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We study the nonlinear effects in the current-voltage characteristics of Nb superconducting thin films,
induced both by the current dependence of the pinning force and by the electric-field dependence of the
flux-flow resistance of Abrikosov vortices driven by high electric currents. Despite of the quite strong pinning
in our samples, by increasing the bias current, in a temperature dependent magnetic-field range, the moving
vortex system undergoes a dynamical transition from a disordered to an ordered vortex lattice. Such transition
leads to a quite sharp reduction of the dynamic pinning force corresponding to a peak in the current depen-
dence of the differential flux-flow resistance. On the same samples, in a higher voltage-velocity regime, for a
different temperature dependent magnetic-field range, an instability of the moving vortex lattice also occurs,
with a sudden jump in the /-V curve from the non linear flux-flow branch to the linear normal resistive state.
Within the Larkin-Ovchinnikov velocity dependence of the flux-flow resistance, this flux-flow instability has
been studied as function of the magnetic field and temperature in order to get out its nonequilibrium electronic
nature. Finally, we propose a dynamic phase diagram to describe the vortex lattice motion driven by high

electric currents in the presence of such a disordered pinning landscape.
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I. INTRODUCTION

In type-II low temperature superconductors (LTS) the lin-
ear flux-flow motion of the Abrikosov vortex lattice is a
prominent feature corresponding to a linear current-voltage
characteristic (IVC) either in the absence of pinning or above
the superconducting critical current /.." Indeed for homoge-
neous samples the I-V curve is written as V=Rg(I-1,), that
for I>1. implies a linear behavior if the pinning force and
the flux-flow resistance Ry are current independent. In this
case the usual picture given by Bardeen-Stephen (BS) yields
the well known flux-flow resistance Ry=Rzs=(N®,/B,)R,,
usually in agreement with experimental data,> which under-
lines that the total number of vortices N=B/®,, is moving
with the same flux-flow velocity and that the local magnetic
induction B is constant in the sample and equal to the applied
one. The BS dependence is valid in the case of the dirty
limit, where the electronic quantum structure of the vortices
is smeared due to the small value of the mean electronic
scattering time 7.*

On the other hand, discrepancies from the linear behavior
can arise from the electric-field dependence of the flux-flow
resistance® or due to an inhomogeneous distribution of the
critical current density.6 Here, nonlinearities close to the
critical current due to thermal activation processes are not
considered; as well as Joule heating processes at high cur-
rents can be minimized. Nonlinearity of IVC can be ascribed
to a decreasing of the mean pinning force F, with increasing
current (with the consequent increase of the vortex velocity)
accompanied by a change of the moving vortex lattice in-
duced by the bias current. In fact due to the competition
between the elasticity of the vortex-vortex interaction and
the strength of the vortex-pin interaction in the presence of
disorder, owing to the underlying pin distribution, the vortex
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lattice deforms to adapt itself to the pinning centers. Thus the
resulting average pinning force F, depends on this rearrange-
ment of the vortex lattice. In the strong pinning case, each
vortex feels the single interaction f, with a pinning center
and the correlations among all the other vortices become
weak, thus the flux line lattice breaks into clusters with finite
correlation lengths. On the contrary, in the weak-pinning
case, the vortex lattice undergoes a smooth elastic perturba-
tion, so that a collective interaction is established, with a
further reduction of the average pinning force F), and an
homogeneous moving vortex lattice. As a consequence, by
varying the external magnetic field and temperature, a tuning
from one to the other case can be obtained. This vortex lat-
tice changing behavior is responsible for the so-called peak
effect (PE) of the critical current,” which can lead to a tran-
sition of the vortex lattice from an ordered phase to a disor-
dered one. Very recently, it has been outlined that the origin
of the PE is still under debate, indeed it has been clarified
that such effect strongly depends on the pinning
mechanism.?~'© Moreover, since the total pinning force can
also depend on the bias current, a dynamical transition,
known as dynamic ordering (DO), driven by an increasing
bias current may occur from the disordered plastic phase
which usually shows a higher F, to an ordered one, marked
by a lower F),. In presence of strong spatial pinning inhomo-
geneity, the disordered phase can give rise to a distribution of
pinning forces leading in some cases to easy flux-flow chan-
nels or to vortex shearing.!! The change in the vortex motion
from a plastically disordered flow to a more ordered elastic
motion, i.e., dynamic ordering,'? related to the reduction of
the mean pinning force, corresponds to the presence of a
peak in the differential resistance R;=dV/dI. Such a peak
occurs at a definite value of the bias current, which strongly
depends on the magnetic field and temperature for a certain
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degree of disorder in the sample.!?>"'* In the past much atten-
tion has been focused on the current induced ordering of
vortices in weak-pinning superconducting materials. Indeed,
the change of slope in the IVC, with the corresponding peak
in the differential resistance R, versus I, has been widely
studied in weak-pinning samples, such as 2H-NbSe, single
crystals,’> Nb,Ges, thin films,!*> Mo;,Ge,; thin films,'
Mo;sRe,s thin films.!” Experimental studies,'>!>!3-20 theo-
retical works,'>?! and computer simulations'#?>~* have con-
firmed that such a peak is determined by the dynamic phase
transition of the vortex lattice from the plastically (disor-
dered) to the elastically (ordered) flow.

