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Many electronic theories of Gilbert damping in ferromagnetic metals are based on the s-d exchange model,
where localized 3d magnetic spins are exchanged-coupled to itinerant 4s electrons, which provide the needed
spin relaxation. Recently, Tserkovnyak et al. have obtained Gilbert damping from itinerant 3d electrons alone,
which have their own spin relaxation. We show that simple semiclassical equations of motion for precessing
itinerant 3d spins predict exactly the same formula �=1 / ��d�sr

d � for the Gilbert damping constant as the full
Green’s function quantum treatment by Tserkovnyak et al. Here, �d is the precession frequency of 3d spins in
the d-d mutual exchange field, and �sr

d the 3d spin-relaxation time. A correct form for the spin-relaxation torque
is crucial for success: The spins relax toward an instantaneous direction which is that of the vector sum of
external field and d-d exchange field. Remarkably, d-d exchange torques disappear completely from the
equations of motion for the total 3d magnetization, and exchange plays only an indirect role through the spin
relaxation. This purely 3d model is simpler than the traditional s-d model. We also present a theory of
current-induced torques on a domain wall, based on the 3d model. We find equivalents to the so-called
adiabatic and nonadiabatic torques. They are given by formulas similar to those holding for the s-d exchange
model.
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I. INTRODUCTION

Damping of the motion of magnetic spins in ferromagnets
is of the kind described by Gilbert, where the damping rate is
proportional to the spin precession frequency. Many elec-
tronic theories for metallic ferromagnets are based on the s-d
exchange model,1 where localized 3d magnetic spins S are
coupled to itinerant 4s electron spins s by an interaction E
=−2JsdS ·s, where Jsd�0.1–0.2 eV.

Because of the momentum gap existing2 between spin-up
and spin-down Fermi surfaces, no damping is obtained at T
=0 unless spin relaxation,3 connected with a combination of
spin-orbit interaction and electron scattering, is introduced
for the 4s electrons. It is represented by a spin-relaxation
time �sr

s �10−12–10−13 s. One exception is the theory of
Mills et al.,4 who showed that spin orbit can be replaced here
by s-d exchange itself.

Using s-d exchange and coupled semiclassical equations
of motion for S and s, Turov5 derived the value of the ferro-
magnetic resonance linewidth. It is directly related to the
dimensionless Gilbert damping parameter �. In the limit
�s�sr

s �1, this reduces to

� =
s

�S + s���s�sr
s �

. �1�

Here, S and s are the magnitudes of S and s, with units of
atom−1. The quantity �s=2JsdS /� would represent the s pre-
cession frequency in the s-d exchange field set up by S, if
that field had a constant direction.

Later, Heinrich et al.6 treated this problem with a Green’s
function formalism. Remarkably, this quantum treatment
yields exactly the same expression for � �Eq. �1�� as the
simple equations of Turov5 for the classical precession of S
and s.

Recently, Tserkovnyak et al.7 obtained Gilbert damping
from itinerant 3d electrons alone, assumed to have their own
spin-relaxation time �sr

d .This purely 3d model leads to

� =
1

�d�sr
d , �2�

where �d would be the 3d-spin precession frequency in the
Stoner exchange field generated by all the other 3d itinerant
spins, if that field had a fixed direction.

The purpose of the present paper is to show that a simple
classical equation of motion for a precessing 3d spin predicts
exactly the same formula for � �Eq. �2�� as the full quantum
treatment by Tserkovnyak et al.7 which uses Keldysh
Green’s functions combined with the Boltzmann equation.
The present approach also provides a clear physical picture
�Fig. 1�b�� of processes involved in Gilbert damping.

Actually, the fact that the present model uses only one
kind of electron is more important than the exact d or s
nature of such electrons.

