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We study quantum transport in ballistic s�-wave superconductors where coupling between the two bands is
included and apply our model to three possible probes for detecting the internal phase shift of such a pairing
state: tunneling spectroscopy in a N �s�-wave junction, crossed Andreev reflection in a two-lead N �s�-wave �N
system, and Josephson current in a s-wave�I�s�-wave Josephson junction. Whereas the first two probes are
insensitive to the superconducting phase in the absence of interband coupling, the Josephson effect is intrin-
sically phase dependent and is moreover shown to be relatively insensitive to the strength of the interband
coupling. Focusing on the Josephson current, we find a 0-� transition as a function of the ratio of effective
barrier transparency for the two bands, as well as a similar phase-shift effect as a function of temperature. An
essential feature of this s�-wave model is nonsinusoidality of the current-phase relation and we compute the
dependence of the critical current on an external magnetic field, showing how this feature may be experimen-
tally observable for this system. We also comment on the possible experimental detection of the phase-shift
effects in s�-wave superconductors.
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I. INTRODUCTION

During the last few years, multiband superconductivity
has again been at the forefront of condensed-matter physics
and particularly so after the discovery of high-temperature
superconductivity in the family of intrinsically multiband
iron-based materials.1–3 As with all newly discovered super-
conductors with unconventional behavior, one principal
question is to determine the pairing symmetry of the super-
conductor. In the pnictide superconductors much effort has
been devoted to this central issue, so far without entirely
conclusive answers. Nevertheless, the leading contender has
for some time been s�-wave pairing,4 which in its simplest
realization for the iron-based superconductors means that the
holelike and electronlike Fermi surfaces both host s-wave
superconductivity but with opposite sign of the order param-
eter. �In the past, similar sign-shifted order parameters have
also been considered as a candidate pairing state e.g., of
high-Tc cuprates.5�

Distinguishing such a state from an isotropic s-wave pair-
ing state is highly nontrivial since both s-wave and s�-waves
states have the same symmetry and do not have nodes in the
order parameter on the Fermi surface. In order to establish
conclusively the internal phase shift characterizing a possible
s�-wave state in the iron-based superconductors it is there-
fore crucial to devise phase-sensitive pairing probes. A large
number of proposals for such experiments have been put
forth in the literature recently. Theories for multiband tunnel-
ing spectroscopy have been developed6–11 as well as calcu-
lations of the surface density of states for a s�

superconductor.12,13 In a related context, Andreev bound
states �ABS� are often pointed out as possible pairing
probes.14–18 Another class of experiments suggested involves
Josephson junctions, both single junctions,19–23 trijunction
loops,24,25 and also various corner geometries employed for
Josephson interferometry.26,27 Yet another work considered
possible signatures in the ac Josephson effect.28 In addition,

we should mention that the Josephson effect for multiband
superconductors with sign-shifted order parameters has pre-
viously been discussed also in the context of MgB2 �Ref. 29�
and bilayer cuprates.30

Of the probes listed above, tunneling spectroscopy is
probably the one that is experimentally most accessible �see
Refs. 31 and 32 and references therein� and results here are
routinely compared with the theory of Blonder, Tinkham and
Klapwijk �BTK� for Andreev reflection.33 Recently, one the-
oretical work9 augmented the BTK approach to also incor-
porate interband scattering in the superconducting region,
which was shown to result in interference effects and subgap
bound states in the conductance spectra. However, as pointed
out soon after,10 the phenomenological approach employed
in Ref. 9 may fail to capture the effect of interband coupling
correctly. In this work, we will present an alternative ap-
proach of including interband scattering into the BTK frame-
work.

Another probe which has not been considered in the lit-
erature so far is crossed Andreev reflection34 �CAR�. This is
a process contributing to the nonlocal conductance in a two-
lead normal-metal/superconductor junction35 in which an
electron impinging on the superconductor from one of the
leads is converted to a hole in the other lead. This phenom-
enon has previously attracted attention as a possible probe
both for ferromagnetic superconductors36 and noncentrosym-
metric superconductors.37 However, crossed Andreev reflec-
tion has not yet, to the best of our knowledge, been consid-
ered in the context of the s�-wave pairing state.

Yet another possible experimental signature, which was
first proposed in the context of iron-based superconductors
by the present authors in Ref. 38 is 0-� transitions.39,40 To
explain this phenomenon, we draw upon results from Joseph-
son junctions with ferromagnetic elements. For such sys-
tems, e.g., a S�F�S junction, the critical current Ic switches
sign for given thicknesses dF of the ferromagnetic interlayer,
resulting in nonmonotonous dependence of Ic on dF. This
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phenomenon is ascribed to the junction switching between
being a �conventional� 0 junction with zero phase difference
across the junction in the ground state and a � junction,
which has phase difference � across the junction in the
ground state. Furthermore, the critical thicknesses dF of
S�F�S systems are often temperature dependent, which allows
for the observation of thermally induced 0-� transitions at
T=T0� as well as transitions as a function of interlayer
width.

The possibility of � junctions consisting of s�-wave su-
perconductors has been mentioned previously in some theo-
retical works19,24,25,41 but in Ref. 38 we showed that 0-�
transitions were possible in a diffusive s-wave�N�s�-wave
junction both as a function of temperature and as a function
of the ratio of interface resistances for each band. The
present work is motivated by the question of whether these
effects persist in the ballistic limit and we perform a comple-
mentary, more comprehensive study of the Josephson effects
for a simple model capturing the essential features of a
s�-wave superconductor with interband coupling. We find
that the 0-� transition for varying ratio of interband resis-
tance persists but that nonsinusoidality of the current-phase
relation is significant for the present case. For varying tem-
perature we find a somewhat weaker phase-shift effect,
which we will relate to the more clear-cut 0-� transition
reported for the diffusive case. These results for the tempera-
ture dependence of the Josephson current can be compared
with the nonmonotonous Josephson current between a mul-
tigap and a single-gap superconductor previously obtained
by Agterberg et al.29

The outline of this work is as follows. In Sec. II we
present the theoretical framework that is employed to obtain
our results. This framework will then be applied first to tun-
neling spectroscopy of a N �s�-wave structure in Sec. III A,
after which we will turn to the study of crossed Andreev
reflection in a N �s�-wave �N junction in Sec. III B. The Jo-
sephson junction, to which we will devote the largest share
of attention, will be treated in Sec. III C. The three experi-
mental setups are shown schematically in Fig. 1. Some as-
pects of our model and the possible physical realization of
the effects found here are discussed in Sec. IV, and we con-
clude the present work in Sec. V.