In addition to DO, intrinsic electronic nonequilibrium ef-
fects in the mixed state lead to highly nonlinear behavior, as
predicted by Larkin and Ovchinnikov (LO) more than 30
years ago.”> Advances in thin-film technology allow the fab-
rication of superconducting film specimens with a thickness
approaching the nm range. Due to the corresponding strong
increase in the surface-to-volume ratio, Joule heating effects
in the presence of an applied electric current can be consid-
erably reduced, and nonequilibrium processes can be studied
more accurately. In the past, electronic nonequilibrium phe-
nomena have been observed in two classes of materials:
semiconductors and superconductors in the mixed state. In
both cases it is the relatively small concentration of the rel-
evant charge carriers, which allows the generation of an ap-
preciable electric field in the sample without resulting in an
electric current of such magnitude that Joule heating be-
comes the dominating nonequilibrium effect. We note that in
this context in the mixed state of superconductors the rel-
evant charge carriers are the quasiparticles and not the super-
conducting Cooper pairs. In contrast to this, in a metallic
conductor the high value of the dissipative electric current
usually results in a dominating influence of Joule heating
effects.

For the study of electronic nonequilibrium effects in the
mixed state of a type-II superconducting film it is clearly
beneficial if the substrate of the superconducting film shows
a high value of the thermal conductivity, and if the film/
substrate configuration is embedded directly within liquid or
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even superfluid helium. The nonequilibrium LO theory refers
to the situation where the vortex lattice generated by an ap-
plied magnetic field is set into motion due to the Lorentz
force induced by an applied electric current. In the tempera-
ture range not too far below the critical temperature T, the
energy supplied in the core to the quasiparticles by the elec-
tric field is sufficient to let them escape from the core itself,
determining a nonequilibrium distribution of the quasi-
partciles.

LO derived the following expression for the flux-flow re-
sistivity pp,>

2
pF(E>=pF(0)[1+(§) ] (1)

where E is the flux-flow electric field and py(0) refers to the
limit E=0. Equation (1) states that the flux-flow resistivity
becomes electric-field dependent. The resulting IVC show an
upward curvature, and negative differential resistivity sets in
at E=E". In the case of current-biased operation, at E=FE" the
resistive voltage jumps discontinuously to a higher value,
inducing a flux-flow instability (FFI). We note that the criti-
cal electric field E* and the critical vortex velocity v™ are
related by means of the equation E*=B X v*, where B is the
magnetic flux density. Therefore the relation between the
predicted critical vortex velocity and the experimental criti-
cal voltage V* is given by v*(B)=V*/BL, where, for an ho-
mogeneous vortex motion, L is the distance between the
voltage contacts.
The quantity v* is given by the LO theory®

. \/ (1-7/T.)">D[14£(3)]'
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Here D is the quasiparticle diffusion coefficient, {(x) is the
Riemann zeta function, and 7. is the quasiparticle energy
relaxation time. The quasiparticle system tends to relax back
to its equilibrium distribution with the rate 7.'.

In this paper we report on the DO and FFI effects of the
vortex motion in superconducting thin Nb films with quite
strong flux pinning. The critical vortex velocity v* which
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FIG. 1. (Color online) (a) IV at T=2.1 K in a low field range: a=0.01, b=0.02, ¢=0.03, d=0.04, ¢=0.05, =0.06, h=0.08, i=0.1, j
=0.2 T. (b) IV at T=2.1 K in a high field range. The curves are shown starting from a=1.0 T to m=3.2 T with a magnetic-field step of

02T.
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TABLE 1. Physical parameters of the Nb films.

Parameter Value
Film thickness d 0.1 wm
Electron mean free path I 5 nm
Fermi velocity vg 2X10° m/s
Coherence length at zero temperature &(0) 7 nm
Normal state resistivity pjox 15 Q) cm

could be ascribed to the flux-flow instability, as predicted by
LO,% was measured as a function of the magnetic field and
the temperature. In addition, before the instability was
reached, a peak in the electric current dependence of the
differential flux-flow resistance was also observed corre-
sponding to the dynamic ordering transition. To our knowl-
edge, this is the first time that such a nonlinear effect was
observed in the presence of quite strong pinning, close to the
vortex velocity instability.

II. EXPERIMENTAL RESULTS

The samples investigated were Nb thin films with 100 nm
thickness deposited on Si(100) substrates in a UHV dc diode
magnetron sputtering system, with a base pressure of about
4 107® mbar and a sputtering argon pressure of 10~ mbar.
The deposition rate was typically 0.28 nm/s. It was con-
trolled by a quartz crystal monitor calibrated by low-angle
reflectivity measurements. The Nb strips were 100 wm wide
and 2 mm long. The typical superconducting transition tem-
perature was 7,=8.5 K with a transition width AT.=0.1 K.
The residual resistance ratio was always around
R(300 K)/R(10 K)=2. A typical value of the critical cur-
rent density, obtained by the standard 10 wV/cm criterion,
at 42 K and zero magnetic field was J.=2X10° A/cm?.
The Nb films are type-II superconductors having a Ginzburg-
Landau parameter k= 6. The characteristic sample param-
eters are summarized in Table 1.
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The transport measurements were performed using the
four-point configuration in the presence of an external mag-
netic field up to 3 T applied perpendicular to the film plane
and in the temperature range between 2.1 K and 7. At tem-
peratures of 4.2 K and below the samples were always in
direct contact with liquid helium. The lower values of the
magnetic field were generated using a copper coil having a
field/current ratio of 0.013 T/A. In order to minimize Joule
heating effects, the IVCs were measured using rectangular
current pulses with a current-on time of 2.5 ms and a current-
off time of 3.5 ms. During the pulsed measurements the
sample temperature was continuously monitored, and by
sweeping the pulse height of the bias current upward and
downward no hysteresis has been observed so that thermal
effects can be excluded.

