-
percell has been employed for all phonon calculations pre-
sented in this work.

The dielectric and piezoelectric properties were deter-
mined using a 24�24�16 k mesh for PBE and 10�10
�10 k points for HSE. The HSE results converge rapidly
with the number of k points, whereas the PBE results require
a very accurate sampling since the combination of the small
DFT band gap with the strong O p Zn s transition at the �
point causes very slow convergence.

TABLE I. Core radii rc and energy cutoffs Ecut for the PAW
potentials. Nonlocal projectors were generated for the states listed
in the column valence. As local PAW potential a pseudopotential
was generated for the states indicated in the column local.

Valence Local
rc

�a.u.�
Ecut

�eV�

Zn 3d104s24p0 4f 2.3 277

O 2s22p4 3d 1.5�s� /1.8�p� 300
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III. RESULTS AND DISCUSSION

A. Structure optimization

The total energy versus volume data for the wurtzite
phase of ZnO computed using the PBE and the HSE func-
tional are shown in Fig. 1. The lattice parameters and bulk
moduli evaluated from the Murnaghan fits are summarized in
Table II together with experimental findings at room
temperature.33,34 Due to the usual underbinding in solids, the
PBE functional yields overestimated lattice parameters �a
=3.292 Å and c=5.306 Å� resulting in an underestimation
of the bulk modulus �128 GPa�. In contrast to PBE, the HSE
functional corrects the overestimation �underestimation� of
the lattice parameters �bulk modulus� and provides results
that are in much better agreement with the experimental find-
ings. The HSE results for the lattice constants are a
=3.253 Å and c=5.254 Å, respectively, whereas a bulk
modulus of 144 GPa is obtained. In comparison to Ref. 27
�a=3.261 Å, c=5.225 Å, and c /a=1.602�, a larger c value
is obtained in this work resulting in a larger c /a ratio of
1.615. This small discrepancy was traced back to minor dif-
ferences in the computational settings. Convergence tests
with respect to the energy cutoff and the oxygen pseudopo-
tential revealed that the values given in Ref. 27 were not
entirely converged, and therefore the present values super-
sede the previous ones.

B. Band structures

The density of states �DOS� and band structure of ZnO
obtained using the PBE functional are shown in Fig. 2. The
band gap is direct, i.e., the valence-band maximum �VBM�
as well as the conduction-band minimum �CBM� are located
at the � point. As in previously reported bulk calculations,27

the band gap is severely underestimated and amounts to 0.77
eV. As evident from the band structure, the valence band
contains two regions. The energetically lower one originates
from the Zn 3d states, whereas the energetically higher one
is composed mainly of O 2p orbitals making up the VBM.
The conduction-band manifold originates from Zn 4s and
Zn 4p states strongly hybridized with O 2p orbitals. The er-
roneously high lying and too much delocalized Zn 3d bands
hybridize too strongly with the O 2p bands. For this reason,
an unambiguous determination of the bandwidth is not pos-
sible. As a consequence of this strong hybridization, the band
gap is significantly underestimated. Summarizing, DFT-PBE
does not reproduce quantitatively the experimental band
structure but yields qualitatively correct band characters.

The band structure calculated using the HSE functional,
which is shown in Fig. 3, is qualitatively similar to that of
DFT-PBE. The VBM and CBM are located at the � point. In
contrast to PBE, HSE yields also the details of the band
structure in good agreement with experiment �Table III�.
First, the Zn 3d bands are less strongly hybridized with the
Zn s states, and they appear between 5.0 and 7.2 eV, whereas
in the PBE case they are located between 2 and 6 eV �Fig. 3�.
As a consequence, the interaction between O 2p and Zn 3d
states is less pronounced and the band gap deduced from the
HSE band structure is 2.46 eV, which is much closer to the
experimental value of 3.4 eV.3,4 The HSE hybrid density
functional gives also much better agreement with the experi-
mental values for the width of the valence p-band and the
d-band position as can be concluded from Table III.