II. THEORY

We consider the Bogoliubov-de Gennes �BdG� equations
for a two-band superconductor with dispersions �k,� mea-
sured from the Fermi level EF and gaps ��, �= �1,2�, which
read

�Ĥ1 0̂

0̂ Ĥ2

���1

�2
� = E��1

�2
�, Ĥ� = ��k,� ��

��
� − �k,�

� . �1�

Above, we have used a fermion basis

�k = �	1,k
† ,	1,−k,	2,k

† ,	2,−k	 , �2�

where 	�,k are fermion operators for band �. Considering
here positive excitation energies E
0, the solution for the
wave functions �� is obtained as a generalized BCS expres-
sion,

�� = 
� u�

v�e−i��
�,�v�ei��

u�
�� , �3�

where the coherence functions are

u�
2 = 1 − v�

2 =
1

2
�1 + �E2 − ����2/E� �4�

while the phases �� correspond to the broken U�1� gauge
symmetry of the superconducting state. For the s� state, we
have �1−�2=�. Note that in Eq. �1�, no assumptions have
been made about the pairing mechanism responsible for the
presence of energy gaps �� in our model nor of the origin of
a possible internal phase shift. Our motivation in this work is
merely to investigate the experimental consequences of such
a phase shift, when present.

In order to capture interference effects between the bands,
it is important to consider carefully the boundary conditions
in the presence of interband coupling. The above scenario
corresponds however to a two-band superconductor with no
explicit coupling between the bands. �Once again, since we
make no assumptions on the pairing mechanism, the gaps of
the two bands in Eq. �1� might be implicitly coupled through
two-particle scattering processes, although whether or not
this would be the case in a microscopic theory will have no
consequences for the present model.	 Hopping between the
bands will be taken into account by adding a single-particle
hopping term Hhop to the Hamiltonian,

Hhop = �
 dr�	1�r�	2
†�r� + 	2�r�	1

†�r�	 , �5�

where 	�r� are fermion field operators in real space while �

FIG. 1. �Color online� Schematic drawing of the systems under
consideration in this work: �a� the model of N �s�-wave junction for
tunneling spectroscopy as studied in Sec. III A, �b� the model of the
two-lead N �s�-wave �N junction for the study of crossed Andreev
reflection in Sec. III B, and �c� the model of the s-wave�I�s�-wave
Josephson junction considered in Sec. III C. For system �b�, we
have illustrated how an electron in the left-hand lead is converted to
a hole in the right-hand lead by the formation �together with a
electron from the right-hand lead� of a Cooper pair in the supercon-
ducting interlayer.
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denotes the hopping parameter. Upon including the standard
delta-function barrier potential V0 at an interface, one may
then write down the full BdG equations in the system. Let us,

to be definite, consider an N �s� junction, where the super-
conductor occupies the half space x
0. We then have Ĥ�
=E�, where

Ĥ =�
�k,1 + V0
�x� �1��x� �
�x� 0

�1
���x� − �k,1 − V0
�x� 0 − �
�x�

�
�x� 0 �k,2 + V0
�x� �2��x�
0 − �
�x� �2

���x� − �k,2 − V0
�x�
� . �6�

It is seen that the two bands couple through the interface
scattering as long as ��0, in a simple model which never-
theless should be able to capture the main qualitative effects.

Before turning to applications of this theory, we state the
resulting boundary conditions for the N �s� junction. For an
incoming electron from band ��=1 on the N side �x�0�, we
write the wave function as

�N = �1,0,0,0	�eikx + r1e−ikx� + r1
A�0,1,0,0	eikx

+ r2�0,0,1,0	e−ikx + r2
A�0,0,0,1	eikx, �7�

where k=kF. Here and in what follows, we assume that the
Fermi level EF is much larger than ��� ,E�, such that the
wave vectors simply read kF=�2mEF. We also take EF to be
the same everywhere in the system since the effect of any
Fermi wave-vector mismatch �FWVM� can be accounted for
by adjusting the barrier transparency. Note that although the
formalism used in Eq. �7� imposes the multiband basis also
on the normal-metal wave function, this does not necessarily
imply that the normal metal has two physically distinct
bands.

For an incoming electron from band ��=2, the N-side
wave function is simply obtained by letting �1,0 ,0 ,0	eikx go
to �0,0 ,1 ,0	eikx in Eq. �7�. Here, �r� ,r�

A� are the normal and
Andreev reflection scattering coefficients for band �. We let
the wave function on the superconducting side �x
0� be
unspecified for the moment. The general boundary condi-
tions can then found from Eq. �6� as

�N�x = 0� = �S�x = 0� ,

��x�S − �x�N��x=0 = 2m�V0 diag�1̂, 1̂� + � offdiag�1̂, 1̂�	�N,

�8�

where 1̂ is the 2�2 unit matrix and diag and offdiag denote
diagonal and off-diagonal 4�4 block matrices in which
these unit matrices are embedded. At this point we also in-
troduce two dimensionless parameters characterizing the sys-
tem, namely, the barrier strength Z=2mV0 /k and the inter-
band coupling strength �̃=2m� /k.

III. RESULTS

A. Conductance spectra

As a first application of our model, we calculate the con-
ductance of a N �s�-wave junction and compare it to that of
its s-wave counterpart. This was also done in Ref. 9 but in
contrast to their approach, we construct our wave functions
and boundary conditions from the full 4�4 BdG equations,
as required for a multiband scenario. In this case, the wave
function on the superconducting side reads

�S = s1�u1,v1e−i�1,0,0	eikx + t1�v1ei�1,u1,0,0	e−ikx

+ s2�0,0,u2,v2e−i�2	eikx + t2�0,0,v2ei�2,u2	e−ikx, �9�

with �s� , t�� being the transmission coefficients for band �.
We will use the gauge �1=0 and make explicit use of the
internal phase shift by writing ei��1−�2��
= �1 for the su-
perconductor being a two-band s-wave superconductor or a
s�-wave superconductor, respectively. For the normal-metal
side, we use �N from Eq. �7�. We can then solve Eqs. �8� for
the given wave functions but as the resulting expressions for
�r� ,r�

A ,s� , t�� do not allow a simple interpretation in our case,
we give the solution in Appendix A.

To illustrate the influence of the interband coupling on
quantum transport, we have plotted in Fig. 2 the probabilities
of the various reflection processes for an incoming electron
from band ��=1 for the case of a transparent interface. For
decoupled bands, all electrons are Andreev reflected into the
same band �for subgap energies� and it is shown how this
situation is altered for �
0 in a different manner for a
s�-wave superconductor and a two-band s-wave supercon-
ductor. The difference between the s-wave and s�-wave
cases is reduced for increasing Z relative to �̃, and �r2�2 and
�r2

A�2 are in general decreased by increasing Z and increased
by increasing �̃. Interband scattering also effectively acts to
reduce the interface transparency, although less so for the s�

state. Apart from these general relations, the dependence of
the probabilities on the coupling �̃ is by no means trivial and
we do not attempt to give any further physical interpretation
of this parameter.