In Figs. 1(a) and 2(a) we show the measured IVCs at
different applied magnetic fields at the temperature of 2.1 K
in superfluid helium and at 4.2 K, respectively. The
magnetic-field values are indicated in the caption of the fig-
ures. At their upper ends the curves jump to higher voltages.
This occurs at a critical voltage V*, as can be seen in Figs.
1(b) and 2(b). As we see from Figs. 1(a) and 2(a), in a defi-
nite temperature dependent field range, before the instability
is reached, a change of the curve concavity is observed
which can be related to the presence of a peak in the differ-
ential resistance dV/dI. Above the peak an almost linear IVC
is recovered, implying a current independent dynamic pin-
ning force and a constant flux-flow resistance, almost in
agreement with the BS prediction. In order to demonstrate
this effect more clearly, the derivatives dV/dI of the IVC’s
were calculated numerically from the data, and they are plot-
ted versus the applied electric current in Fig. 3 in which part
(a) refers to the temperature of 2.1 K and part (b) to 4.2 K.
The peak in the differential resistance dV/dI can clearly be
seen, and at 2.1 K this effect is more pronounced than at 4.2
K. This nonmonotonic behavior of the derivative dV/dI is
likely due to the influence of flux pinning, as will be dis-
cussed in the next section.

We remark that, above the peaks, the asymptotic values of
the differential resistances shown in Figs. 3(a) and 3(b) are
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FIG. 2. (Color online) (a) IV at T=4.2 K in a low field range: a=0.003, b=0.004, ¢=0.005, d=0.006, €=0.008, g=0.01, h=0.02, i
=0.04, j=0.06, k=0.08, 1=0.1, m=0.2, 0=0.4 T. (b) IV at T=4.2 K in a high field range, up to B.,. The curves are shown starting from

a=1.1 T to j=2.0 T with a magnetic-field step of 0.1 T.
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I(A)

(b)

FIG. 3. (Color online) (a) dV/dI at T=2.1 K for different magnetic-field values: a=0.01, b=0.02, ¢=0.03, d=0.04, =0.08, h=0.2,
i=0.4, j=0.5 T. (b) dV/dI at T=4.2 K for different magnetic-field values: a=0.003, b=0.004, ¢=0.005, ¢=0.007, g=0.01, h=0.02,
i=0.04, j=0.06, k=0.08, m=0.1, n=0.2, p=0.3, q=0.4 T. Inset: enlargement of the low field range differential resistance.

the flux-flow values Ry, whereas such peaks correspond to
the inflection points in the S-shaped flux-flow branches of
the I-V characteristics displayed in Figs. 1(a) and 2(a) at low
fields. On the contrary, at higher fields close to B.,, where
there are no voltage jumps anymore, the S-shaped /-V curves
shown in Figs. 1(b) and 2(b) correspond to the continuous
transition to the normal state resistance R,,.

Concerning the observed voltage jumps in the IVC shown
in Figs. 1(b) and 2(b) and the instability mechanisms respon-
sible for them, it is important to evaluate the Joule heating
effects, in order to see whether they can be definitely ne-
glected.

To distinguish between an extrinsic or intrinsic instability
induced at high driving currents, a previous thermal diffusion
analysis has been performed to exclude the Joule heating
effects, as well as a proper experimental biasing operation
mode has been found.?®?” On that basis we can state that in
our Nb thin films the thermal diffusion characteristic time
rr=d*/ mD7=0.04 ns (D; is the thermal diffusivity) is
much lower than the surface cooling characteristic time by
the liquid helium 7,=yCd/2h=10 us (7 is the material den-
sity, C is the specific heat, & is the heat transfer coefficient),

at least at 7=4.2 K. These results ensure a uniform tempera-
ture across the Nb conductor, but the thermal exchanges with
the environment should be evaluated. We already indicated
that both the thermal exchanges with the liquid helium bath
and with the substrate are involved, due to the finite heat
removal rate.”® In any case the heat transfer coefficient / for
liquid helium is high enough (=10* W/m? K), as for the
superfluid helium (=10° W/m? K), that the cryogenic stabi-

lization criterion is satisfied in terms of the Stekly
parameter,?®
Jod
a= pN—C , (3)
h(T - T,)

where py is the normal state resistivity, T} is the liquid he-
lium bath temperature, and T is the sample temperature. In

the Eq. (3), the value is @=0.002, as previously estimated in
our Ref. 26.

Moreover, by still taking into account the quasiparticle
heating, following the theory of Bezuglyj and Shklovskij,?’
we have also already evaluated the critical parameter By
=0.24 T, below which relevant heating effects can be
ignored.?®3 More importantly, on the basis of the experi-
mental evidence on the magnetic field dependence of the
dissipated power at the instability point P*(B)=I"V* (as re-
ported elsewhere, see Fig. 2 of Ref. 26, and Fig. 3 of Ref. 31)
we became confident that, in the whole magnetic-field range
investigated, the observed instabilities should be accounted
for intrinsic mechanisms rather than thermal effects.

Therefore, Joule heating effects can be neglected in the
isothermal measurements at 7=4.2 K and 2.1 K.

III. DYNAMIC ORDERING
A. I-V characteristics

At the beginning of our discussion we point out that the
Nb films display relatively strong flux pinning due to the
large J,. values and to the magnetic-field dependence of the
pinning force which is placed in between the weak and the
strong pinning behavior. In particular, by a direct comparison
of the experimental curves of F,(B) with the theoretical
ones®? we can identify the type of pinning in our samples as
an intermediate regime between weak and strong.® For a
comparison, well annealed Nb foils of 18 um thickness,
studied by one of the authors almost 40 years ago,’ at 4.2 K
and magnetic fields of 0.1-0.2 T showed a critical current
density of about 0.7-2.0X 10> A/cm?, i.e., values smaller
by four orders of magnitude than those of the present
samples. Furthermore, in those Nb foils? a residual resistance
ratio R(295 K)/R(4.2 K; 0.4 T)=620 had been measured.
In contrast to the results shown in Figs. 1-3 the homoge-
neous Nb foils show a pure linear flux-flow behavior
V=Rp(I-1,), this means a direct proportionality of the vortex
velocity to the bias current: v=(Ry/BL)(I-1.), with R val-
ues in agreement with the BS prediction,? corresponding to
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the absence of the peak in the derivative dV/dI. We conclude
that in our case the peak in the derivative dV/dlI is likely
caused by pinning effects on magnetic flux quanta. It can be
understood in terms of the following considerations.