II. S-D EXCHANGE MODEL

The equations of motion for the localized 3d magnetic
spin S and the itinerant 4s conduction-electron spin s �Fig.
1�a�� are5

�
ds

dt
= − g�0�Bs 	 �H + Hsd� − �

�s − s0�
�sr

s

�
dS

dt
= − g�0�BS 	 �H + Hds� . �3�

Here, H is the external static field, Hsd=−2JsdS /g�0�B
the exchange field exerted by S on s, �0 the vacuum perme-
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ability in the SI system of units �Systeme International�, and
Hds=−2Jsds /g�0�B the field exerted by s on S. Also, �B is
the Bohr magneton. The g-factor g is assumed for simplicity
to have the same value for S and for s.

In Eqs. �3�, s0 is the instantaneous direction toward which
s is relaxing. As discussed a long time ago by Hasegawa,8

this direction should be antiparallel to the total field H
+Hsd acting on s �Fig. 1�a��

s0 = − s
H + Hsd

�H + Hsd�
. �4�

This choice of s0 represents the instantaneous direction
where the total Zeeman energy of s would be minimum. It is
a logical choice since, during spin relaxation, the Zeeman
energy is lost to the lattice through emission of phonons.

Choices which differ from Eq. �4� would lead5,8 to shifts
in the S precession frequency, away from the usual value;
such shifts are not observed in actual resonance experiments.
Note also that Walker9 has derived Eq. �4� on the basis of
Fermi-liquid theory.

We introduce coordinates x, y, and z, with z antiparallel to
H �Fig. 1�a��, and look for solutions of Eqs. �3� and �4� of the
form s+�t�=s+�0�e−�
+i��t ,S+�t�=S+�0�e−�
+i��t, where s+=sx
+ isy. We assume H�Hsd ,Hds and �s+��s , �S+��S. We intro-
duce the quantity �s=2JsdS /�. It would represent the s pre-
cession frequency around Hsd if the latter had a fixed direc-
tion. We obtain in the limit �s�sr

s �1

� �
g�0�BH

�
; 
 �

s�

�s + S��s�sr
s . �5�

Then, the Gilbert damping parameter, defined as �=
 /�,
is given by Eq. �1� in agreement with Refs. 5 and 6. Inter-

estingly, starting with a Bloch-type spin-relaxation term in
the equations of motion �Eqs. �3��, we arrived nevertheless
�Eq. �5�� to a Gilbert form for the damping rate 
, i.e., with

��. The H term in Eq. �4� is responsible for this.

III. ITINERANT D-D MODEL

In this model, we consider only itinerant 3d electrons, in
Bloch waves with various wave vectors and spin states, la-
beled with the index n=1,2 ,3 , . . . . Paired spin-up and spin-
down electrons of same wave vector give zero total spin, and
can be ignored. Only the remaining unpaired spin-up states
matter. Since they all have different wave vectors, they can
have nonorthogonal spin parts while still being orthogonal
and obeying the exclusion principle. This makes possible a
classical picture of individual precessing 3d spins, pointing
in different directions, with increased exchange energy.

As mentioned before, the fact that only one kind of elec-
tron appears in the model is more important than the exact d
or s nature of such electrons. Actually, the two kinds of states
are significantly mixed through s-d hybridization. This ques-
tion will be discussed in more detail in Sec. VI.

As in the last section, we write a classical equation of
motion for the spin sn �Fig. 1�b�� of an individual 3d electron

�
dsn

dt
= − g�0�Bsn 	 �H + Hdd� − �

sn − s0

�sr
d . �6�

Here, Hdd is the d-d �Stoner� exchange field �Fig. 1�b��
acting on sn, generated by all other itinerant 3d electrons, and
�sr

d �10−13–10−14 s the 3d spin-relaxation time. Also, S is
the total spin of 3d electrons in the system, with S=nsn.
The total exchange energy is −2Jddn�mmsn ·sm. Then, Hdd
is given by Hdd=−JddS /g�0�B. For simplicity, we assume
the d-d exchange integral Jdd to have the same value between
all pairs of 3d states. Band-structure calculations are
consistent10 with Jdd�0.5 eV.