The conductance for a two-band superconductor normal-
ized to the normal-state conductance G0 may, within the
BTK formalism, be given as
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G/G0 =
1

2F
�
��

G��, �10�

with G��=1+ �r1
A�2+ �r2

A�2− �r1�2− �r2�2 for incoming electron in
band �� �see Appendix A� and F=1− �r1�2 where the coeffi-
cient is evaluated for ��1�= ��2�=0.

In panel �a� of Fig. 3 we have plotted representative re-
sults for the conductance spectra for different values of the
interband coupling. We have chosen the ratio between the
gaps somewhat arbitrarily as r�= ��2� /�1=1.5 and have in-

cluded the limiting case of �̃=0, which here simply corre-
sponds to the well-known BTK result with a double gap
structure. Furthermore, for values �̃
Z when Z is small, the
interband coupling enforces the formation of subgap peaks
close to the gap edge which are damped and shifted to lower
energies for decreasing �̃. This feature becomes more promi-
nent when r�→1 �not shown�, which makes it observable
also for larger Z, although also then in a restricted region of
parameter space. As shown in panel �b� of Fig. 3, no features
of this kind appear in the corresponding model without an
internal phase shift in the superconductor. In the conductance
spectra of our model, we do not find the very strong low-
energy conductance peaks reported in Ref. 9, but rather fea-
tures more reminiscent of those of Ref. 10, which may be
reasonable since their approach was also based on the full
BdG equations.

B. Crossed Andreev reflection

One of the most attractive prospects of CAR is as a real-
ization of nonlocally correlated electron states, see, e.g., Ref.
42. The CAR process is however often masked by the com-
peting process of elastic cotunneling �EC� and it is therefore
interesting to search for situations in which CAR dominates.
In this section, we investigate how the internal phase differ-
ence of the s�-wave state alters the nonlocal conductance.

For the left-hand side lead �x�0�, we will use the same
normal region wave function ��N→�L� as in Eq. �7� and for
the right-hand side �x
L� lead we introduce

�R = t1�1,0,0,0	eikx + t1
A�0,1,0,0	e−ikx + t2�0,0,1,0	eikx

+ t2
A�0,0,0,1	e−ikx. �11�

For the superconducting interlayer �0�x�L�, we now have
to rewrite the wave function of Eq. �9� into

�S = �s1eiq1
+x + s2e−iq1

+x��u1,v1,0,0	

+ �s3eiq1
−x + s4e−iq1

−x��v1,u1,0,0	

+ �p1eiq2
+x + p2e−iq2

+x��0,0,u2,
v2	

+ �p3eiq2
−x + p4e−iq2

−x��0,0,
v2,u2	 , �12�

where we have introduced the wave vectors

q�
� = kF

�1 � �E2 − ��
2/EF, �13�

for electronlike and holelike quasiparticles, respectively. In
the normal-metal regions we can to a good approximation
assume equal and constant wave vectors k=kF. In our calcu-
lations we have defined the Fermi energy by the value
EF /�1=104. We then apply the boundary conditions of Eq.
�8� to the two interfaces at x=0 and x=L, which results in 16
equations in the variables �r� ,r�

A , t� , t�
A ,si , pi�, which are

solved numerically.
Since it would have no physical meaning to measure the

signal for the �virtual� normal-metal bands �� separately, we
choose to consider the average process probabilities

PEC =
1

2�
��

��t1�2 + �t2�2� , �14�
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FIG. 2. �Color online� Comparison of the probabilities of the
reflection processes in a N �s�-wave junction and a two-band
N �s-wave junction as described in the text. We have chosen zero
barrier strength, Z=0, and gap ratio r�=1.5. We have used a value
�̃=1 for the interband coupling �for the s-wave and s�-wave cases�
while for the decoupled case we have �̃=0.
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FIG. 3. �Color online� �a� Conductance for a N �s�-wave junc-
tion and �b� a two-band N �s-wave junction for various strengths of
interband coupling �̃ normalized on its normal-state value, where
we have set Z=1 and r�=1.5.
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PCAR =
1

2�
��

��t1
A�2 + �t2

A�2� , �15�

as the measure of nonlocal conductance, where ��� again
denotes summing over incoming electron bands.

The nonlocal conductance is then proportional to PEC
− PCAR and we show the result for its separate contributions
in Figs. 4 and 5. As is expected for the components to the
nonlocal conductance, it exhibits oscillations both as a func-
tion of energy and of the lead separation L, with decaying
subgap contributions for increasing L.

It is seen that for high transparency, interband coupling
facilitates the CAR process with respect to EC, a result
which may be readily explained, since the coupling acts as
an effective scattering barrier. Recall that for zero interface
resistance �and no FWVM or spin polarization�, the CAR
process is completely absent. This result seems to be some-
what stronger for a s�-wave superconductor than for a two-
band s-wave superconductor �not shown� but PCAR is never
significantly larger than PEC. All in all, there are only minor
qualitative differences to be found for the s�-wave state
when compared to a more conventional s-wave state and we
have therefore not included results for the latter here.

C. Josephson current

We now turn our attention to the Josephson coupling be-
tween two superconductors in a S�I�S junction with multiple
bands. Below, we shall first consider the case where the right
superconductor is s� wave while the left superconductor is
single-band s wave, with order parameter �s= ��s�exp �s.
The strategy is to calculate analytically the Andreev bound
states at the interface, which carry the Josephson current.
These states are found by using the boundary conditions Eq.
�8� for the wave functions in each of the superconducting
regions. However, since we will find that the interesting
physics stems from allowing different band transmission, we

let V0 diag�1̂ , 1̂�→ V̂=diag�V1 ,V1 ,V2 ,V2�. For later refer-
ence, we also define rZ=Z2 /Z1=V2 /V1 as the ratio between
the effective barrier strengths for the two bands; the motiva-
tion will be discussed in Sec. IV. Using an alternative param-
eterization to that in Sec. III A, we write the wave function
for the left-hand side superconductor as

�L = s1�1,ei�s,0,0	e−ikx + s2�ei�s,1,0,0	eikx

+ s3�0,0,1,ei�s	e−ikx + s4�0,0,ei�s,1	eikx �16�

while we for the right superconducting region have

�R = t1�1,ei��1−��,0,0	eikx + t2�ei��1+��,1,0,0	e−ikx

+ t3�0,0,1,
ei��2−��	eikx + t4�0,0,
ei��2+��,1	e−ikx,

�17�

where �s=arccos�E / ��s�� and ��=arccos�E / �����. The
gauge-invariant phase difference between the two supercon-
ductors has been defined as �=�1−�s.