In the case of dynamic ordering, in the ordered phase the
vortex lattice moves as a whole object with a defined pinning
force (i.e., a well defined I.). On the contrary, in the disor-
dered phase, due to a strong spatial variation of the pinning
force, the vortices are correlated only within each indepen-
dent cluster. The actual behavior depends on the inhomoge-
neity of the pinning centers so that the unit volume pinning
force acting on each cluster can be different, leading to a
distribution of critical current density. By considering the
sample consisting of different slices in series along its length
L on the x axis, the critical current density distribution deter-
mines different values of the critical current I’ =I.(x) of each
slice.* Therefore, due to the distribution f(I') of the local
critical currents along the sample length, as the bias current
increases above each threshold I’, vortices are set in motion
in the corresponding slice, and this leads to an increasing
fraction n(I) of moving vortices as the current increases
n(D)=JLA(I")dl’ 3 where n(I) is normalized to the total
number of vortices N. As a consequence the nonlinear /-V
characteristic shows no peak in the differential resistance.
Thus, even in the absence of the dynamic ordering, in the
presence of inhomogeneity of the pinning centers the vortex
velocity can be written,?

v=—f (I-T)fI"ar,

where f(I') is the critical current density distribution func-
tion, whose details depend on the actual behavior of the pin-
ning centers, although it is often selected a Gaussian distri-
bution function.®%

For large inhomogeneity some vortices can be almost free
and move along channels whose number and width can in-
crease with increasing bias current (vortex shearing). The
spatial distribution of vortex velocities, in this plastic flow
regime has been numerically evaluated by Faleski et al.'* A
two-peaks distribution function of the vortex velocity has
been obtained allowing to identify two types of vortices:
slow vortices associated to the peak centered at the lower
velocity and fast vortices associated to the higher velocity
peak. Within this scenario the slow vortices are located in the
strongly pinned clusters, while fast vortices flow in the chan-
nels around the pinned clusters. Hence, only a certain frac-
tion ny(I) of the total number n(I) of magnetic flux quanta
per unit area, which depends on the electric current /, par-
ticipates in the resistive flux-flow process with a slower vor-
tex velocity (due to a larger pinning force).'* Thus the dif-
ference n{l)=n(l)-n,(I) is the remnant fraction of flux
quanta moving with a faster vortex velocity (due to a lower
pinning force).

By increasing the driving current, the dynamic ordering of
the slow vortices takes place, with the consequent reduction
of the experienced pinning force, so that the number of fast
vortices increases rapidly leading to a non linear IVC and to
a peak in the differential resistance at a given bias current /,,.

PHYSICAL REVIEW B 80, 144521 (2009)
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FIG. 4. (Color online) The normalized differential resistance as
function of increasing driving current. The solid line is the homo-
geneous case with a steplike increase corresponding to a definite
critical current value. The circles represent numerical data in the
case of a Gaussian distribution of critical currents. Inset: the S
function versus the driving current. The peak current value /, and
the width AJ are also displayed (see text).

In other words, within some current range, the vortex lattice
undergoes the transition from a disordered phase, corre-
sponding to a larger pinning force, to an ordered phase, cor-
responding to a lower one. In this case, the effective fraction
of vortices, participating in the flux motion with higher ve-
locities, increases, while the number of slower vortices de-
creases. Therefore, the spatial velocity distribution depends
on the bias current /. In particular the relative weight of the
two peaks changes as function of /. The average drift veloc-
ity of the vortex lattice can be written in terms of the equiva-
lent critical current distribution fp(I,1"),

1
vd(1)=% f (1= I')fpo(LI)dI’ @)
0

with fDo(I 1) (1-p I))fslaw(ll)"'ﬁ(l)f}‘asf(l) and
Fstow fasil')=——%= e exp[— (1_1&] The B(I) function increases

from zero up to 1 and is centered on the peak current value
1,, as shown schematically in Fig. 4 (see inset). Although its
particular expression is not strictly relevant to obtain the R,
peak displayed in Fig. 4, thus influencing only its shape
(width and height), the B(I) function determines the variation
of the fpo from the two-peaks distribution [f;,,,(I'), f1as(I")]
to a single peak distribution [fy,,(I")] of the ordered phase.

Considering that the mean value I is lower than /;, and
that in the ordered phase the width of the distribution func-
tion associated with the fast vortices is smaller than the dis-
tribution width associated with the slow vortices, since the
vortex lattice moves as a whole, the Eq. (4) can be rewritten,
for 1> I;, as

I
vaD) =1 - B(I)]% f (=) f 1)l + /5'(1)%(1 _1p.
0
(5)

By writing Egs. (4) and (5) we have retained as starting point
the inhomogeneous sample and we added the dynamic order-
ing ingredient by assuming a different distribution function

144521-5



GRIMALDI et al.

depending on the type of moving vortices in the system.
Thus, behind Egs. (4) and (5) the physical meaning is that we
are describing the motion of a vortex lattice characterized by
an average drift velocity v, driven by an increasing bias
current which induces an increasing order into the moving
vortex system in the presence of an overall inhomogeneous
distribution of pinning forces.

Therefore, the full I-V curve describing the transition be-
tween the two phases can be written as

V(D) =[1-BWD]IV,D) + B VAD (6)

with the overall voltage V=BLv,. This implies that the com-
ponent of the slowly moving vortices should give the overall
voltage determined by the critical current distribution: V
=RpJoI=1')f o (I")dl'".

