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The electronic phase diagram of PrFeAsO1−xFx �0�x�0.225� has been determined using synchrotron x-ray
powder-diffraction, magnetization, and resistivity measurements. The structural transition temperature is sup-
pressed from 154 to �120 K and the magnetic phase transitions of both iron and praseodymium ions are
completely suppressed by x�0.08 fluorine doping, coinciding with the emergence of superconductivity. The
optimal doping is x�0.15 when TC=47 K while the maximum solubility of fluorine in PrFeAsO1−xFx is
reached around x=0.22. The structural, magnetic, and superconducting phase diagram is presented.
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I. INTRODUCTION

The discovery of superconductivity in the oxypnictides
LnMPnO �Ln=La-Nd, Sm, and Gd; M =Fe, Co, Ni, and Ru;
Pn=P and As�1–4 with a ZrCuSiAs-type structure5,6 sets a
milestone in the field of superconductivity. The first step in
the study of a discovered superconductor and toward eluci-
dation of the nature of superconductivity itself is the deter-
mination of the phase diagram. It is natural then to compare
the pnictide phase diagram with that of the only other class
of high-temperature superconductors, the cuprates.7–10 As in
the cuprates, superconductivity arises when a so-called par-
ent nonsuperconducting compound is doped with charge car-
riers. It has been demonstrated that the parent compound,
LnFeAsO, can be doped with holes when Ln3+ is replaced
partially by a divalent ion �La1−xSrxFeAsO,11

Pr1−xSrxFeAsO,12 and Sr2+�. Correspondingly, n-type doping
is realized either by substitution of Ln3+ by a tetravalent ion
�Gd1−xThxFeAsO �Ref. 13� and Th4+� or partially replacing
O2− by F−. Among the iron pnictides, to date, the electron-
doped �O1−xFx� iron arsenides LnFeAsO1−xFx have the high-
est TC’s reported. Until now, there have been reports on the
phase diagrams of LnFeAsO1−xFx, Ln=La,1,10,14–17 Ce,2,7

Nd,18 and Sm.19–21 Within the phase diagram of
CeFeAsO1−xFx, Zhao et al.7 argue for a suppression of the
antiferromagnetism �AFM� with doping such that the mag-
netic order vanishes in the close proximity to the supercon-
ductivity �SC�. This has been confirmed in other
LnFeAsO1−xFx systems.2,7,10,14–19 Yet, in SmFeAsO1−xFx
there are reports of coexistence of static AFM order with
superconductivity.20,21 Also, a signature of the Sm3+ ions’
magnetism has been reported in optimal superconducting
SmFeAsO0.85F0.15.

22 More recent studies on homolog
systems10,15,16 report a rather abrupt �first-orderlike� change
in the structural and magnetic-order parameters at the bound-
ary of superconductivity. Despite wide efforts toward a uni-
fied picture, a consensus has not yet been reached. Without
any doubt, the correctness of the phase diagrams relies on an
accurate determination of the fluorine-ion concentration.10,23

In this paper, we use synchrotron x-ray scattering, magneti-
zation, and resistivity measurements to map the structural,
magnetic, and superconducting phase diagram of the less
studied PrFeAsO1−xFx.

II. EXPERIMENTAL PROCEDURE

PrFeAsO1−xFx polycrystalline samples were synthesized
through a two-step standard high-temperature solid-state
chemical reaction using stoichiometric amounts of PrAs, Fe
�4N8�, Fe2O3 �5N�, and PrF3 �4N� as starting materials.3,19

The PrAs binary used in the final reaction was synthesized
by reacting Pr �3N� and As �4N� powders. The Pr:As=1:1
mix was encapsulated within a tantalum tube that was sealed
inside a quartz tube under a low-pressure Ar atmosphere,
slowly heated to 500 °C, and held at that temperature for 5
h. The powder was ground, mixed, resealed, and heated
again to 900 °C for 10 h. The stoichiometric constituents
were then thoroughly ground, mixed, and finally pressed into
pellets using a cold isostatic press with a pressure of 0.38
GPa. To avoid direct contact with the quartz tube and pos-
sible Si contamination, the pellets were wrapped in tantalum
foil before being sealed under a low atmosphere of Ar gas in
quartz tubes. They were heated to 1150 °C for 50 h. All
preparatory steps except the annealing were performed in a
glovebox under a high-purity Ar-gas atmosphere. The single
phase was checked after each step using x-ray diffraction
�XRD� with Cu K� radiation at room temperature. A discrep-
ancy between the nominal and real fluorine content has been
systematically reported in homolog systems.10,23 Therefore
we determined the actual fluorine concentration by
wavelength-dispersive x-ray spectroscopy �WDS� for each
concentration. Therefore, all fluorine concentrations reported
in this paper are the as-measured values and not the nominal
starting compositions. Figure 1 shows the actual fluorine-
doping x�WDS� as measured by WDS versus the initial
�nominal� concentration. As pointed by Ref. 23, the actual
doping of the primary phase is less than nominal �Fig. 1�
because of fluorine incorporation in secondary phases, for-
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mation of volatile components and absorbtion from the tan-
talum wrapping foil and quartz tube. Resistivity, dc- and ac-
susceptibility measurements down to 1.8 K were performed
using a Quantum Design physical property measurements
system. Electrical contacts with the samples for resistivity
measurements were made using Pelco colloidal silver paste
through attaching thin gold wires in a four-probe configura-
tion.