C. Phonons

Since ZnO in the wurtzite structure has four atoms in the
primitive unit cell, a total of 12 phonon branches exist: one
longitudinal-acoustic �LA�, two transverse-acoustic �TA�,
three longitudinal-optical �LO�, and six transverse-optical
�TO� branches that constitute the highest frequency modes.
The latter correspond mainly to the internal vibrations of the
lighter oxygen atoms, whereas the lower-frequency modes
stem from the vibrations of the heavier zinc atoms. Due to
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FIG. 1. �Color online� Total energy versus unit-cell volume of
ZnO calculated with the PBE �circles� and the HSE �squares� func-
tional. The experimental equilibrium volume at ambient conditions
is indicated by the vertical dotted line.

TABLE II. Lattice parameters, c /a ratio, volume per formula unit, and bulk modulus of ZnO calculated
using the PBE and HSE functional in comparison to experiment.

Functional

Lattice parameters

Volume per formula unit
�Å3�

Bulk modulus
�GPa�

a
�Å�

c
�Å� c /a

PBE 3.292 5.306 1.612 24.90 128.17

HSE 3.253 5.254 1.615 24.07 143.82

Expt.a 3.250 5.207 1.602 23.82 183.0,142.6

aReferences 33 and 34.
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the significant difference in the atomic weights, the six TO
branches are separated from the lower branches by a phonon
gap.36 This structure is clearly observed in the Figs. 4–6
showing the phonon-dispersion relations ��q� obtained
within DFT-PBE and HSE.

When investigating lattice dynamics using ab initio meth-
ods, the lattice parameters that are applied in the calculations
are exceedingly important.38 In particular, when comparing
different XC functionals, the effect introduced by performing
the calculations at different optimized theoretical volumes,
which strongly depend on the applied functional, has to be
considered carefully. To disentangle this effect from the
changes introduced by the functionals at one specific vol-
ume, Figs. 4–6 show the results of the calculations using the
experimental volume at ambient conditions and at the opti-
mized crystal volumes, as listed in Table II, for the PBE and
HSE functional, respectively.

In the case of PBE �Fig. 4�, the phonon frequencies ob-
tained at the two different crystal volumes differ significantly
for the high-frequency optical branches, but agree reasonably
well for the low-frequency branches, in particular, for the
acoustic modes. Obviously, the volume effect is most pro-
nounced in the high-frequency modes. This can be under-
stood by realizing that DFT-PBE severely overestimates the
crystal volume resulting in much too weak nearest-neighbor
force constants and a significantly underestimation of the
optic modes.

Concerning the phonon dispersion of the lower six modes,
DFT-PBE achieves reasonable agreement with experiment.
In contrast to PBE, the HSE calculation yields lattice param-
eters in much better agreement with experiment leading to a
less pronounced volume effect in the high-lying optical
modes and a vanishing volume effect in the branches below
the phonon gap. Both, the absolute values of the phonon
frequencies as well as the dispersion of the phonon modes
are in better agreement with experimental findings. This is
made more clear by comparing the phonon-dispersion curves

FIG. 2. �Color online� �left� Density of states and �right� band structure of ZnO obtained using the PBE functional. The character of the
bands is indicated by the color �Zn�d� circles, O�p� squares�, whereas the size of the symbols corresponds to the partial occupancies. The
Fermi level is indicated by the horizontal line.

FIG. 3. �Color online� Band structure of ZnO obtained using the
HSE functional. The d bands �circles� are indicated by the red color,
whereas the green color indicates the p bands �squares�. The size of
the symbols corresponds to the partial occupancies. The Fermi level
is indicated by the horizontal line.

