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We study under which general conditions a pair of Dirac points in the electronic spectrum of a two-
dimensional crystal may merge into a single one. The merging signals a topological transition between a
semimetallic phase and a band insulator. We derive a universal Hamiltonian that describes the physical prop-
erties of the transition, which is controlled by a single parameter, and analyze the Landau-level spectrum in its
vicinity. This merging may be observed in the organic salt �− �BEDT-TTF�2I3 or in an optical lattice of cold
atoms simulating deformed graphene.

DOI: 10.1103/PhysRevB.80.153412 PACS number�s�: 73.61.Wp, 73.61.Ph, 73.43.�f

The recent discovery of graphene has stimulated a great
interest in the physics of the two-dimensional �2D� Dirac
equation in condensed matter.1 The electronic dispersion re-
lation ��k� vanishes at the contact points between two bands,
the so-called Dirac points D and −D �up to an arbitrary re-
ciprocal lattice vector�, around which the electronic spectrum
is linear. Due to the particular hexagonal symmetry of
graphene, the two Dirac points are located at the two in-
equivalent corners K and K� of the first Brillouin zone �BZ�.
However, that the Dirac points are located at high-symmetry
points in the BZ is not a necessary condition, but a rather
special case. Indeed, a variation in one of the three nearest-
neighbor hopping parameters makes the Dirac points move
away from the corners K and K�. If the variation is suffi-
ciently strong, the two Dirac points may even merge into a
single one, which possesses a very particular dispersion
relation—it is linear in one direction while being parabolic in
the orthogonal one. The merging of Dirac points is accom-
panied by a topological phase transition from a semimetallic
to an insulating phase.2–8

Other physical systems, different from graphene and its
particular lattice structure, exist where Dirac points describe
the low-energy properties. Recent papers have shown that a
similar spectrum may arise in an organic conductor, the �
− �BEDT-TTF�2I3 salt under pressure.9,10 Furthermore, it has
been shown that it is possible to observe massless Dirac fer-
mions with cold atoms in optical lattices,3,11,12 where the
motion of the Dirac points may be induced by changing the
intensity of the laser fields.3

In this Brief Report, we study in a more general manner
the motion of Dirac points within a two-band model that
respects time reversal and inversion symmetry without being
restricted to a particular lattice geometry. We investigate the
general conditions for the merging of Dirac points into a
single one D0, under variation of the nearest-neighbor hop-
ping parameters. It is shown that the merging points may
only appear in four special points of the BZ, all of which are
given by half of a reciprocal lattice vector D0=G /2. Further-
more we derive a single effective Hamiltonian that describes
the low-energy properties of the system in the vicinity of the
topological phase transition which accompanies the Dirac-
point merging. The effective Hamiltonian allows us to study
the continuous variation of the Landau-level spectrum from
��Bn in the semimetallic to �B�n+1 /2� in the insulating

phase, while passing the merging point with an unusual
�B�n+1 /2��2/3 dependence.4

We consider a two-band Hamiltonian for a 2D crystal
with two atoms per unit cell. Quite generally, neglecting for
the moment the diagonal terms the effect of which is dis-
cussed at the end of this Brief Report, the Hamiltonian H�k�
reads,

H�k� = � 0 f�k�
f��k� 0

� . �1�

The off-diagonal coupling is written as

f�k� = �
m,n

tmne−ik·Rmn, �2�

where the tmn’s are real, a consequence of time-reversal sym-
metry H�k�=H��−k�, and Rmn=ma1+na2 are vectors of the
underlying Bravais lattice.

If the energy dispersion ��k�= � 	f�k�	 possesses Dirac
points D, they are necessarily located at zero energy, f�D�
=0. From the general expression Eq. �2�, it is obvious that
these points D come in by pairs: as a consequence of time-
reversal symmetry, one has f�k�= f��−k�, and thus, if D is
solution of f�k�=0, so is −D. Quite generally, the position D
can be anywhere in the BZ and move upon variation of the
band parameters tmn. Writing k= �D+q, the function f�k� is
then linearly expanded around �D as

f��D + q� = − iq · ��
mn

tmnRmn cos D · Rmn�
� q · ��

mn

tmnRmn sin D · Rmn� , �3�

which has the form q · ��v1− iv2�, and the linearized Hamil-
tonian reads, H�D= �v1 ·q�x+v2 ·q�y in terms of the Pauli
matrices �x and �y.