Setting up the boundary conditions of Eq. �8� yields a
system of equations on the form

�t = 0 , �18�

where t= �s1
L , t1

L ,s2
L , t2

L ,s1
R , t1

R ,s2
R , t2

R� and � is a 8�8 matrix.
The Andreev bound states are found by requiring a nontrivial
solution for the system, det���=0, which in general results
in four energy states E�

����. The Josephson current is found
in the ordinary way by43

I = 2e�
i=1

4
�Ei

��
f�Ei� , �19�

where Ei denotes the four ABS and f�E� is the Fermi-Dirac
distribution function. We will define the critical current Ic as
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FIG. 4. �Color online� Nonlocal conductance through a
N �s�-wave �N junction for a relatively thin superconducting inter-
layer, L=2�104kF

−1, and for r�=1.5. The upper panels show the
probability measure for crossed Andreev reflection while the lower
panels show for elastic cotunneling. We have used barrier strengths
Z=0 �left� and Z=4 �right�, and a number of values for the inter-
band coupling �̃.
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FIG. 5. �Color online� Nonlocal conductance through a
N �s�-wave �N junction for a relatively thick superconducting inter-
layer, L=8�104kF

−1, and for r�=1.5. The upper panels show the
probability for crossed Andreev reflection while the lower panels
show the probability for elastic cotunneling. We have used barrier
strengths Z=0 �left� and Z=4 �right�, and a number of values for the
interband coupling �̃.
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the maximal current allowed by the current-phase relation
for a given set of parameters, Ic=max�I����. We also intro-
duce the quantity I0=2e��1� used for normalization of the
current.

1. 0-� phase shifts for varying barrier strengths: The case of
equal gap magnitudes

Before investigating the temperature dependence of the
critical current, we will consider the limit T→0. Our main
results in this section is the observation of a 0-� transition in
the Josephson current for varying the barrier strength ratio
rZ, as shown in Fig. 6. For a s-wave�I�s�-wave Josephson
junction this can be understood in a very simple manner as
the competition between the �=1 and the �=2 band compo-
nents of the current; the band with order parameter �1
= ���ei�1 will favor the conventional 0 junction whereas at
the same time the other band with �2=−���ei�1 will favor a
� junction. Here, we have for simplicity assumed that ����
= ��s�����. To show this mechanism explicitly we proceed
analytically in the limit of �̃=0 and this minimal model also
serves as a review of the basic physics involved in a ballistic
Josephson junction. Now, the solutions for Eq. �18� can be
shown to be

E1
� = � ����1 − D1 sin2��/2� ,

E2
� = � ����1 − D2 cos2��/2� , �20�

where D�=4 / �4+Z�
2�. E1

� are the well-known solutions for a
one-band s-wave � I �s-wave junction43 while E2

� are the cor-
responding solutions for the negative-gap band. Expanding
to first order in D� and inserting in Eq. �19� yields the Jo-
sephson current

I = I1 sin � , �21�

where I1= �D1−D2�I0 /4. It is obvious that for Z2�Z1 one
will have D2
D1 and I1�0, i.e., the system being in the �
state. As shown in Fig. 6, the crossover point above which

the �=1 contribution dominates instead is rZ=1. However,
inspection shows that the current does not vanish entirely at
the crossover point, a fact which is readily explained by go-
ing to the second-order expansion of Eq. �20�. In the limit
Z2→Z1 partial cancellation of the two first-order terms then
reduces the current to

I = I2 sin�2�� , �22�

where I2=−I0D�
2 /16. In other words, the second-harmonic

component to the current appears and is dominating close to
the transition point. The general nonsinusoidality of the
current-phase relation close to the transition point is illus-
trated in Fig. 7.

Before proceeding, it will be instructive for the subse-
quent discussion to analyze this current-phase relation a little
further. In a region close to rZ=1 �and for relatively large Z�,
we may write out the approximate Josephson current to be
given by the expression

I/I0 =
D1 − D2

4
sin � −

�D1 + D2�2

64
sin�2�� . �23�

For a Josephson junction containing a second-harmonic com-
ponent in the current-phase relation, the ground state needs
neither to be a 0 state nor a � state but may instead be a �
state44,45 with a general equilibrium phase difference �0. This
ground-state phase can for our case be found as46

�0 = arccos�8�D1 − D2�
�D1 + D2�2 � . �24�

This phase value evolves smoothly from �0=� for rZ�1 to
�0=0 for rZ�1, passing �0=� /2 at rZ=1. For the case of
Z=6, our model system is a � junction for an approximate
region rZ� �0.97,1.028� and we have verified numerically
that Eq. �23� is qualitatively a very good approximation also
well outside this region. The phase difference which supports
the critical current will on the other hand be denoted as ��

and can in a similar manner be found to evolve from to −� /2
for the � state at rZ�1 to ��=−� /4 for rZ=1−, where it
jumps discontinuously to ��=3� /4 for rZ=1+, from which it
again evolves smoothly toward � /2 for the limiting sinu-
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soidal current-phase relation. This phase-shift mechanism
will be instrumental to the findings presented in Sec. III C 3.

Next we investigate the general case with nonzero inter-
band coupling. The �numerical� solution for the two lower
ABS energies at zero temperature is shown in panel �a� of
Fig. 8 for different values of �̃. While the energy states cross
each other according to Eq. �20� for �̃=0, they repel each
other for nonzero interband coupling, forming a gap in the
ABS energy spectrum which increases for increasing �̃. As a
trivial observation, this can be understood as a hybridization
of the two formerly independent bands, as a finite hopping
term introduces off-diagonal matrix elements in � space. The
general properties of the current-phase relation remains the
same in spite of the explicit � periodicity of the ABS disper-
sion and also here this is explained by the partial cancellation
of the two ABS contributions. As can be seen from panel �b�
of Fig. 8, �̃
0 does not change the behavior of the Joseph-
son current in any dramatic way and neither does the inter-
band coupling influence the position of the 0-� transition
point; it remains at rZ=1 for all values of �̃. This motivates
us to suppress the interband coupling �̃ in what follows to be
able to obtain analytically tractable results.

2. Magnetic field dependence of the critical current

As a simple application of the model described in the
preceding section, we now calculate the dependence of the
critical current Ic on an external magnetic field H, i.e., the
magnetic diffraction pattern. This quantity is experimentally
very interesting and experimental results for Ic�H� have re-
cently been presented for iron-based superconductors.47–49

For our model, we are interested in studying how the mag-
netic diffraction patterns depend on the relative barrier
strength of the two bands, as rZ is seen as the primary pa-
rameter determining the behavior of the system.