However, as the current increases, an increasing fraction
of slow vortices achieves the ordered state. Once the ordered
phase has been completely established, no critical current
distribution exists anymore: V,=Rg(I-1,).

The resulting current dependence of the differential resis-
tance, plotted in Fig. 4, is

av '
Rd= E =RF[1 - B(D]f fslow(l,)dl, +RFﬂ(1)
0

ap
+ E(Vf_ V) (7

where %:Rpf{]fsluw(ll)dl/ and %‘:RF.

From Eq. (7) it clearly appears that the peak of the differ-
ential resistance, shown in Fig. 4, is due to the presence of a
peak of dB(I)/dI. This can lead to the peak of the experi-
mental data shown in Fig. 3. The solid line in Fig. 4 repre-
sents the differential resistance with an homogeneous critical
current value, and a consequent steplike function. Indeed, in
the presence of artificial channels inducing easy flow vortex
motion along the channels with a shear interaction among
them, it has been recently observed a two steps differential
resistance, as shown in Fig. 2 of Kokubo et al.3° In our case
the presence of the critical currents distribution leads to the
smooth increase of the dynamic flux-flow resistance, whose
value is still lower than the Bardeen-Stephen prediction till
the DO sets in.

The I-V curve of Eq. (6) is displayed in Fig. 5, showing
the nonlinear S-shape of the curve (solid red curve) corre-
sponding to the peak of the dynamical resistance. In Fig. 5
the full circles represent the experimental data of the I-V at
H=0.02 T and T=2.1 K. The solid red curve is the numeri-
cal result obtained from Eq. (6) with the Ry (see inset of Fig.
5) and the I, parameters fixed by the linear fit at high cur-
rents, and the Gaussian free parameters o, and /. There are
two parameters left in the B(I) function (see inset of Fig. 4)
that determine the range of the bias current in which the DO
takes place: the peak current value 7, is fixed by the experi-

P
mental data and the width A[ is a free parameter.

B. B-T phase diagram

In agreement with the above discussion, we note that the
experimental curves of the /I-V and dV/dI display the same
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FIG. 5. (Color online) The experimental data (circles) compared
to the I-V curve numerically calculated (solid red curve) at
B=0.02 T and T=2.1 K. The chosen numerical parameters are:
0,=0.0025 A, [;=0.225 A, 1,=0.235 A and A/=0.003 A. Inset:
the flux-flow resistance, deduced by the high current linear fit of the
I-V curves, as function of the magnetic field.

remarkable features in a limited temperature and magnetic-
field range. In particular the observation of a peak in the
current dependence of the flux-flow dynamic resistance Ry,
displayed in Fig. 3, is shown in the B-T plane in the grayed
area of Fig. 6.

By comparing the B-T phase diagram of our Nb thin films
with those of weakly and moderately weak-pinning systems,
such as Nb-Ge and Mo-Re thin films, respectively,'*!7 we
note that for the fairly strong pinning Nb sample, DO already
occurs at very low fields of a few mT. This is in agreement
with the statement that an increase of the disorder pulls down
the lower limit of the magnetic-field range in which DO
takes place.'?

We also outline that the upper limit of the DO magnetic-
field range shown in Fig. 6 is placed very far from the melt-
ing line as well as the B, line of such Nb low temperature
superconductor. Therefore our data are consistent with the
dynamic ordering interpretation, although there is no evi-

0.40,

0.24|- i

B (T)

0.161 DO 4

0.08|- =

T(K)

FIG. 6. B-T phase diagram in which the grayed region (DO)
corresponds to the occurrence of the peak in R, vs I.
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FIG. 7. (Color online) Flux-flow dynamic resistance R}, as a
function of the external magnetic field at 7=4.2 K.

dence of any dynamic melting phase transition such as pre-
dicted in Ref. 12 and usually observed instead for weaker
pinning materials, such as Nb-Ge (Ref. 13) and Mo-Ge.'®

In the region of the B-T plane where DO occurs, in the
limit of large electric currents, above the maximum of the
slope dV/dI and just below the instability at the critical vor-
tex velocity v*, the slope of the IVC’s is expected to be only
little affected any more by flux pinning. This means that the
dynamic pinning force can be considered current indepen-
dent. Hence, in this current regime the IVC’s can provide
some information on “free flux flow.” In Fig. 7 the experi-
mental dynamic resistance at 4.2 K is plotted as function of
B: the full dots represent the slopes dV/dI=R) just before the
instability. The dynamic resistance R} is seen to increase
monotonically with increasing B. At magnetic fields lower
than 0.2 T the resistance R, increases about linearly with the
flux density B, the functional form is close to, although not
identical with the BS prediction, thus R}~ Rps.

For an intermediate field range (0.2 T<B<1.0 T) the
slope of R, vs B becomes smaller than the BS prediction. For
magnetic fields above the DO region (see Fig. 6) the dynami-
cal resistance increases monotonically with the current until
the instability takes place. At higher fields (T=4.2 K,B
>1.5T), as B,, is approached, the instability disappears
[see Fig. 2(b)]: the voltage jump turns into a continuous in-
crease of the voltage toward the normal state value and the
actual value of the flux-flow resistance cannot be identified
by the dynamical resistance anymore. This latter increase has
been previously observed and appears to be typical of the
flux-flow resistance close to B,, in type-II superconductors.’’
For a quantitative comparison with the BS prediction, in Fig.
7 we also show the plot of R,B/B,, (dashed line), in reason-
able agreement with the experimental data at low fields. Here
R, is the resistance value measured above T, at 10 K, and the
value B,(4.2 K)=2.1 T was taken by the criterion J.
=0 A/cm? in the measured J.(B,T) dependence. Some de-
viations of the differential resistance from the expected BS
prediction have been already reported on different materials
that also display the disorder driven dynamic transition in the
flux-flow state.’®3° Moreover, there exists a large intermedi-
ate magnetic-field range where the experimental curve falls
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FIG. 8. (Color online) The critical vortex velocity as function of
the external magnetic field at 4.2 K (squares), and 2.1 K (circles).
Inset: the high field crossover at B..=0.6 T can be identified.

below the values calculated from BS. A similar behavior has
been recently reported for the case of a multilayer Ta/Ge
sample.** However, this will be addressed in a different pa-
per.