The silver paste was cured at 100 °C for up to 30 min in
order to avoid sample degradation. The excitation current of
2 mA was optimized for the best signal-to-noise ratio and to
prevent overheating of the samples by checking the linear
I-V characteristics. Because the absolute values of the resis-
tivity data carry an uncertainty of up to 30% due to the
slightly off-rectangular shape of the bar-shaped samples and
the size of the contact pads, we report instead resistivity data
as normalized to the room-temperature values. The ac sus-
ceptibility was measured with a 10 Oe modulated field of
frequency f =1 kHz while dc measurements were carried out
in 200 Oe. Synchrotron x-ray powder-diffraction measure-
ments with an incident-beam wavelength �=0.31 Å were
performed at DND-CAT, Advanced Photon Source, Argonne
National Laboratory.

III. RESULTS AND DISCUSSION

The parent PrFeAsO antiferromagnetic semimetal crystal-
izes in a P4 /nmm tetragonal structure at high temperatures
but undergoes a �Cmma� orthorhombic transformation at low
temperatures,24 which is characteristic of all LnFeAsO sys-
tems. In order to obtain insight into the evolution of the
crystallographic structure with fluorine doping and its rel-
evance for superconductivity, we performed synchrotron
x-ray powder-diffraction measurements on the undoped par-
ent PrFeAsO, two nonsuperconducting samples x=0.059 and
0.078, and one underdoped superconducting concentration
with x=0.082.

Figure 2 shows 2� scans through the �2 2 0�T Bragg

peak of the high-temperature P4 /nmm tetragonal structure.
The peak broadens and splits into the �4 0 0�O and
�0 4 0�O peaks of the Cmma orthorhombic phase upon
cooling. “T” and “O” subscripts denote tetragonal and ortho-
rhombic, respectively. The corresponding structural transi-
tion temperatures found within �2 K resolution are
TS=154 K for the parent, TS=142 K for x=0.059, and
TS=120 K for the fluorine doping preceding superconduc-
tivity x=0.078.

Figure 3 shows the evolution of the �2 2 0� Bragg peak for
the superconducting x=0.082 sample upon cooling to 50 K.
The full width at half maximum �FWHM� of the peak is
plotted versus temperature in the inset of Fig. 3 and shows a
continuous evolution down to 50 K. Upon cooling, we ob-
serve a continuous slight broadening of the �2 2 0� peak; yet

FIG. 1. �Color online� The actual fluorine concentration
x�WDS� as measured by WDS versus the nominal concentration
x�nominal�. The solid line it is a guide for the eyes of x�WDS�
=x�nominal�. FIG. 2. �Color online� The profile of the �2 2 0�T XRD peak of

the P4 /nmm tetragonal structure splitting bellow TS into the
�4 0 0�O and �0 4 0�O reflections of the Cmma orthorhombic
phase of nonsuperconducting PrFeAsO1−xFx �a� x=0, TS=154 K,
�b� x=0.059, TS=142 K, and �c� x=0.078, TS=120 K. T and O
subscripts denote tetragonal and orthorhombic, respectively.

FIG. 3. �Color online� The profile of the �2 2 0� XRD peak of
the tetragonal superconducting PrFeAsO1−xFx, x=0.082. The inset
shows the FWHM of the peak versus temperature.
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we were not able to resolve any definite inflection point in
the FWHM versus T indicative of a signature of the tetrago-
nal to orthorhombic structural phase transition.7 Therefore,
our data support a picture of a rather abrupt suppression of
the orthorhombic phase at the boundary of superconductivity.
Our best estimate is a complete suppression of TS from 120
K within 2.5% fluorine doping of the critical value for su-
perconductivity �x between 0.068 and 0.093�.