Now, we consider the situation where, upon variation of
the band parameters, the two Dirac points may approach
each other and merge into a single point D0. This happens
when D=−D modulo a reciprocal lattice vector G= pa1

�

+qa2
�, where a1

� and a2
� span the reciprocal lattice. Therefore,

the location of this merging point is simply D0=G /2. There
are then four possible inequivalent points the coordinates of
which are D0= �pa1

�+qa2
�� /2, with �p ,q�= �0,0�, �1,0�, �0,1�,

and �1,1�. The condition f�D0�=�mn�−1��mntmn=0, where
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�mn= pm+qn, defines a manifold in the space of band param-
eters. As we discuss below, this manifold separates a semi-
metallic phase with two Dirac cones and a band insulator.

Notice that in the vicinity of the D0 point, f is purely
imaginary �v1

0=0�, since sin�G ·Rmn /2�=0. Consequently, to
lowest order, the linearized Hamiltonian reduces to H
=q ·v2

0�y, where v2
0=�mn�−1��mntmnRmn. We choose the local

reference system such that v2
0
cŷ defines the y direction. In

order to account for the dispersion in the local x direction,
we have to expand f�D0+q� to second order in q:

f�D0 + q� = − iq · v2
0 −

1

2�
mn

�− 1��mntmn�q · Rmn�2. �4�

Keeping the quadratic term in qx, the new Hamiltonian may

be written as H0�q�=
qx

2

2m� �x+cqy�
y where the mass m� is de-

fined by

1

m�
= �

mn

�− 1��mn+1tmnRmn,x
2 , �5�

where Rmn,x is the component of Rmn along the local x
axis �perpendicular to v2

0�. The terms of order qy
2 and

qxqy are neglected at low energy. The diagonalization of
H0�q� is straightforward and the energy spectrum �
=��qx

2 /2m��2+c2qy
2 has a new structure: it is linear in one

direction and quadratic in the other. From the linear-
quadratic spectrum, which defines a velocity c and a mass
m�, one may identify a characteristic energy,

m�c2 =
��mn�− 1��mntmnRmn�2

�mn�− 1��mn+1tmnRmn,x
2 . �6�

Up to now, we have discussed the merging of the two
Dirac points from a “dynamical” point of view, following
their motion in the BZ when varying the band parameters
until D0 is reached. We now consider the low-energy Hamil-
tonian around D0 even before the two Dirac points coincide.
In the neighborhood of the transition when f�D0�=0, there is
a finite gap 2	�	 at the D0 point �see Fig. 1�, where the
quantity

� = �
mn

�− 1��mntmn, �7�

changes its sign at the transition. This parameter � therefore
drives the transition. In the vicinity of D0, the Hamiltonian
becomes H�q�=H0�q�+��x, or explicitly,

H�q� =� 0 � +
qx

2

2m�
− icqy

� +
qx

2

2m�
+ icqy 0 � , �8�

with the spectrum �= ����+qx
2 /2m��2+c2qy

2. The Hamil-
tonian Eq. �8� has a remarkable structure and describes prop-
erly the vicinity of the topological transition, as shown on
Fig. 1. When m�� is negative �we choose m�	0 without loss
of generality�, the spectrum exhibits the two Dirac cones and
a saddle point in D0 �at half distance between the two Dirac
points�. Increasing � from negative to positive values, the

saddle point evolves into the hybrid point at the transition
��=0� before a gap 2�	0 opens. Due to the linear spectrum
near the Dirac points, the density of states in the semimetal-
lic phase varies as 	�	 at low energy and exhibits a logarith-
mic divergence ln�		�	− 	�		� due to the saddle point. At the
transition, it varies as �	�	 and then a gap opens for �	0.4

The topological character of the transition is displayed by
the cancellation of the Berry phase at the merging of the two
Dirac points. The spinorial structure of the wave function
leads to a Berry phase 1

2�
q ·dq, where 
q=arctan Im f�q�
Re f�q� .

Near each Dirac point, 
q=arctan
qy

qx
, whereas 
q

=arctan
2m�cqy

qx
2 near the hybrid D0 point at the transition.

Therefore, the Berry phases �� around each Dirac point
annihilate when they merge into D0.4

We now turn to the evolution of the spectrum in a perpen-
dicular magnetic field B. After the substitution qx→qx
−eBy in the appropriate gauge and the introduction of the
dimensionless gap �=� / �m�c2c

2 /2�1/3, in terms of the cy-
clotron frequency c=eB /m�, the eigenvalues are �n

= � �� /���En��� where the En are solutions of the effective
Schrödinger equation

En���� = �P2 + �� + Y2�2 − 2Y�� 
 Hef f� , �9�

with �Y , P�= i. The effective Hamiltonian is therefore of
Schrödinger type with a double-well potential when ��0,
which becomes the quartic potential Y4−2Y at the transition
and then acquires a gap for �	0, with a parabolic dispersion
at low energy �see Fig. 2�. For large negative �, one recovers
two independent parabolic wells with an energy shift �2�	�	
equal to half the cyclotron energy. Therefore, as seen in Fig.
2�a�, the lowest level has zero energy, and the first levels are
degenerate: one recovers the physics of independent Dirac
cones in a magnetic field, and the effective energy levels are
given by En=4n�	�	.