Regarding the experimental results at very low magnetic
fields, an estimate of the self-field By, of the applied electric
current / is important. Taking the value /=0.3 A [from Fig.
2(a)] and the geometric cross section of the Nb film, one
finds By, ;=2 mT. This value indicates that the self-field re-
mains sufficiently small to be neglected in our discussion.

IV. FLUX-FLOW INSTABILITY

The TVC shown in Figs. 1(a) and 2(a) display the abrupt
voltage jumps which are the fingerprint of the flux-flow in-
stability. In Fig. 8 the critical vortex velocity v* is plotted
versus the magnetic flux density B for the temperatures of
2.1 and 4.2 K. At magnetic fields larger than about 0.6 T the
critical velocity v* is nearly independent of B, whereas at
lower magnetic fields it increases with decreasing B.

The independence of the critical flux-flow velocity v* of
the magnetic field above about 0.6 T, shown in Fig. 8, agrees
with the LO theory.” However, this theory assumes spatial
homogeneity of the nonequilibrium quasiparticle distribu-
tion. This spatial homogeneity requires that the critical ve-
locity v™ multiplied by the quasiparticle energy relaxation
time 7, must reach at least the intervortex distance ay
~1/B"2. As has been discussed in Ref. 41, this leads to a
crossover effect between a regime with a constant value of v*
at high magnetic fields and a regime with v*~1/B'? at
lower magnetic fields. In the inset of Fig. 8 this crossover
can clearly be seen.

According to Eq. (2) the energy relaxation time 7, can be
calculated from the critical vortex velocity v*. In Fig. 9 we
show a typical plot of v* versus the reduced temperature
obtained at the magnetic flux density B=0.01 T. The critical
vortex velocity is seen to be nearly independent of the tem-
perature below about r=0.7. This independence of the tem-
perature suggests the dominance of quasiparticle scattering
by lattice defects,>**? which seems reasonable. The reduction
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FIG. 9. (Color online) Temperature dependence of critical vor-
tex velocity at B=0.01 T. The solid line is the fitted curve based on
the LO prediction of Eq. (2).

of v* above r=0.7 appears to be associated with the factor
(1-7/T.)"* in Eq. (2).”” From the results such as shown in
Fig. 9 one finds the value of about 7.~5.0X 107! s, in
agreement with the literature,*>* independent of the tem-
perature in the range above about #=0.7.

Starting from the obtained energy relaxation time 7., we
are able to verify the validity of the condition v*7.=ay,
which ensures the spatial homogeneity of the nonequilibrium
quasiparticle ~ distribution.  Since ay=(2®P,/\3B)'?* is
magnetic-field dependent, whereas 7. is assumed constant
within the LO theory, and we directly measured the critical
vortex velocities v*(B) (see Fig. 8), we find that such condi-
tion is always satisfied for fields B=B,,.

V. DYNAMIC PHASE DIAGRAM

In our Nb samples, due to the fairly strong intrinsic pin-
ning, we were able to detect both the disorder driven dy-
namic transition and the flux-flow instability of the moving
vortex lattice. On one side, dynamic ordering results from
the competition between the moving elastic vortex lattice
and the strength of the pinning centers. Indeed, within the
collective pinning (CP) theory,** we can assure that our
samples belong to the two-dimensional (2D) CP case, since
the condition L,>d/2 is satisfied with L,=3[b/(1
-b)]"2R,.* According to 2D CP, a short range order is re-
tained within the correlated volume V., whose correlation
lengths are R.=ayceq/ F ;/ 245 and L., perpendicular and along
the field direction, respectively, where cqq is the shear
modulus.*

On the other side, the instability of the moving vortex
lattice is affected by the degree of ordering of the flux lattice.
From the experimental I-V data (see Figs. 1 and 2), we ob-
serve the linear flux-flow branches more pronounced in the
temperature and magnetic-field range of the DO. This im-
plies that higher flux-flow velocities are needed to reach the
highest limit of the critical vortex velocity before the insta-
bility drives the system to the normal state. Since it has al-
ready been established that DO occurs if a driving force den-
sity Fpo is larger than the pinning force density F p,'3 here
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FIG. 10. (Color online) F-B phase diagram at 7=4.2 K. On the
upper panel the correlation length R./ag is shown.

we can confirm that DO occurs if F,<Fpo<F * where the
force F*=I"B is related to the instability current value I*, and
Fpo=1,B, where 1, is the value marked by a sharp peak in
R,I), and F,=IB. Therefore, taking these values from the
experimental data, we have constructed a dynamic phase dia-
gram in terms of a force-magnetic field diagram (F-B), as
shown in Fig. 10 for 7=4.2 K.