In order to include an external magnetic field to our model
system, we must define a width W along the z axis and an
effective length dJ around x=0 over which the magnetic field
H along the y axis penetrates the junction. The magnetic flux
through the junction is then given by �=HWdJ and we let
�0 denote the magnetic-flux quantum. Using the approxima-

tion of Eq. �23� for the current-phase relation, we can study
our system in the framework of Ref. 46, from which we
straightforwardly find the expression

Ic��� = �D1 − D2

4
sin���

�0
�sin �

−
�D1 + D2�2

128
sin�2��

�0
�sin�2���/���

�0
� . �25�

Evaluating the above expression for the phase difference �
=�� giving the maximum current for the respective rZ, we
obtain the Fraunhofer-type diffraction patterns shown in Fig.
9. The effect of the second harmonic component to the cur-
rent is evident as a half-integer flux quantum modulation of
the critical current which grows more pronounced as rZ→1
but whose contribution is vanishing outside the �-junction
region. Although results for rZ�1 are not shown here, these
are largely symmetric with respect to rZ=1. We may also
note that similar results for the magnetic diffraction were
presented Ref. 44, albeit for a completely different system.

3. Temperature dependence of the Josephson current: The case
of different gap magnitudes

Motivated by the indications in Ref. 38 that different gap
magnitudes are necessary for the occurrence of thermally
induced 0-� transitions, we now consider a system for the
general case of �s��1� ��2�. As we showed in Sec. III C 1,
interband coupling did not affect the 0-� transitions as a
function of rZ qualitatively, so we will assume in the follow-
ing that �=0, an approximation which moreover makes an
analytical approach feasible. Solving the 8�8 system as two
decoupled 4�4 systems, we obtain the analytical solution as
given by Eqs. �B2� and �B3� in Appendix B. We also refer to
this appendix for some more information regarding validity,
existence, and uniqueness of this solution.

We will assume BCS-type temperature dependence of the
gaps, with the s-wave gap of the left superconductor closing
at a temperature Tc,s=�s�T=0� /1.76 while both gaps of two-
band superconductor on the right-hand sides close simulta-
neously at Tc,��Tc=�1�T=0� /1.76. We will parameterize
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s-wave�I�s�-wave Josephson junction for various values of inter-
band coupling strength �̃, with �a� dispersion of the two Andreev
bound states with E�0 shown to the left and �b� critical current as
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the difference in gap magnitudes by rs=�s /�1 and r�

= ��2� /�1, and will in most of what follows restrict ourselves
to rs=0.5 and r�=0.3 as a representative set of gap ratios,
although we stress that our results are valid in a much larger
portion of parameter space. The resulting temperature depen-
dence of the three superconducting gaps is illustrated in the
inset of Fig. 10.

First, we compare the temperature dependence of the
critical current both for a s�-wave and a two-gap s-wave
superconductors in Fig. 10. The most distinctive feature for
both these cases is the sharp peak at high temperature. This is
exactly the temperature T=T� for which two of the gaps
cross, i.e., ��2�T���=�s�T�� and although this peak is not a
signature of the s� state as such since it is present irrespec-
tive of the phase difference between the two right-hand side
gaps, it would be interesting to disclose the mechanism be-
hind this feature. We turn therefore to the energy dispersion
of the ABSs, as shown in Fig. 11 for two temperatures close
to the peak in the critical current. First, this illustrate how E2
tracks the gap edge of ��2�T�� and E1 the gap edge of
�s�T���1�T� as the temperature is increased, whereas for
T
T� both states track the smallest of the gaps, i.e., �s�T�.
Second, we observe that the energy states are nondispersive
for a phase interval centered around �=0 and �= �� for E1
and E2, respectively �cf. the discussion in Appendix B� so
that in these regions the current contributions of the states
vanish. Third, we also observe that the dispersion of E2 is
strongly enhanced at T=T�. This last observation can be un-
derstood by glancing at the expression for E2 in Eq. �B3� for
a given T, from which we realize, e.g., by setting cos�� /2�
=1 that the bandwidth of the energy state is at its maximum
for �s= ����. This is of course exactly the case for T=T�.
Moreover, since the contribution from E1 vanishes for a large
� interval for this temperature, whereas it is nonvanishing
for E2 for all � in this limiting case of equal gap magnitudes,
one does not get the effect of partial cancellation of the two
current contributions that was present for lower temperatures
and for �s=�1= ��2�. We note that although the peak strength

for these gap ratios is somewhat extreme, we have verified
that similar peaks or bumps persists in a major part of pa-
rameter space.

We have concluded that a peak in the critical current can-
not be taken as a signature of s� pairing since it results from
the energy gap crossing of the right-hand and left-hand su-
perconductors in general. We therefore return to our investi-
gation into possible thermally induced 0-� phase shifts as an
unambiguous sign of s�-wave pairing, although apparently
no such phase shift is present in our results. However, we
remember from the analysis of the current-phase relation in
Sec. III C 1 that in the presence of a second-harmonic com-
ponent to the current, a prospective 0-� transition was
smeared out into a �-state region for which the critical cur-
rent remains nonzero. We therefore consider the current-
phase relation for the junction with different gap magnitudes
in Fig. 12 for two intermediate temperature values. It is evi-
dent that the second-harmonic component dominates, a fact
which can be traced back to the vanishing of the ABS con-
tributions for complementary phase intervals as discussed

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

−3

T/Tc,s

I c
/
I 0

s-wave

s± -wave

0 1 2
0

0.5

1

T/Tc,s

∆
(T

)/
∆

1
(0

)
∆1 |∆2| ∆s

FIG. 10. �Color online� Temperature dependence of the critical
current for the parameters rs=0.5 and r�=0.3 with Z=6 and rZ=1.
Both the results for a two-gap s-wave and a s�-wave supercon-
ductor are shown. Inset: temperature dependence of gap magnitudes
for the same parameter set.

−1 −0.5 0 0.5 1

−0.315

−0.31

−0.305

−0.3

−0.295

−0.29

−0.285

ϕ/π

E
/
∆

1
(0

)

−1 −0.5 0 0.5 1

−0.305

−0.3

−0.295

−0.29

−0.285

−0.28

−0.275

ϕ/π

T = 0.855T
c

< T∗

T = 0.875T
c
≈ T∗

E2

E1

FIG. 11. �Color online� Energy of Andreev bound states E�
− for

two temperatures close to the point where ��2�T��=�s�T� for rs

=0.5 and r�=0.3. Other parameters are Z=6 and rZ=1. Shown with
dotted lines are the relevant gap edges which the energy states
track.