TABLE III. Energy gap Eg, width of the 3d-band W3d, and the
Zn 3d-band position E3d in �eV�, calculated within DFT-PBE and
HSE compared to experimental data �Refs. 3, 4, and 35� as well as
previously reported PBE and HSE calculations �Ref. 27�. Theoreti-
cally, the d band position was determined as the centre of gravity of
the occupied part of the d band. We note that this is not necessarily
compatible with the experimental determination of the d band
position.

PBE PBEa HSE HSEa Expt.b

Ed �eV� 0.8 0.7 2.5 2.5 3.2–3.4

W3d �eV� 3.9 2.2

E3d �eV� −4.8 −4.8 −6.0 −5.8 −�7.5–7.8�
aReference 27.
bReferences 3, 4, and 35.
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calculated within DFT-PBE and HSE at the same volume
�experimentally observed equilibrium volume at ambient
conditions� in Fig. 6 and the corresponding phonon frequen-
cies at high-symmetry points summarized in Table IV.

The phonon-dispersion relations depicted in Fig. 6 are
qualitatively similar but differ quantitatively. This is most
pronounced in the case of the highest optical zone-centered
mode, e.g., PBE yields 16.3 THz compared to the experi-
mental value of 17.8 THz.37 The analysis of Table IV and
Fig. 6 reveals that within HSE both, the acoustic and optical
branches are shifted towards higher frequencies. Conse-
quently, whenever PBE significantly underestimates the fre-
quencies compared to experiment, the HSE functional
clearly improves upon PBE. This is indicated by �� � in the
last column of Table IV. However, when the PBE frequen-
cies are already close to the experimental values, the HSE
functional leads to an overestimation of the frequencies
�marked by ���� in Table IV�. Unfortunately, the experimen-
tal uncertainties for the available data are 0.2 THz and there
are too few data points available to allow for a more detailed
comparison of the full phonon spectrum. Nevertheless, the
overall agreement with experiment is visually better for HSE

than for DFT-PBE with the most obvious improvement being
related to a stiffening of the phonon frequencies, that is par-
ticularly pronounced for the optical modes.

D. Dielectric and piezoelectric properties

Dielectric properties are particularly strongly affected by
the choice of the functional, and we have demonstrated in
Ref. 22 that the effect is very pronounced for ZnO. Table V
summarizes the calculated dielectric properties. All proper-
ties were calculated at the experimental volume but the vol-
ume dependence is not very pronounced. For comparison
with previous work, we have included the LDA values from
Ref. 44. Overall the agreement with these values is good, but
it is emphasized that the previous values were certainly not
entirely k-point converged, resulting in too large dielectric
constants, too large Born effective charges, and slightly too
large ionic contributions to the piezoelectric tensor. In gen-
eral our present LDA values are closer to experiment than the
previous ones �note for instance the large anisotropy of the
static-ion-clamped dielectric tensor in the previous calcula-
tions�.

In LDA and PBE, the too small one-electron band gap has
a dramatic effect on the dielectric constants, which are sig-
nificantly overestimated. Remarkably, not only the electronic
contributions but also the ionic contributions to the macro-
scopic dielectric tensor are too large in LDA. On the other
hand, PBE yields good ionic contributions but still overesti-
mates the electronic contributions to the polarizability. Over-
all the HSE functional gives the best account of the dielectric
properties, although somewhat underestimating the ionic
contributions, in particular, in the c direction �dir. 33�. The
Born effective charges are only little influenced by the choice
of the functional and all values point toward a mostly ionic
behavior regardless of the functional. For the piezoelectric
constants, again little differences are found between the three
functionals. The electronic contribution gradually decreases
from LDA, over PBE to HSE, similar to the electronic con-
tributions to the polarizability, although the decrease is not
very pronounced in the piezoelectric tensor. Inclusion of the
ionic contributions to the piezoelectric tensors yields very
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good agreement with experiment, in particular, for the HSE
functional.