Similarly to the last section, and for the same reasons, sn
relaxes �see Fig. 1�b�� toward the direction

s0 = − s
H + Hdd

�H + Hdd�
. �7�

The remarks about 1 /�sr
s made in that section also apply

to 1 /�sr
d . The mechanism of spin relaxation of Ref. 3 works

for 3d electrons, since these are now assumed itinerant. We
sum Eq. �6� over n, to obtain an equation of motion for the
total 3d spin S

�
dS

dt
= − g�0�BS 	 H −

�

�sr
d �S − S0� , �8�

where S0=−S�H+Hdd� / ��H+Hdd��. We see that exchange
torques have disappeared from Eq. �8�. The reason is that
these are internal to the 3d-electron system, not external as in
the case of the s-d exchange model of last section. Exchange
appears only indirectly, through S0 in the spin-relaxation
term. We define the quantity �d=g�0�BHdd /�. It would rep-
resent the sn precession frequency around Hdd if the latter
had a fixed direction. Similarly, we define �=g�0�BH /� and

s

o

sd
H

dsH
H

Hdd

os

sn

zz

H

s

a) b)

S

SS

0

FIG. 1. �a� 4s conduction-electron spin s and 3d magnetic-
electron spin S precessing around the magnetic field H. The s-d
exchange field Hsd is antiparallel to S and acts on s; and vice versa
for Hds. The vector s0 is antiparallel to the total field H+Hsd acting
on s, and is the direction toward which s is relaxing. �b� 3d indi-
vidual spin sn and total 3d spin S=nsn precessing around the mag-
netic field H. The d-d mutual exchange field Hdd is antiparallel to S
and acts on sn. The vector s0 is antiparallel to H+Hdd and is the
direction toward which sn is relaxing.
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S+=Sx+ iSy, with z antiparallel to H �Fig. 1�b��. After assum-
ing H�Hdd , �s+��s , �S+��S, Eq. �8� gives

dS+

dt
= − i�S+ −

�

�d�sr
d S+

dSz

dt
� 0.

To first order in the precession amplitude �S+�, the modu-
lus of S is constant. Again, we look for a solution of the form
S+�t�=S+�0�e−�
+i��t, and find immediately


 =
�

�d�sr
d . �9�

Then, �=
 /� is given by Eq. �2� in agreement with Ref.
7. Again, and for the same reasons, 
 is of the Gilbert form.

Even when taking into account s-d hybridization, we have
�s��d but �sr

s ��sr
d . Thus, the dimensionless parameters

�sr
s �sr

s in Eq. �1� and �sr
d �sr

d in Eq. �2� may have comparable
values �10–100.

IV. CURRENT-INDUCED TORQUES ON A DOMAIN
WALL, IN THE 3d MODEL

We consider a tail-to-tail wall in a nanowire �Fig. 2�a��.
The spatial coordinate X runs along the length of the nano-
wire. The total 3d spin S at location X makes an angle ��X , t�
with the −X axis. As an approximation,11 we assume that the
vector S in the wall is everywhere contained in a plane P
parallel to the X direction, which makes an angle � with the

substrate plane �Fig. 2�b��. In a static wall at zero current, we
have �=0. The sign convention for � is such that it increases
when S turns toward the −x direction. We introduce local
spin coordinates x, y, and z with z parallel to S and x normal
to X and to plane P �Fig. 2�a��.