Now we turn to our magnetic-susceptibility data. Figure 4
shows the temperature-dependent dc magnetic susceptibility
of PrFeAsO measured in 200 Oe fitted above the Pr ordering
temperature with a Curie-Weiss law, ��T�=�0+C / �T+��,
where �0 is the temperature-independent susceptibility,
C=N�ef f

2 /3kB is the Curie constant, N is the number of Pr3+

ions, and � is the Curie-Weiss temperature. The effective
moment found is �ef f =3.75�B, slightly larger than the iso-
lated trivalent Pr-ion value of 3.58�B.25 The discrepancy
could be due to the Pr3+ crystalline electric field contribution
to the susceptibility.26 It should be noted that the susceptibil-
ity data could be fitted with a Curie-Weiss law for
LnFeAsO1−xFx, Ln=Ce,2,27 Nd,27 and Gd �Ref. 13� but not in
the case of Ln=Sm.28 The low-temperature susceptibility is
dominated by a sharp peak around 12 K in the pure PrFeAsO
system, as well as in all other nonsuperconducting F− con-
centrations. This is due to the AFM ordering �Néel tempera-
ture� of the Pr 4f electrons �Fig. 6�b��, consistent with previ-
ous reports from neutron,24 magnetization,27 and
resistivity27,29 studies. The upper inset shows a moderated
suppression of TN�Pr� with fluorine doping for three different
concentrations x=0, 0.059, and 0.078 in PrFeAsO1−xFx ex-
tending over the whole nonsuperconducting region. In the
lower inset the temperature derivative of the susceptibility
around the ordering temperature is shown. Again, it should
be noted that there is a weak to moderate suppression of the
ordering temperature with fluorine doping.

Figure 5 presents the real components of the ac suscepti-
bilities normalized to their corresponding maxima for the

same compositions �x=0,0.059,0.78� discussed previously.
The 130 K sharp peak in magnetization of the parent com-
pound coincides with the magnetic-ordering temperature of
the iron-ion moments, as initially revealed by the neutron-
diffraction data.24 With fluorine doping, the magnetic-
ordering temperature of the iron moments is continuously
reduced from 130 �x=0� to 80 K for x=0.078.

In Fig. 6 we show resistivity data for PrFeAsO1−xFx with
x=0, 0.044, 0.11, 0.138, and 0.225 divided by the room-
temperature value, 	�297 K�. The data are shifted for clarity.
The behavior of 	�T� for the PrFeAsO compound is similar
to that of the other LnFeAsO, Ln=La, Ce, Nd, and Sm.19,27

Upon cooling, the resistivity decreases showing metallic be-
havior. Around 150 K there is a broad peak associated with
both the structural phase transition from tetragonal to ortho-
rhombic symmetry and the spin-density-wave magnetic

FIG. 4. �Color online� The temperature-dependent magnetic sus-
ceptibility of PrFeAsO. The yellow �or light gray� curve is the result
of a fit to Curie-Weiss law. The upper inset shows the susceptibility
of PrFeAsO1−xFx, with x=0, 0.059, and 0.078 around the Pr-ion
ordering temperature along with their derivatives in the lower inset.
In the lower panel the line is a guide to the eyes.

FIG. 5. �Color online� Real component of ac susceptibility nor-
malized to its maximum of PrFeAsO1−xFx, with x=0, 0.059, and
0.078.

FIG. 6. �Color online� �a� Resistivity of PrFeAsO1−xFx for
x=0, 0.044, 0.11, 0.138, and 0.225 divided by the room-
temperature value. Data is shifted for clarity. �b� The resistivity near
the Pr-ion ordering temperature �TN�Pr�� for the parent sample
PrFeAsO. The temperature derivative of the resistivity ��	 /�T� for
�c� x=0 and �d� x=0.044. TS and TN mark the structural and the
magnetic phase transitions, respectively.
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phase transition. Because of a smooth and continuous change
in the physical properties around these transitions, an indica-
tor of the transition temperature is the temperature derivative
of the resistivity.10,16,27,30 Figures 6�c� and 6�d� show �	 /�T
for the x=0 and 0.044 nonsuperconducting samples. TN�Fe�
and TS correspond to the two inflection points in �	 /�T. At
around 13 K, the resistivity of the parent PrFeAsO exhibits a
shoulderlike feature �Fig. 6�b�� that was attributed to the
AFM ordering of the Pr-ion moments.27,29

Figure 7 shows the phase diagram of PrFeAsO1−xFx
�0�x�0.225� as determined by the measurements reported
in this paper. Superconductivity appears after doping with
charge carriers �electrons� the parent AFM semimetal
PrFeAsO. In this system, doping is realized by substituting
O2− by F−. Upon doping, the coupled structural and AFM
transitions are suppressed, in analogy with the behavior of
the structural and magnetic transitions in La2−xSrxCuO4.31

