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The energy spectrum of an electron confined in a quantum dot �QD� with a three-dimensional anisotropic
parabolic potential in a tilted magnetic field was found analytically. The theory describes exactly the mixing of
in-plane and out-of-plane motions of an electron caused by a tilted magnetic field, which could be seen, for
example, in the level anticrossing. For charged QDs in a tilted magnetic field we predict three strong resonant
lines in the far-infrared-absorption spectra.
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The Fock–Darwin �FD� problem1 is a famous example of
an exactly solvable quantum-mechanical problem, which is
broadly used in solid-state physics for modeling of many
charge and spin properties of singly and multiply charged
quantum dots �QD� in a magnetic field.2–5 Fock and Darwin
independently found the exact eigenfunctions and eigenstates
of an electron confined in a two-dimensional parabolic po-
tential and submitted to a magnetic field normal to the two-
dimensional plane. Despite the fact that an electronic-
confined potential in real self-organized QDs is obviously
three-dimensional, it is found that the FD formula describes
excellently the electron-energy levels, if a correction due to a
small in-plane anisotropy is taken into account.6 This model
even more impressively allows us to describe the collective
properties of multielectrons localized in a QD,7,8 such as, for
example, the collective oscillation of their center-of-mass
motion.4

The high symmetry of the FD problem, which allows us
to separate variables, is broken, however, if an external mag-
netic field is tilted away from the normal to the plane con-
taining self-organized QDs, which makes the problem much
more difficult to solve. To circumvent this difficulty, an ap-
proximate solution is commonly used,9,10 whereby the nor-
mal component of the magnetic field gives rise to FD states,
whereas the in-plane component adds a weak diamagnetic
shift of the electron-energy levels ��d /L�2, where d is the
quantum-well thickness and L is the magnetic length. This
approximation is only valid in weak tilted fields and when
the out-of-plane confinement is much larger than the in-plane
one. However, depending on the preparation method, the fre-
quency of out-of-plane confinement in self-assembled InAs/
GaAs QDs can be as small as 30 meV,11 which is comparable
to typical frequencies of in-plane confinement: 20 �Ref. 5�
and 30 meV.4 Moreover, the in-plane component of the mag-
netic field has an even more fundamental effect upon an
electron confined in the QD because it mixes the electron
in-plane and out-of-plane motions. Even in a weak magnetic
field the level mixing leads to anticrossings between spatially
confined level of the quantum well �QW� and of the two-
dimensional magnetoconfined levels of the FD problem.

The level mixing underlies such phenomena as electric-

dipole spin resonance �EDSR�, which can be used for
electron-spin manipulation by applying an electric field per-
pendicular to the QW plane.12 In parabolic QW’s the mixing
of in-plane and out-of plane motions in a tilted magnetic
field can be described exactly,13 and the EDSR magnitude
can be precisely calculated.12 Even more important is the
electric field manipulation of an electron spin confined in
QDs, which is a promising candidate for solid-state-based
qubit14–19 due to its very long decoherence time, T2, at cryo-
genic temperatures. In a single GaAs/AlGaAs gated QD
�Ref. 20� and in InGaAs self-organized QDs �Ref. 21� T2
reaches the microseconds range. An analytical description of
the QD electronic structure in a tilted magnetic field would
therefore be most advantageous for electron-spin manipula-
tion modeling.

This Brief Report reports an analytical description of
magnetoconfined levels in three-dimensional anisotropic
parabolic QDs exposed to an arbitrarily oriented magnetic
field. The exact solution of this problem was found using the
general Bogoliubov approach22 and Colpa’s algorithm23 for
quadratic form Hamiltonians.

The Hamiltonian describing an electron confined in a
three-dimensional parabolic potential well in an arbitrarily
oriented external magnetic field can be written as

H =
�p̂ + �e/c�A�2

2m
+

1

2
m��

2 �x2 + y2� +
1

2
m�z

2z2, �1�

where x and y are the coordinates in the plane of QD self-
organization, and z is coordinate perpendicular to this plane;
p̂=−i�� is the momentum operator; �� and �z are the char-
acteristic frequencies for lateral and vertical parabolic con-
finement, respectively; m is the effective mass and e is the
charge of the electron; c is the speed of light, and A is the
vector potential. A magnetic field B is tilted at an angle �
from the vertical direction z: B=B�ẑ cos �+ ŷ sin ��
and the vector potential gauge can be written as A
=B�− y cos �

2 , x cos �
2 ,−x sin ��. To find the spectrum of Hamil-

tonian �1�, we first express the Hamiltonian via six Bose
operators, â� , â�

†, connected with coordinates, �=x ,y ,z, and
momentum operators by the standard relationships
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where �2=��
2 + �0.5�c cos ��2 and �c= �eB� / �mc� is the cy-

clotron frequency. The Hamiltonian takes the form
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âz