The complete Landau levels spectrum �n��� is shown in
Fig. 3. The value of the Hall integer is indicated in the gaps

FIG. 1. �Color online� Evolution of the spectrum when the quan-
tity � is varied and changes in sign at the topological transition
�arbitrary units�. The low-energy spectrum stays linear in the qy

direction.
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between Landau levels. For negative �, one recovers the
spectrum of the Dirac cones, with odd values of the Hall
integers—the absence of even values reflects the two-fold
valley degeneracy of the Landau levels and the presence of a
zero-energy Landau level. When −� vanishes, approaching
the transition, the level degeneracy is lifted, and gaps with
even Hall integer open. A simple WKB analysis of the lowest
level shows that it splits as �0� �e#�� �e#�/B3/2

. The en-
ergy levels scale as �n�B2/3�En�� /B2/3�, with the following
limits

m�� � 0, semimetal → �n � � �nB ,

� = 0, transition → �n � � ��n + 1/2�B�2/3,

m�� 	 0, insulator → �n = � �� + # �n + 1/2�B� .

�10�

Note the shift n→n+1 /2, a consequence of the annihilation
of �� Berry phases.

We now consider two specific situations in which the
merging of Dirac points may be observed. The first example
is a variation of the standard graphene tight-binding model,
where the three hopping integrals between nearest carbon
atoms are assumed to be different:

f�k� = t00 + t10e
−ik·a1 + t01e

−ik·a2. �11�

A merging at D0= �pa1
�+qa2

�� /2 is possible if

t00 + �− 1�pt10 + �− 1�qt01 = 0. �12�

Choosing t00= t�	0 and t10= t01= t	0, Eq. �12� has a so-
lution �t�=2t� for p=q=1, at D0= �a1

�+a2
�� /2, that is at the M

point located at the edge center of the BZ.4 Even if the hop-
ping integrals may be modified in graphene under uniaxial
stress,5,6 it seems impossible to reach physically the merging
condition. An alternative for the observation of Dirac points
has been proposed with cold atoms in a honeycomb optical
lattice. The latter can be realized with laser beams, and by
changing the amplitude of the beams, it is possible to vary
the band parameters and to reach a situation where the Dirac
points merge.3

The organic conductor �− �BEDT-TTF�2I3 is also a good
candidate for the observation of merging Dirac points. In
order to study the low-energy spectrum �close to half filling�,
the original description with four molecules per unit cell can
be reduced to a two-band model in a tetragonal lattice, with
the following dispersion relation:9,10,13

f�k� = t00 + t10e
ik·a1 + t01e

ik·a2 + t11e
ik·�a1+a2�. �13�

In this case, the generic spectrum exhibits two Dirac cones
the positions of which are given by5

tan2D · a1

2
=

�t00 + t01�2 − �t11 + t10�2

�t11 − t10�2 − �t00 − t01�2

tan2D · a2

2
=

�t00 + t10�2 − �t11 + t01�2

�t11 − t01�2 − �t00 − t10�2 . �14�

Upon variation of the band parameters, the two Dirac
points may merge when

t00 + �− 1�pt10 + �− 1�qt01 + �− 1�p+qt11 = 0. �15�

Katayama et al. have considered the situation �in our nota-
tions� where t00= t01 �Ref. 9� and shown the possibility of a
transition from a massless “Dirac” phase to a gapped phase
at a hydrostatic pressure �40 kbar.10 In Fig. 4, we show the
evolution of the Dirac points in the BZ �as in Ref. 9�, and
more important, the evolution of the spectrum for a particu-
lar variation of the band parameters. The two Dirac points
merge at the BZ points � and X for special values of the band
parameters.

The scenario can be even richer. One may imagine a situ-
ation where, when varying a band parameter, the Dirac
points disappear and then reappear at a different D0 point of
the BZ. In Fig. 5, the Dirac points move from X1 to �, where
a gap opens. For further variation of the band parameter, the
gap persists until a new pair of Dirac points appears at a
different position X2 in the BZ, and disappears again at the
fourth special point X3.