−1 −0.5 0 0.5 1
−2

−1

0

1

2
x 10

−3

ϕ/π

I/
I 0

T/T
c

=0.4

T/T
c

=0.7

ϕ = ϕ∗ϕ = ϕ∗

FIG. 12. �Color online� Current-phase relation for a system
slightly below �T /Tc=0.4� and slightly above �T /Tc=0.7� the ther-
mally induced phase shift appearing in the Josephson junction with
gap ratios rs=0.5 and r�=0.3 with Z=6 and rZ=1. The arrows
indicate the phase difference supporting the critical current �I
0�
for the two temperatures.

SPERSTAD, LINDER, AND SUDBØ PHYSICAL REVIEW B 80, 144507 �2009�

144507-8



above. A related result is that the two maxima shown in Fig.
12 originate predominantly from one of the energy states
each. Furthermore, we have seen that the contribution from
an ABS is larger the closer the values of the gap magnitudes
�s�T� and ����T��, and as T→T�, �s�T�, and ��2�T�� are clos-
ing in on each other whereas �s�T� and �1�T� are moving
apart. Thus the difference in the rate at which the gaps de-
crease causes the E1 state to lose dominance to E2 for in-
creasing temperature. �Since �1 is by far the largest of the
gaps, the corresponding ABS dominates for T=0 even
though �1 is further from �s than is ��2�.�

In Fig. 12 we have also indicated the phase difference ��

in the current-phase relation that supports the critical current
for each of the two temperatures. We now understand that as
the dominant contribution to the current changes from E1 to
E2 with increasing temperature, there must be a jump in this
phase value from ��
0 to ���0 and this jump needs to
happen discontinuously at the temperature T=T� where the
two contributions balance �cf. our discussion of Ic�rZ� in Sec.
III C 1	. This is our main result in this section: Although the
Josephson junction is at no point in a 0 state or a � state, the
system may nevertheless exhibit discernible phase shifts
when residing in the � state. We illustrate this phenomenon
for different parameters in Fig. 13 and note that similar be-
havior was observed for a large set of different gap ratios as
long as rs�1 and r��1, the basic mechanism behind it be-
ing different temperature dependence of the different gaps.
For the case of a two-gap s-wave state, a phase shift is of
course not possible, as the two contributions to the current
are then acting cooperatively at all times.

IV. DISCUSSION

Comparing the three systems considered in the previous
section, it is easy to see that role played by interband scat-

tering differs fundamentally. On the one hand, tunneling
spectroscopy and nonlocal conductance in the absence of in-
terband coupling are not dependent on the relative phase
difference of the two s�-wave order parameters, being
merely the sum the contribution from two decoupled s-wave
states. On the other hand, phase information enters explicitly
into the calculation of the Josephson current so that the in-
terplay between the phases of the two order parameters is
evident also for zero interband coupling. Furthermore, it
seems that the behavior observed for the Josephson current
remains qualitatively unaltered also for finite �. This ex-
plains how it seems much more appealing to obtain phase
information from multiband superconductors by the use of
Josephson junctions than by tunneling spectroscopy and why
we will focus our discussion on this experimental probe.

To be able to compare our results for the ballistic limit
with our previously obtained results for the diffusive limit in
Ref. 38, we now briefly recapitulate this work. Here we em-
ployed the quasiclassical Usadel equation50 to study Joseph-
son coupling in a s-wave�N�s�-wave junction in the limit of
weak proximity effect, an approximation which is warranted
for low-transparency interfaces. We showed that for this
case, 0-� transitions were observed both as a function of
barrier transparency ratio �for arbitrary gap ratios rs and r��
and as a function of temperature �for some values of the gap
ratios�. Here, the obtained current-phase relation was purely
sinusoidal irrespective of parameter values, a result which
can be explained by the fact that the linear Usadel equation
corresponds to only a first order approximation in the inter-
face resistance so that no second harmonic terms will appear.
Our present results, on the other hand, are valid for arbitrary
interface resistance and we see that in this model the second
harmonic term plays a crucial role in the behavior of the
Josephson junction, which we will discuss more below. We
should also remark here on the difference between the diffu-
sive and the ballistic model in that the former in contrast to
the latter has a interlayer with finite thickness, which was
needed to justify the assumption of weak proximity effect.

The importance of a prospective second harmonic contri-
bution to the Josephson current is natural when we are con-
cerned with 0-� transitions, as this component may dominate
when the first harmonic component vanishes close to the
transition point. This fact, and the �-junction behavior that
follows, has been pointed out several times in the context of
S�F�S junctions.43,51,52 For our model, the influence of the
second harmonic is seen to be particularly prevalent in the
case of different gap magnitudes and/or high interface trans-
parency. Before discussing its implication on the thermal
phase-shift effect observed here, we consider the case of
more conventional 0-� transitions. Most often when estab-
lishing 0-� transitions in a Josephson junction, one looks for
a sharp cusp in the critical current as a function of the pa-
rameter in question, although this method cannot discern
which side of the transition represents the 0 state and which
represents the � state. By using a rf superconducting quan-
tum interference device �SQUID� configuration43 one may
however measure the jump in the critical phase difference
across the junction, which for a sinusoidal current-phase re-
lation would be from ��=� /2 to ��=−� /2 or vice versa.
�Note that it is crucial to this argument that one considers a
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current-biased experiment in which a current I
0 is forced
through the junction, letting the phase difference adjust ac-
cordingly.� In the presence of higher harmonics in the
current-phase relation the jump from ��
0 to ���0 or vice
versa will in general be different, cf. the transition for vary-
ing rZ, but the principle remains the same. This also holds
when the sinusoidal component to the current-phase relation
is subdominant for all parameter values, such as for the ther-
mal transitions reported here so that the critical current is not
even close to zero at the transition point. Inspecting Fig. 13,
one sees that the critical current does in fact reach a mini-
mum at T=T�. Hence this phase-shift effect can be regarded
as a degenerate form of 0-� transition which can only be
established by SQUID measurement of the critical phase dif-
ference. Alternatively, one could of course demonstrate the
transition by using SQUID to map out the entire current-
phase relation53 but observing a single phase shift of the
critical phase �� may be simpler experimentally.