When � differs from zero, the canted magnetization
creates11 in the wall a demagnetizing field HD. If the nano-
wire thickness is much less than the width, this field is nor-
mal to the substrate plane. The component of HD along the
normal to plane P is HD

x =−HD cos �=−M sin � sin � cos �.
The torque exerted by HD

x on the total 3d spin S is in plane P
and is

�y = ��0Ms
2/2�sin�2��sin � . �10�

The usual energy eigenstates of an itinerant electron are
plane waves where the spin direction is the same at all loca-
tions. However, more general “spiral states” have been
introduced12 to represent itinerant electrons in domain walls.
As long as the wall width is much larger than an electron
wavelength, the spatial variation in the direction of S is slow
and there is no difference with the usual theory of domain
walls based on localized electrons. The structure of a simple
transverse wall is given13 by �= f�X−vwt� /�� where vw and
� are the wall speed in the laboratory frame and the wall
width, and f�u� is a certain function.

In earlier sections, there was no electric current. We intro-
duce now the current density j↑ carried by spin-up 3d elec-
trons, as seen from the laboratory frame. The existence of
such a 3d current will be discussed further in Sec. VI.

The effect on S of torque �y is evaluated in the simplest
manner14 in a moving frame where the electron gas is at rest
and, therefore, the spin current vanishes and causes no addi-
tional torque. The torque itself is the same in all frames. In
the case of spin-up electrons, the speed of that moving frame
is ve

↑=−j↑ /ne
↑e, where ne

↑ is the spin-up electron density. In
that frame, the spin-up parts of �y and S are related by

�y
↑ = �Sz

↑ � �/�t = − �Sz
↑�f�/���vw − ve

↑� , �11�

where f��u�=df /du, and where vw−ve
↑ is the apparent speed

of the wall as seen from the moving frame.
It is also possible to derive Eq. �11� in the laboratory

frame. In that frame, the apparent wall speed is vw, not vw
−ve

↑. Also, the current density j↑ present in that frame gener-
ates a 3d spin current js

↑, leading to an extra term −divjs
↑ in

Eq. �11�. These two changes cancel each other, so that we
obtain the same Eq. �11� as before.

By working in the moving frame, we have shown that the
case with current can be reduced to the case without current,
by a simple change in frame. Also, we have avoided the
introduction of the spin current.

We also write a expression similar to Eq. �11� for the
contribution �y

↓ of spin-down electrons. Because of the exclu-
sion principle and of orthogonality, the spins S↑ and S↓ of
spin-up and spin-down electrons stay closely antiparallel. By
equating �y

↑+�y
↓ to �y of Eq. �10�, and using the fact13 that

f�=sin � for a uniaxial anisotropy, we obtain finally

�1/2�sin�2�� = − �vw − �P/Pn�ve�/�D�

z

y

dd
nad
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S

H
H
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M
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S

S

H
H
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0

plane P
ψ

θ

FIG. 2. �a� Simple tail-to-tail domain wall in a nanowire. The X
axis runs along the length of the nanowire. The total 3d spin S
makes an angle ��X , t� with the −X axis. The plane of the picture is
plane P which contains all the spins S and makes an angle � with
the plane of the substrate. Local spin coordinates x, y, and z have
the z axis parallel to S, and x normal to plane P and to the X axis.
�b� View of the same domain wall, with the plane of the picture
normal to the X axis. Plane P, which contains the spins S, is at an
angle � to the plane of the substrate. The vector S0 is antiparallel to
the total field Hdd+HD and is the direction toward which S is
relaxing.
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P =
j↑ − j↓
j↑ + j↓

; Pn =
ne

↑ − ne
↓

ne
↑ + ne

↓

ve = − j/nee; �D = g�0�BMs/� . �12�

Here, �B is the Bohr magneton, and all carriers are as-
sumed electronlike. And ve is the average electron drift
speed. Also, ne=ne

↑+ne
↓ and j= j↑+ j↓. Note that � has

dropped out of the expression for �, thus justifying our as-
sumption of a constant �.

The demagnetizing-field torque �y of Eq. �10� and, de-
pending on the frame, the −divjs term are the only external
torques along y acting on the 3d spins S of the wall. The
−divjs term plays the same role in our 3d model as the so-
called adiabatic torque in the s-d exchange model.15,17 In the
latter theory, that torque had the nature of an s-d exchange
torque.