The phase diagram showing close proximity between AFM
and SC resembles that of the electron-doped cuprates where
the AFM persists right up to the SC dome. The supercon-
ducting transition temperatures were determined by the onset
of the diamagnetism in zero-field-cooled magnetization �data
not shown� or the drop of the resistivity. Optimal doping is
achieved at a fluorine concentration of �0.15, in agreement
with values reported for the homologous systems
CeFeAsO1−xFx �Refs. 2 and 7� and SmFeAsO1−xFx �Refs. 3,
19, and 21� and as predicted by recent minimum principle-
energy calculations.32 LnFeAsO1−
 oxygen deficient �opti-
mally doped at 
=0.15� with no fluorine doping obtained by
high-pressure synthesis has been reported to be a
superconductor;33 this process is similar to the well-known

oxygenation of the cuprates. It is worthwhile to mention that
a maximum superconducting temperature transition around
47 K has been reported previously for optimally doped
samples synthesized by normal pressure solid-state chemical
reaction29,34 while a slightly enhanced TC of 52 K was re-
ported for the samples synthesized using a high-pressure
method.4 Our results show that the synthesis of a sample
with nominal fluorine concentration of 0.35 resulted in an
actual fluorine xWDS substitution of 0.225, which represents
the maximum fluorine doping in PrFeAsO1−xFx. This value is
consistent with recently reported WDS determined values in
LaFeAsO1−xFx and SmFeAsO1−xFx �Ref. 23� and the satura-
tion of lattice parameters in LaFeAsO1−xFx.

35

IV. CONCLUSIONS

In summary, we have determined the complete structural,
magnetic, and superconducting phase diagram of
PrFeAsO1−xFx �0�x�0.22� using synchrotron x-ray
powder-diffraction, magnetization, and resistivity measure-
ments. We find a progressive suppression of the structural
transition and magnetic-ordering transitions of both iron- and
praseodymium-ion moments with increasing fluorine doping.
In superconducting samples, near the edge of the emergence
of the superconductivity �x�0.08 fluorine doping�, we were
not able to detect any fraction of the orthogonal phase. The
optimal doping was found to be at x�0.15 when
TC=47 K, and the maximum fluorine doping in
PrFeAsO1−xFx was reached around x=0.22 with supercon-
ductivity remaining robust.

The phase diagram is most similar to that of the hole-
doped cuprates La2−xSrxCuO4.31 However, there are some
important differences. First, in La2−xSrxCuO4 there is a spin-
glass phase in between the three-dimensional Néel antiferro-
magnet and the superconductor; the stripelike spin fluctua-
tions in the cuprate spin-glass phase are rotated by 45°,
relative to those in the superconductor and the spin-glass
superconductor transition at 0 K as a function of hole con-
centration is first order. Second, the tetragonal-orthorhombic
structural transition temperature in La2−xSrxCuO4 varies
smoothly across the insulating to superconductor boundary
and, indeed, persists in x beyond the value at which TC is a
maximum. By contrast, in the PrFeAsO1−xFx system both the
Néel order and the tetragonal-orthorhombic structural transi-
tion appear to vanish together quite rapidly, possibly in a
first-order way, as the fluorine concentration is varied
through the critical value for superconductivity. In order to
elucidate this further it will be necessary to prepare homoge-
neous samples in which the fluorine concentration, x, is var-
ied in quite fine steps. This will represent a significant tech-
nical challenge. It will also be necessary to characterize the
magnetism in samples in the transition region using both
neutron scattering and a local technique such as muon-spin
resonance. Of course, the ultimate goal is to determine which
features are universal and which are details of a particular
system. Specifically, one would like to determine whether or
not the iron pnictides and the cuprates are in the same uni-
versality class or whether, in fact, the similarity in the phase
diagrams is coincidental.

Ortho

RE

SDW

SC

xWDS(F)

T(
K
)

FIG. 7. �Color online� The structural, magnetic, and supercon-
ducting phase diagram of PrFeAsO1−xFx, 0�x�0.225 as deter-
mined from our synchrotron x-ray powder-diffraction, magnetiza-
tion, and resistivity measurements. The P4 /nmm to Cmma phase
transition as determined from x-ray powder diffraction ��� and
from the temperature derivative of the resistivity �	 /�T ���The
Néel temperatures of Fe �TN�Fe�� and Pr �TN�Pr�� ions as deter-
mined from magnetization ��, �� and from 	 or �	 /�T ��,��,
respectively. The superconducting transition temperatures TC for
samples with fluorine doping between �0.08 and 0.225 were deter-
mined from susceptibility ��� and from the drop of the resistivity
���.
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