Considering then the peak phenomenon described for the
temperature dependence of the critical current, as pointed out
earlier, it does not pertain to the s� state per se but is a
general result in this framework of two gaps crossing at a
certain temperature. In fact, this even holds when none of the
two superconductors are multiband superconductors. Experi-
mentally, this can however be understood to be a somewhat
artificial situation, as the phenomenon would not occur for a
junction consisting of two conventional superconductors
with different zero-temperature gap magnitudes because of
the universal ratio 2��0� /Tc=1.76 for BCS superconductors.
And, e.g., high-Tc cuprates, for which the corresponding ra-
tio is larger, the value of ��0� is typically much larger than
for any conventional superconductor as well. So although
multiband superconductors are not necessary as such, the
described situation can occur here much more easily because
the superconducting pairing for both bands typically vanish
at the same critical temperature, whereas the gap ratio r�

�1. This is the situation for the conventional multiband su-
perconductor MgB2 �Ref. 54� and also seems to be the case
for the iron-based superconductors.32 We should note that
similar behavior was not found in the diffusive case38 but
that a finite temperature maximum in the critical current for
multiband superconductors was predicted in Ref. 29. In that
case, the effect was however ascribed to thermal effects com-
bined with different sign of the two order parameters and is
not related to gap crossing irrespective of the order-
parameter sign as in our case. Furthermore, in Ref. 29 as well
as in our results for the diffusive case, the current-phase
relation was implicitly assumed to be purely sinusoidal,
which may explain some of the differences with our present
results for the ballistic case.

As the dependence of various observable quantities on the
barrier strength ratio rZ was considered frequently through-
out Sec. III C, we would now like to present a more thorough
rationale for this parameterization. First, we note that al-
though our model assumes the same Fermi wave vector kF
for all bands in all regions of our setups, any FWVM be-
tween the different regions is equivalent with an increase in
the barrier strength Z. And for different Fermi wave vectors
kF,s and kF,� for the s-wave superconductor on the left-hand
side and bands 1 and 2 of the s�-wave superconductor on the

right-hand side in the Josephson junction, respectively, this
gives rise to different effective barrier strengths Z1,2 for the
two bands. This line of thought is illustrated in Fig. 14. The
idea of tailoring the experimental setup by the use of mate-
rials with appropriate Fermi surfaces was first proposed in
Ref. 19 and as we discussed in Ref. 38, it might be possible
to produce a series of junction samples with different barrier
strength ratios rZ by varying the doping level in the
non-s�-wave region of the junction. In this manner, it is
conceivable that a 0-� transition can be observed for varying
doping level, analogously as to how 0-� transitions are ob-
served S �F �S junctions for varying interlayer thickness. The
preceding argument naturally raises the question whether it
might be more appropriate with a parameterization in which
increased transmittance through the barrier for one of the
bands was accompanied by decreased transmittance for the
other band. We did nevertheless define rZ as simply the ef-
fective barrier strength ratio because it is hard to tell exactly
how the relative transmittance will change with doping level.
This does probably also make it quite challenging to experi-
mentally produce the right series of samples to observe 0-�
transitions, which is what makes possible observable signa-
tures for varying temperature all the more appealing.

Finally, we discuss our model in context of the recently
discovered iron-based superconductors. It should be stressed
that our model is to be taken as a minimal model describing
the generic behavior of transport phenomena in a two-band
s� superconductor but we would like to point out how a
more realistic model should take into account the specifics of
the iron-based superconductors. First, the BTK approach
does not incorporate any details of the band structure and
spherical Fermi surfaces are assumed. Second, ours is a two-
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band model whereas it has been argued that at least four
bands, two holelike �h� and two electronlike �e�, should be
included to capture the physics behind the superconductivity
in these materials.55 The main effect of their inclusion from
the point of view of transport would be the possibility of e-e
and h-h interband scattering between nearly degenerate elec-
tron and hole bands, respectively. Since these scattering pro-
cesses would involve no internal phase shift, we expect that
the result would be qualitatively similar to the two-band
case. This assumption can also be justified by the fact that
h-h and e-e scattering processes should be weak in iron-
based superconductors compared to the spin-density-wave-
enhanced e-h interband processes56 so that we to a good
approximation can consider degenerate e and h bands. Gen-
eralization to a nondegenerate four-band model could never-
theless be made in our theory by a straightforward extension
of Eqs. �1� and �2�, with the inclusion of h-h and e-e inter-
face scattering terms in Eq. �5�, although an analytical treat-
ment in that case would be a daunting task. Furthermore, one
might have gap magnitudes that were momentum dependent
but the approximation of constant s-wave gaps on each of the
Fermi surfaces should be reasonable. �The possibility of a
d-wave gap or other pairing symmetries with nodes on the
Fermi surface is left out of the question in this work since the
majority of experiments so far seem to indicate a nodeless
gap on the Fermi surface.� Another extension would be to
include interband scattering in the bulk of the s� supercon-
ductor, and not only near the interfaces as in our case, or
even more sophisticated models, e.g., including momentum
dependence in �.

Regarding the magnetic field dependence of the critical
Josephson current described in Sec. III C 2, we may compare
our results with the experimental results for iron-based su-
perconductors available at the moment. Inspecting the dif-
fraction pattern in Fig. 3 of Ref. 48, we note an intriguing
similarity with ours for rZ�1 in that the critical current is
nonvanishing between the diffraction maxima. This may
however just as well be the combined result of nonuniform
current distribution, trapped flux, and deviation from the
small junction limit57 so that we cannot with any certainty
interpret this observation as evidence for a nonsinusoidal
current-phase relation nor would nonsinusoidality necessar-
ily imply s�-wave pairing. �The diffraction patterns obtained
in Refs. 47 and 49 can on the other hand not be compared
with our results at all, as the experimental situations for those
works are different.� It should also be noted that our model-
ing of the flux threading the junction is rather simplified and
does not include effects that may be present in real
samples.57 More importantly, assuming isotropic order pa-
rameters and Fermi surfaces, our model is insensitive to how
the junction geometry is chosen. We therefore cannot capture
the directionality of the electronlike Fermi surfaces in the
folded Brillouin zone of iron-based superconductors, which
is essential in other proposals for phase-sensitive corner
junctions26,27 and related geometries.

It would also be very interesting to see how robust the
results presented here are to the introduction of material im-
purities. The iron-based superconductors are mostly expected
to reside in some intermediate regime of impurity
concentration,2 thereby making neither the ballistic nor the

diffusive limit a completely accurate description. In fact, a
number of theoretical works15–18,58,59 depend on a significant
influence of impurities to explain the experimental results or
to induce experimentally observable bound states. Our study
in Ref. 38 was motivated by the fact that the diffusive regime
is often the experimentally relevant one. Although taking the
diffusive limit may not be strictly valid in this case, the re-
sults found might nevertheless capture important features of
the real materials. In light of this, it would be very interesting
to compare the results obtained in the diffusive and the bal-
listic limit with calculations performed using the quasiclas-
sical Eilenberger equation,60 which allows for arbitrary im-
purity concentration. This would require a multiband
extension of the Zaitsev boundary conditions61 and such a
theory has only very recently been developed �see Ref. 62�.