IV. CONCLUSIONS

We have studied the geometry, the electronic band struc-
ture, the phonon-dispersion relations, and the dielectric prop-
erties of ZnO using the PBE as well as the HSE hybrid
functional. We have shown that the HSE functional gives
much better estimates for all considered ZnO properties than
the widely utilized semilocal PBE functional. The HSE op-
timized crystal structure agrees within 1% with the experi-
mentally observed lattice parameters resulting in a bulk
modulus of 144 GPa in reasonable agreement with experi-
ment �143–183 GPa�. The band gap calculated using the
HSE functional is 2.5 eV and much closer to the experimen-
tal value of 3.2–3.4 eV than the PBE result of 0.8 eV. The
reason for this improvement is a better description of the
Zn 3d and O 2p states within HSE, e.g., the Zn 3d bands are

more localized and energetically deeper resulting in less hy-
bridization with the O 2p states. We believe that the remain-
ing error is related to the fact that the d states are still too
shallow using the HSE functional, and more nonlocal ex-
change on the tightly bound d electrons and O 2p states
would be required to remedy the remaining error. This is also
supported by the observation that the required amount of
nonlocal exchange depends on the screening properties: with
static dielectric constants around �=3.7, GW-type methods
would include more nonlocal exchange �1 /��q�� than con-
ventional hybrid functionals do at any wavelength. Thus
ZnO is a material where everything points towards the need
to include a little bit more nonlocal exchange than hybrid
functionals based on the 1/4 rule �see also Ref. 27�. Despite
this observation and despite the remaining underestimation
of the band gap, the HSE functional predicts excellent
ground-state properties.

Furthermore, we have shown that the chosen volume for
the calculations �theoretical versus experimental volume�
significantly affects the phonon frequencies, in particular, in

TABLE IV. Phonon frequencies �in THz� of selected modes at high-symmetry points in the Brillouin zone
evaluated at the experimental volume.

DFT-PBE HSE LDAa Expt.b Discrepancy

� 2.58 2.99 2.71 2.97–3.03 �

7.70 8.03 7.73 n.a.

11.70 11.98 11.99 11.37–11.39

12.10 12.35 12.60,12.76 11.20–12.68 �

13.06 13.29 13.59,13.76 13.10–13.31 �

16.29 17.08 17.13 17.47–17.85 �

M 2.98 2.85 2.60 n.a.

3.52 3.82 3.54 3.15 ��

4.03 4.25 3.98 4.11 ��

4.83 5.29 4.86 5.17 �

6.92 7.28 7.19 n.a.

7.59 7.94 7.90 n.a.

13.45 13.36 13.81 n.a.

13.47 13.68 14.20 n.a.

14.58 14.67 15.08 n.a.

14.80 15.34 15.57 n.a.

15.88 16.54 16.80 n.a.

16.23 16.97 16.80 n.a.

A 2.00 2.34 2.04 2.41 �

5.53 5.55 5.63 5.03,5.59 �

12.58 12.84 13.09,13.26 n.a.

16.48 17.47 17.18 n.a.

M 3.04 3.39 3.20 n.a.

3.25 3.73 3.48 n.a.

7.95 8.25 8.12 n.a.

13.82 14.05 14.42 n.a.

13.85 14.10 14.59 n.a.

16.29 17.03 16.91 n.a.

aReference 39.
bReferences 37 and 39–43.
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the case of the high-frequency modes. For PBE, the differ-
ence between using the experimental and the theoretical vol-
ume is particularly drastic since PBE strongly overestimates
the lattice parameters. However, even if the phonons are con-
sistently evaluated at the experimental volume, HSE yields
significantly higher phonon frequencies than PBE in better
agreement with available experimental data. The dielectric

properties are also clearly described best by the HSE func-
tional, which yields dielectric constants in almost perfect
agreement with experiment �except for the ionic contribution
in the c direction�. Also piezoelectric constants are well de-
scribed by the HSE functional. This indicates that the HSE
functional is a judicious choice for the prediction of materi-
als properties of semiconductors and insulators.
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