We finally consider the effect of nonzero diagonal terms
in the Hamiltonian Eq. �1�. When there is inversion symme-
try, one has H22�k�=H11�−k�. Moreover, time-reversal sym-
metry implies that these diagonal matrix elements are sym-
metric functions in k, and that their expansion near the
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FIG. 2. �Color online� Potential profile V�Y�= ��+Y2�2−2Y and
effective energy levels En for �a� �=−4 and �b� �=0.
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FIG. 3. �Color online� Energy levels �n��� / �m�c22 /2�1/3 as a
function of the dimensionless parameter ��� /B2/3. The dots on the
�=0 axis indicate the semiclassical levels of the quartic
Hamiltonian.4
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hybrid point D0=G /2, has no linear term. Therefore all con-
siderations discussed above remain valid, although the Dirac
and hybrid points are no longer necessarily at zero energy.

In conclusion, we have studied under which general con-
ditions the merging of Dirac points may occur, marking the
transition between a semimetal and a band insulator. We
have fully described the vicinity of the transition by means
of an effective 2�2 Hamiltonian. Although it has been con-

structed to describe the low-energy spectrum near D0, this
Hamiltonian is appropriate to describe both valleys around
the D and −D points avoiding the use of a 4�4 effective
Hamiltonian as it is usually done. It may even provide an
effective description of graphene, which could be useful,
e.g., in accounting for intervalley scattering in a disordered
system.

We recently learned of a related work which proposed the
existence of hybrid points in the absence of time reversal
symmetry in VO2 /TiO2 heterostructures.14 We also became
aware of a recent independent work on the anisotropic hon-
eycomb lattice in a magnetic field, which has some overlap
with ours.15 Finally, we wish to mention a recent paper on
mimicking graphene physics with ultracold fermions in an
optical lattice.16

ACKNOWLEDGMENTS

We acknowledge useful discussions with S. Katayama,
A. Kobayashi, and T. Nishine.

1 For a review see A. H. Castro Neto, F. Guinea, N. M. R. Peres,
K. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
�2009�.

2 Y. Hasegawa, R. Konno, H. Nakano, and M. Kohmoto, Phys.
Rev. B 74, 033413 �2006�.

3 S.-L. Zhu, B. Wang, and L.-M. Duan, Phys. Rev. Lett. 98,
260402 �2007�.

4 P. Dietl, F. Piéchon, and G. Montambaux, Phys. Rev. Lett. 100,
236405 �2008�.

5 M. O. Goerbig, J.-N. Fuchs, G. Montambaux, and F. Piéchon,
Phys. Rev. B 78, 045415 �2008�.

6 V. M. Pereira, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev.
B 80, 045401 �2009�.

7 B. Wunsch, F. Guinea, and F. Sols, New J. Phys. 10, 103027
�2008�.

8 G. E. Volovik, Lect. Notes Phys. 718, 31 �2007�.

9 S. Katayama, A. Kobayashi, and Y. Suzumura, J. Phys. Soc. Jpn.
75, 054705 �2006�.

10 A. Kobayashi, S. Katayama, Y. Suzumura, and H. Fukuyama, J.
Phys. Soc. Jpn. 76, 034711 �2007�.

11 E. Zhao and A. Paramekanti, Phys. Rev. Lett. 97, 230404
�2006�.

12 J.-M. Hou, W.-X. Yang, and X.-J. Liu, Phys. Rev. A 79, 043621
�2009�.

13 C. Hotta, J. Phys. Soc. Jpn. 72, 840 �2003�.
14 S. Banerjee, R. R. P. Singh, V. Pardo, and W. E. Pickett, Phys.

Rev. Lett. 103, 016402 �2009�.
15 K. Esaki, M. Sato, M. Kohmoto, and B. I. Halperin, Phys. Rev. B

80, 125405 �2009�.
16 K. L. Lee, B. Grémaud, R. Han, B.-G. Englert, and C. Miniatura,

arXiv:0906.4158 �unpublished�.

k a2

k a1
XX

D

D

3 2 1 0 1 2 3
3

2

1

0

1

2

3 t10

t11

X

2 1 0 1 2
2

1

0

1

2

3 2 1 0 1 2 3

3

2

1

0

1

2

3

3 2 1 0 1 2 3

3

2

1

0

1

2

3

D0

D

−D

+

+

(b)(a)

(c) (d)

FIG. 4. �Color online� Top figures: �a� motion of the two Dirac
points D and −D for the case t00= t01=1, t10=2+ t11 under variation
of t11; �b� phase diagram. The � and X lines separate the semime-
tallic phase from the band insulator �gray�. The Dirac points move
from X= �0,1� to the �= �0,0� point when t11 varies from 0 to −2.
Bottom figures: �c� and �d� show the isoenergy curves, respectively,
for t11=−1.5 and −2.
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