V. CONCLUSION

Possible signatures of s�-wave pairing in tunneling spec-
troscopy stem mainly from the multigap nature of the super-
conductor but also from interference effects when the inter-
band coupling is strong relative to the barrier strength. This
may lead to subgap peaks in the conductance spectra not
present for a corresponding s-wave model, although the ap-
pearance of these are relatively sensitive to the parameter
values used. Similarly for the nonlocal conductance, it is
found to be very difficult to discriminate qualitatively the
interference effects of a s�-wave state from those of a two-
band s-wave state. Josephson coupling is on the other hand
an intrinsically phase-dependent phenomenon, so it is natural
that it is here that we find the most promising signatures of
s�-wave pairing, namely, 0-� transitions or similar phase
shifts in a s-wave�I�s�-wave junction. These are neither de-
pendent on nor considerably affected by the presence of in-
terband coupling. As in the diffusive case,38 we find 0-�
phase shifts as a function of the relative interface transpar-
ency, an effect whose detection is possible, in principle, but
difficult in practice. We have also shown that a phase-shift
effect is present as a function of temperature and although
this effect is not as robust as the one reported for the diffu-
sive case, it may nevertheless be possible to observe using a
SQUID setup. For both cases, we have shown how the phase
shifts can be ascribed to the competition between Andreev
bound states for the two bands and how the nonsinusoidality
of the Josephson current is essential in the description of the
phase shifts. We have also pointed out that this second har-
monic component in the current-phase relation may induce
half-integer quantum flux modulations in the magnetic dif-
fraction pattern of the Josephson junction. In addition, we
found a peak feature in the temperature dependence of the
critical current for the case of different gap magnitudes, an
effect ascribed to the crossing of two gaps. Although it is
hard to tell how relevant the signatures reported in this sim-
plified model are for possible experimental realizations of
the s�-wave pairing state, our results shed more light on the
basic mechanisms of transport and their implications in such
systems.
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APPENDIX A: REFLECTION AND TRANSMISSION
COEFFICIENTS FOR THE N �s±-WAVE JUNCTION

In this section, we give the analytical solution for the
reflection and transmission coefficients. We have to consider
the two cases ��=1,2 for the incoming electron band inde-
pendently but will use the same symbols for the coefficients
to simplify notation. First considering ��=1, we have the
transmission coefficients given by

s1 =
2iR2

�
, �A1�

t1 =
− 2iR1

�
, �A2�

s2 =
2i�̃

�

X11R2 − X12R1

�2
, �A3�

t2 =
2i�̃

�

X21R2 − X22R1

�2
. �A4�

For the case of ��=2, the corresponding expressions read

s1 =
2i�̃

�

X11P2 − X12P1

�1
, �A5�

t1 =
2i�̃

�

X21P2 − X22P1

�1
, �A6�

s2 =
2iP2

�
, �A7�

t2 =
− 2iP1

�
. �A8�

The reflection coefficients are then found for both cases by
insertion into

r1 = − 
��,1 + u1s1 + v1t1, �A9�

r1
A = v1s1 + u1t1, �A10�

r2 = − 
��,2 + u2s2 + 
v2t2, �A11�

r2
A = 
v2s2 + u2t2, �A12�

where 
��,i is the Kronecker delta.

The auxiliary quantities used for ��=1,2 are given by

� = �2�1 + 2�̃2�4u1u2A − Z2C2C1� + �̃4C1C2, �A13�

X11 = ZA + 2iu1u2, �A14�

X22 = ZA − 2iu1u2, �A15�

X12 = ZB + 2iu2v1, �A16�

X21 = ZB − 2iu2v1, �A17�

Y12 = − ZB + 2
iu1v2, �A18�

Y21 = − ZB − 2
iu1v2, �A19�

R1 = − Zv1�2 + �̃2�
v2X11 + u2X21� , �A20�

R2 = − �2i + Z�u1�2 + �̃2�
v2X12 + u2X22� , �A21�

P1 = − 
Zv2�1 + �̃2�v1X11 + u1Y21� , �A22�

P2 = − �2i + Z�u2�1 + �̃2�v1Y12 + u1X22� , �A23�

where

A = u1u2 − 
v1v2, �A24�

B = v1u2 − 
u1v2, �A25�

C� = v�
2 − u�

2 , �A26�

�� = 4u�
2 − C�Z2. �A27�

The expressions above are valid both the s�-wave and the
coupled s-wave cases, where s� wave is found by setting 

=−1 and s wave by 
=1.

APPENDIX B: SOLUTION FOR THE ABS ENERGIES FOR
DIFFERENT GAP MAGNITUDES

The coefficient matrix � for each of the uncoupled bands
in the general case of different gap magnitudes yield after
some manipulation the equation

Im���� = �4 + Z�
2�sin�2�s + 2��� − Z�

2�sin 2�s + sin 2��	

− 8
� sin��s + ���cos � = 0, �B1�

with 
1=1 and 
2=−1 for a s�-wave superconductor. Using
that cos ��=E / ���� and cos �s= ���� /�s cos �� we can solve
the equation for cos2 ��, which produces the solutions
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E1
� = �

Z1
2 + 2

Z1
�A1 sin2��/2� + B1 − �C1 sin4��/2� + D1 sin2��/2� + F1

2�Z1
2 + 4�

, �B2�

E2
� = �

Z2
2 + 2

Z2
�A2 cos2��/2� + B2 − �C2 cos4��/2� + D2 cos2��/2� + F2

2�Z2
2 + 4�

, �B3�

in addition to several other unphysical solutions. The auxil-
iary quantities here are given by

A� = 2K�, �B4�

B� = �s
2 + ����2 − K�, �B5�

C� = 8K��s���� , �B6�

D� = 4��s − �����2K�, �B7�

F� = ��s − ��
2�2, �B8�

K� = 8�s����/�Z�
2 + 2�2. �B9�

To justify that the given solutions are the only solutions
and are also in fact valid for all parameters, we have verified
numerically that Re����=Im����=0 for all solutions of E�

�

used in this work. However, as can be seen by comparing
with Fig. 11 and the accompanying discussion, evaluating
E���� for around ��0 for Eq. �B2� or around �� �� for
Eq. �B3� does not produce a valid result for ������s. The
explanation is that the physical Andreev bound states simply
vanish in these regions and we have again confirmed numeri-
cally that ����=0 have no real solution for E here. In fact,
solving only for the imaginary part of the determinant yields
�clearly unphysical� solutions �E��
min��s , �����, which fur-
thermore result in complex factors sin ��, rendering Eq. �B1�
invalid as an expression for the imaginary part of the deter-
minant. In the results presented above, we have handled this
numerically by setting the bound-state energy equal to the
gap value when vanishing so that it does not contribute to the
current �since the energy states vanish at the gap edge with
zero slope�, although the energy states strictly speaking do
not exist at all in these regions.
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