In order to distinguish among the different dynamic flux-
flow (FF) states, it is well known that in the region of DO,
the disordered vortex lattice starts initially a plastic motion
which turns into an elastic flow driven by sufficiently high
bias currents. Thus above Fp, the whole system is likely
more ordered and we have identified it with an “ordered FE.”
This is confirmed by the magnetic-field dependence of the
correlation length R,.* In fact R, increases up to its maxi-
mum value within the magnetic-field range in which DO
occurs, as displayed in Fig. 10. At higher fields, above the
DO region, R, becomes a decreasing function of B and F), is
still increasing, as shown in Fig. 10, so that in the absence of
a current induced dynamic ordering, the disordered vortex
lattice keeps moving in a “disordered FF,” although the
amount of the disorder can still change in the vortex lattice.
Finally, regardless of the applied magnetic field, below the
F, line the lattice is in the pinned state, while the F* line
establishes the limit of stability of the moving vortex lattice
above which the system undergoes an abrupt transition to the
normal state.

In Fig. 11 we show the dynamic phase diagram at T
=2.1 K. The main features found at 7=4.2 K are confirmed.
There is a small window in which the ordered flux-flow
(OFF) state is established. However, in a wide intermediate
magnetic-field range the difference F*—F, drops to zero.
This is a consequence of the stronger pinning at lower tem-
peratures, so that the amount of the disorder increases and
the instability current decreases until F*=F),.

The role of the increasing disorder on the current induced
ordering dynamic transition has been considered in a theo-
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FIG. 11. (Color online) F-B phase diagram at 7=2.1 K. On the
upper panel the correlation length R./a, is shown. OFF and DFF
indicate the ordered and the disordered flux-flow regions,
respectively.

retical phase diagram I-B, see Fig. 4 of Ref. 47, in which a
sharp dynamic transition is identified in the case of interme-
diate pinning in the material, due to the presence of large
domains of an ordered vortex lattice. This is indeed our case,
in which the domain size is found in the range 6a,—15a,, as
shown in Figs. 10 and 11, even larger than the strong pinning
limit reported as a few times a,,'” and smaller than in the
case of the weak-pinning materials studied in the past.!34
Therefore, although our J. values are almost four decades
larger than in weak-pinning materials, since the magnetic-
field range in which DO occurs is around mT (see Fig. 6)
compared to the tesla range for the weaker samples, numeri-
cally our R./a, values become comparable with the weaker
ones, but the magnetic-field dependence looks like quite dif-
ferent, with the maximum shifted to lower fields since our
F,(B) have a maximum at fields higher than B/B,=0.3. The
intermediate pinning regime of our Nb thin films allows us to
analyze both the nonlinear effects of the dynamic ordering
and the flux-flow instability, and this is the first time such
effects have been observed on the same material. Indeed in a
recent study on strong pinning Nb thin films,*? although the
flux-flow instability has been carefully investigated, no such
current induced DO transition has been reported. In this pa-
per a crystallization phase transition from a plastic flow J
<J, to a moving vortex crystal for />J,. is proposed. At still
higher currents a linear flux flow is always observed with no
inflection point until the instability is reached.

PHYSICAL REVIEW B 80, 144521 (2009)

VI. CONCLUSIONS

We study the nonlinear flux-flow behavior in the moder-
ately strong pinning Nb superconductor. The experimental
shapes of the -V characteristics measured in thin Nb strips
reflect the nonlinear feature of the vortex dynamics. In par-
ticular, in some field and temperature ranges an S-shape of
the flux-flow branch, corresponding to a peak in the flux-
flow differential resistance (sensitive to the external mag-
netic field and temperature) appears, as usually observed
only in weak-pinning materials. It can be accounted for in
terms of the transition from a disordered vortex phase to an
ordered one (i.e., the dynamic ordering) of the moving vor-
tex lattice driven by the bias current. The different values of
the effective pinning forces in the different phases determine
two different vortex velocities, so that the flux-flow motion is
characterized by slower and faster moving vortices. By in-
creasing the bias current, all vortices can reach the same high
velocity, and the usual linear flux-flow motion is restored.
Nevertheless, in an intermediate magnetic-field range the dy-
namic resistance cannot be identified anymore with the BS
flux-flow resistance.

Once the high velocity regime is achieved, the vortex lat-
tice undergoes a second transition, but this is an abrupt
change known as a flux-flow instability, that leads the system
to the normal state. The magnetic field and temperature de-
pendences of such critical vortex velocity have been studied
within the nonequilibrium theory of Larkin-Ovchinnikov,
thus deducing the quasiparticle energy relaxation time 7.
The electronic nature of the flux-flow instability has been
confirmed.

To summarize, a dynamic phase diagram has been pro-
posed to describe the observed flux-flow dynamics arising
from the competition between the disorder driven transition
and the instability of the moving vortex lattice. These two
nonlinear effects manifest themselves in the case of interme-
diate pinning strength, since a larger disorder can hide the
dynamic ordering. On the other side, in the limited tempera-
ture and magnetic-field range of the DO, such disorder
driven transition can lead to a more stable motion of the
vortex lattice. Indeed, this moderately strong pinning regime
induces a plastically deformed vortex lattice already for
small applied magnetic fields, so that the DO occurs for
fields lower than the expected ones in the case of well known
weak-pinning materials.

ACKNOWLEDGMENTS
We acknowledge the fabrication of the samples from A.

Angrisani Armenio. We are grateful to C. Attanasio for use-
ful discussions. Thanks to D. Zola for reading the paper.

144521-9



GRIMALDI et al.