âx
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where

D = 
D1 D2

D2
� D1

� � , �4�

D1 = �2 + �2 sin2 � − i� cos � i� sin �

i� cos � 2 0

− i� sin � 0 1 + �
� , �5�

D2 = � �2 sin2 � 0 − i� sin �

0 0 0

− i� sin � 0 � − 1
� , �6�

Di
� is the complex-conjugated matrix Di, �=�c /� and �

=�z
2 /�2. Next, we apply a linear Bogoliubov transformation

of six Bose operators â� and â�
† into another six Bose opera-

tors b̂j and b̂j
† �j=1,2 ,3� �Ref. 22�

b̂ = Tâ = 
T1 T2

T2
� T1

� �â , �7�

where Ti�i=1,2� are 3�3 matrices and Ti
� are the complex-

conjugated ones. Matrix T allows us to express the Hamil-

tonian via occupation number operators N̂j = b̂j
†b̂j. Substitut-

ing Eq. �7� in Eq. �3� we get

Ĥ =
��

4
b̂†�T−1�†DT−1b̂ =

��

4
b̂†εb̂ , �8�

where ε= �T−1�†DT−1. For the T matrix of Eq. �7� that trans-
forms D into a diagonal matrix, it can be demonstrated that
ε=diag�	1 ,	2 ,	3 ,	1 ,	2 ,	3�, where all coefficients 	 j �j
=1,2 ,3� are real and positive. Substituting the diagonal form
of Dd into Eq. �8� one obtains the energy spectrum

EN1N2N3
= �

j=1

3 
Nj +
1

2
��� j , �9�

where �� j =	 j�� /2 and we set �1
�2
�3 for an unam-
biguous definition of the energy quanta.

To obtain �� j �j=1,2 ,3� explicitly, we apply an algo-
rithm suggested by Colpa.23 First, we Cholesky decompose24

matrix D=K†K, where K is an upper triangular matrix, which
can be done because D is a positive-definite matrix �all its
eigenvalues are real and positive�. Second, we construct a

matrix M=KIpK†, where Ip=diag�1,1 ,1 ,−1 ,−1,−1� is the
para-unit matrix. Finally, from the eigenvalues of M, �k�k
=1, . . . ,6�, we find all 	 j through ε=Ip�,23 where �
=diag��1 ,�2 ,�3 ,�4 ,�5 ,�6�. The cumbersome but straightfor-
ward algebra leads to a cubic equation for the squared eigen-
values: �k=0,1,2,3Ck	

2k=0, where C0=−4��4−�2�1−S��2, C1
=16+�4�1−6S+5S2�−8�2�1−�+ ��−3�S�+32�, C2=
−2��2�1+S�+2�2+���, C3=1, and S=sin2 �.25 Its solution
provides analytical eigenvalues, 	 j, whose magnitude in-
creases with j
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3
, �10�

where

F = 2�2 + �� + �2�1 + S� ,

G = 16�� − 1�2 + 8�2�7 − � + 5�� − 1�S�

+ �4�1 + 26S − 11S2� ,

H = 64�� − 1�3 + 48�2�� − 1���13 + 5���S − � − 11��

+ 12�4�11 + � + �22 + 8��S + �7� − 25�S2�

− �6�1 − 69S − 33S2 + 37S3� ,

and  is given by the four-quadrant arctan function:
=arg�H ,�G3−H2�. When variable separation is possible,
Eq. �10� provides well-known analytical results: �i� for �=0,
the FD spectrum, 2��, plus the confinement energy of a
parabolic QW 2�� and �ii� for �=90°, the FD solutions
in an anisotropic two-dimensional QD �Ref. 26�:
�2��2+�+1����2+�+1�2−4��, plus the confinement en-
ergy for movement along the magnetic field, equal to 2 in
dimensionless units.

Derivation of coordinate dependencies of the eigenfunc-
tions corresponding to the energy spectrum of Eq. �9� re-
quires matrix T defined by Eq. �7�. To obtain T we construct
an auxiliary matrix

U = KT−1ε−1/2, �11�

where εr=diag�	1
r ,	2

r ,	3
r ,	1

r ,	2
r ,	3

r�. It can be easily shown
that U is right-eigenvector matrix of M: MU=�U=IpεU. By
reversing Eq. �11� T is obtained

T = ε−1/2U†K , �12�

where the unitarity U−1=U† was used. Using T we can ex-

press b̂j in coordinate representation. Substituting â� and â�
†

from Eq. �7� into Eq. �2� we get

�b̂1

b̂2

b̂3

� =
1
�2

�T1 + T2� · r� +
1
�2

�T1 − T2� · ��, �13�

where r�= �x� ,y� ,z�� and ��= �� /�x� ,� /�y� ,� /�z�� are three-
dimensional vectors composed of the dimensionless coordi-
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nates, x��=x� /L�, and of the derivatives, � /�x��=L�� /�x�, re-
spectively, with L�=�� /m�.