*Corresponding author; grimaldi @sa.infn.it
Y. B. Kim, C. E. Hempstead, and A. R. Strnad, Phys. Rev. 139,
A1163 (1965).
2J. Bardeen and M. J. Stephen, Phys. Rev. 140, A1197 (1965).
3R. P. Huebener, R. T. Kampwirth, and A. Seher, J. Low Temp.
Phys. 2, 113 (1970).
4R. P. Huebener, O. M. Stoll, and S. Kaiser, Phys. Rev. B 59,
R3945 (1999).
SR. P. Huebener, Magnetic Flux Structures in Superconductors,
2nd ed. (Springer, Berlin, 2001).
SW. H. Warnes and D. C. Larbalestier, Cryogenics 26, 643
(1986).
7A. B. Pippard, Philos. Mag. 19, 217 (1969).
8]. Lefebvre, M. Hilke, and Z. Altounian, Phys. Rev. Lett. 102,
257002 (2009).
9X. B. Xu, H. Fangohr, X. N. Xu, M. Gu, Z. H. Wang, S. M. Ji,
S. Y. Ding, D. Q. Shi, and S. X. Dou, Phys. Rev. Lett. 101,
147002 (2008).
IOM. G. Adesso, D. Uglietti, R. Flukiger, M. Polichetti, and S.
Pace, Phys. Rev. B 73, 092513 (2006).
'M.-O. Andr&, M. Polichetti, H. Pastoriza, and P. H. Kes, Physica
C 338, 179 (2000).
12A. E. Koshelev and V. M. Vinokur, Phys. Rev. Lett. 73, 3580
(1994).
13J. M. E. Geers, C. Attanasio, M. B. S. Hesselberth, J. Aarts, and
P. H. Kes, Phys. Rev. B 63, 094511 (2001).
14M. C. Faleski, M. C. Marchetti, and A. A. Middleton, Phys. Reyv.
B 54, 12427 (1996).
155, Bhattacharya and M. J. Higgins, Phys. Rev. Lett. 70, 2617
(1993).
I6M. C. Hellerqvist, D. Ephron, W. R. White, M. R. Beasley, and
A. Kapitulnik, Phys. Rev. Lett. 76, 4022 (1996).
7T, D. Luccio, C. Attanasio, A. Andreone, and A. M. Cucolo, Eur.
Phys. J. B 25, 263 (2002).
185, Bhattacharya and M. J. Higgins, Phys. Rev. B 49, 10005
(1994).
19W. R. White, A. Kapitulnik, and M. R. Beasley, Phys. Rev. B
50, 6303 (1994).
20y, Paltiel, Y. Myasoedov, E. Zeldov, G. Jung, M. L. Rappaport,
D. E. Feldman, M. J. Higgins, and S. Bhattacharya, Phys. Rev. B
66, 060503(R) (2002).
2IL. Balents and M. P. A. Fisher, Phys. Rev. Lett. 75, 4270 (1995).
22A.-C. Shi and A. J. Berlinsky, Phys. Rev. Lett. 67, 1926 (1991).

PHYSICAL REVIEW B 80, 144521 (2009)

23K. Moon, R. T. Scalettar, and G. T. Zimanyi, Phys. Rev. Lett. 77,
2778 (1996).

24S. Ryu, M. Hellerqvist, S. Doniach, A. Kapitulnik, and D.
Stroud, Phys. Rev. Lett. 77, 5114 (1996).

2 A. L Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 41, 960
(1976).

20G. Grimaldi, A. Leo, A. Nigro, S. Pace, A. A. Armenio, and C.
Attanasio, J. Phys.: Conf. Ser. 97, 012111 (2008).

27G. Grimaldi, A. Leo, A. Nigro, S. Pace, C. Cirillo, and C. Atta-
nasio, Physica C 468, 765 (2008).

28M. N. Wilson, Superconducting Magnets, edited by R. G. Scur-
lock (Oxford University Press, New York, 1983).

2 A. Bezuglyj and V. Shklovskij, Physica C 202, 234 (1992).

30G. Grimaldi, A. Leo, C. Cirillo, C. Attanasio, A. Nigro, and S.
Pace, J. Phys.: Condens. Matter 21, 254207 (2009).

317. L. Xiao, P. Voss-de Haan, G. Jakob, T. Kluge, P. Haibach, H.
Adrian, and E. Y. Andrei, Phys. Rev. B 59, 1481 (1999).

32E. J. Kramer, J. Appl. Phys. 44, 1360 (1973).

3 A. Leo, Ph.D. thesis, Univesita degli Studi di Salerno, 2009.

3R. G. Jones, E. H. Rhoderick, and A. C. Rose-Innes, Phys. Lett.
24A, 318 (1967).

33B. Brown, Phys. Rev. B 61, 3267 (2000).

3N. Kokubo, R. Besseling, and P. H. Kes, Phys. Rev. B 69,
064504 (2004).

37Y. B. Kim and M. J. Stephen, Superconductivity edited by R. D.
Parks (Marcel Dekker, New York, 1969), Vol. 2, p. 1107.

38S. Bhattacharya and M. J. Higgins, Phys. Rev. B 52, 64 (1995).

3P, Berghuis, A. L. F. van der Slot, and P. H. Kes, Phys. Rev. Lett.
65, 2583 (1990).

40B. I. Ruck, J. C. Abele, H. . Trodahl, S. A. Brown, and P.
Lynam, Phys. Rev. Lett. 78, 3378 (1997).

413, G. Doettinger, R. P. Huebener, and A. Kiihle, Physica C 251,
285 (1995).

#2C. Peroz and C. Villard, Phys. Rev. B 72, 014515 (2005).

BA. Angrisani Armenio, C. Bell, J. Aarts, and C. Attanasio, Phys.
Rev. B 76, 054502 (2007).

4 A. 1. Larkin and Y. N. Ovchinnikov, J. Low Temp. Phys. 34, 409
(1979).

4R. Wordenweber and P. H. Kes, Phys. Rev. B 34, 494 (1986).

46E. H. Brandt, Rep. Prog. Phys. 58, 1465 (1995).

4TM. Chandran, R. T. Scalettar, and G. T. Zimanyi, Phys. Rev. B
67, 052507 (2003).

4P, H. Kes and C. C. Tsuei, Phys. Rev. B 28, 5126 (1983).

144521-10