The ground-state wave function, �000�x� ,y� ,z��, is found

from the condition: b̂j�000�x� ,y� ,z��	0 �j=1,2 ,3�, which

after substitution of b̂j from Eq. �13� leads to three simulta-
neous differential equations

��000�x�,y�,z�� = P · r��000�x�,y�,z�� , �14�

where P=−�T1−T2�−1�T1+T2� is a symmetric matrix. By re-
solving Eq. �14� we obtain the normalized wave function for
the ground state

�000�x�,y�,z�� = C�P�exp��r��T · P · r�� , �15�

with the normalization coefficient

C�P� = 
 1

�
�3/4

�p̄11p̄23
2 + p̄22p̄13

2 + p̄33p̄12
2 − p̄11p̄22p̄33

− 2p̄12p̄13p̄23� , �16�

where p̄ij =Re�pij�. The exponential factor in Eq. �15� has full
quadratic form of variables x�, y�, and z�.

For any eigenstate �N1N2N3
�x� ,y� ,z�� can be obtained

from ground-state wave function �15� using

�N1N2N3
=

�b1
†�N1�b2

†�N2�b3
†�N3

�N1 ! N2 ! N3!
�000, �17�

where the coordinate form of the operators b̂j
† are obtained

by conjugating transposing of Eq. �13�

b̂j
† = �Q · r� + R · ��� j , �18�

where Q= 1
�2

�T1
�+T2

�� and R= 1
�2

�T1
�−T2

��. As an example, we
show the explicit form of the wave functions for the first
three excited states. They can be written in a compact vector
form

��100�x�,y�,z��
�010�x�,y�,z��
�001�x�,y�,z��

� = �Q + RP� · r��000�x�,y�,z�� . �19�

Figure 1 shows the energy spectrum of a QD, calculated
using Eq. �10�, as a function of applied magnetic field tilted
by �=3°. All calculations in this Brief Report where con-
ducted for m=0.07m0 and frequencies of parabolic confine-
ment: ��z=50 meV and ���=15 meV, which are achiev-
able, for example, in InAs QDs embedded in GaAs.4,5,11 For
comparison, the energy spectra calculated within FD model
as a function of the normal component of magnetic field is
shown by dashed lines. The FD states are described by the
principle quantum number, n, and the azimuthal quantum

FIG. 1. Energy levels in the QD as a function of magnetic field
strength, for a tilt angle of �=3°. The FD energy levels are shown
by the dashed lines.

FIG. 2. Dependence of the QD energy levels on magnetic field
tilted at �a� �=30° and �b� �=80°. Dashed lines show the �n ,�� FD
state energies with the diamagnetic shift added.

FIG. 3. �Color online� Wave functions as a function of magnetic
field strength B, for a tilt angle �=30°. Left column: B=0; middle
column: B=20 T; and right column: B=40 T.
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number, �, which are connected with N1, N2 through:
�=N2−N1, and n is the smallest element of N1 ,N2�. One can
see that the exact solution nearly coincides with the FD one
for such a small angle, except at certain fields, for which
some levels anticross as a result of the lifting of axial sym-
metry. Our calculations show, however that only levels with
the same full occupation number NTOT=N1+N2+N3 are an-
ticrossed at a tilted magnetic field. This is illustrated in
Fig. 1, which depicts the anticrossing of levels 010 and 001,
110 and 101, 210 and 201 for �=3°.

Solid lines in Fig. 2 show the energy levels for tilt angles
�a� �=30° and �b� �=80°, calculated using Eq. �10�. Dashed
lines show the approximate solutions, which as discussed
above consist of a sum of two energy terms: the FD energy,
determined by the magnetic field component normal to the
interface containing QD’s, and the diamagnetic energy
���c sin ��2 / �4��z�,27 determined by the in-plane compo-
nent of the magnetic field. The approximate solution evi-
dently provides a poor description of the levels for large
tilted magnetic fields.

Figure 3 shows plots of the boundary surfaces
within which the electron-probability densities
��N1N2N3

�x� ,y� ,z���2�0.06L�
−3, for �=30° for the ground and

the first three excited states for B=0, 20, and 40 T. One can
see that the magnetic field tends to orient 000 and 100 states
along it’s direction, and compresses them into a smaller vol-
ume, as expected. The dramatic modification in the wave

functions of the 010 and 001 states is connected with their
anticrossing in a magnetic field around 26 T.

Direct confirmation of the developed theory could be ob-
tained in the far-infrared-absorption spectra of charged QDs
in tilted magnetic fields. Calculations using wave functions
�15� and �17� envisage that these spectra will display three
strong resonant lines at the photon energies ��1, ��2, and
��3, instead of only two lines seen in QD ensembles for a
magnetic field normal to the QD layer.28,29 This result is a
direct consequence of a mixture of electron in-plane and out-
of-plane motions.

In summary, we have found analytical formulas describ-
ing electrons in anisotropic parabolic QDs in tilted magnetic
fields. Our exact description of the mixing of in-plane and
out-of plane motions, induced by the tilted field, opens up
the prospect for efficient modeling of electron-spin manipu-
lation using an external electric field. The theory can be veri-
fied by studying infrared-absorption spectra of charged QDs
in a tilted magnetic field.
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