By Eq. �12�, the maximum stable value of � is � /4, and
the corresponding critical value of the current density is15

j� = �
�0Ms

2e�

P�
. �13�

Field HD also has a component in the plane P, which has
the same effect on S as an additional anisotropy with easy
axis along X. This tends to reduce the wall width below the
value � holding at �=0. This effect varies like �2 at small �,
and we will ignore it.

V. NONADIABATIC TORQUE

As before �Eq. �7��, each 3d spin sn relaxes toward the
instantaneous direction of the total field acting on it. Here,
this field is Hdd+HD �Fig. 2�b��. After summing over n and
assuming ����1 rad and HD�Hdd, S is found to relax to-
ward S0=−Sz�Hdd+HD� /Hdd. The spin-relaxation torque act-
ing on S is

�x = �
�S0�x

�sr
d = − �S

HD
x

Hdd�sr
d = �

S�D� sin �

�d�sr
d . �14�

This spin-relaxation torque plays the same role in the
present 3d theory as the so-called nonadiabatic torque in
theories16,17 based on the s-d exchange model. Contributions
to �x from interatomic-exchange and anisotropy torques can-
cel each other as long as the wall has the structure discussed
in the last section. We substitute � from Eq. �12� into Eq.
�14�. Also, torque �x is equivalent to the torque
�0MsHnad

X sin � of a fictitious field Hnad along the easy axis
X. From all this, we obtain finally

Hnad
X = −

�ne�Pnvw − Pve�
2�0Ms���sr

d �d�
, �15�

where � has dropped out. The term in vw represents Gilbert
damping. The positive sign of its coefficient Pn �Eq. �12�� is
required by the second law.

In real magnetic materials, it is important to take into
account domain-wall pinning, caused by lattice defects. It is
characterized13 by the coercivity Hc. The wall will move

whenever Hnad
X = �Hc. Combining this condition with Eq.

�15�, we obtain

vw =
P

Pn
�ve � vec�; vec =

2�0Ms���sr
d �d�

Pn�ne
Hc. �16�

Because of the existence of the coercivity, a minimum
electron drift speed vec is needed before wall motion can
start �Eq. �16� and Fig. 3�. For 3d electrons, P / Pn is on the
order of unity. Then, Eq. �16� shows that vw is on the order of
the electron drift speed ve, whenever �ve� exceeds the critical
value vec �Fig. 3�.

VI. APPLICABILITY OF 3d MODEL

The equilibrium physical and magnetic properties of Ni,
Co, and Fe depend primarily10 on the 3d band. By them-
selves, 3d electrons are already itinerant, with a bandwidth18

of several electron volts. As shown by Hodges et al.19 for Ni,
the addition of the 4s band causes only minor changes in the
structure and bandwidth of that 3d band. Despite significant
hybridization of 3d and 4s states, 3d electrons retain distinct
physical properties, such as high density of states and low
velocity. These electrons are the basis of the present d-d
model.

This model applies best to the problem of Gilbert damp-
ing �Sec. III� in transition-metal materials. The best example
is that of Permalloy thin films, studied experimentally20 by
Ingvarsson. For Ni and Co, it has to be complemented by the
Kambersky Fermi surface breathing mechanism21 of damp-
ing, which depends in opposite fashion on electron relaxation
time.

On the other hand, band-structure calculations for ferro-
magnetic Ni19,22 all show that the spin-up Fermi level is lo-
cated above the top of the 3d band, in a region with the low
density of states and high electron velocity characteristic of
4s electrons. The spin-up Fermi surface of Ni even has23

necks similar to those of Cu. This is confirmed by ordinary
Hall effect data24 for Ni, Ni-Fe, Ni-Fe-Cu, and Ni-Co, which
show that a small number �0.3 el. /at. of carriers carry most
of the current. Also by deviations from Matthiessen rule,25

(P /P)v

vv

w

eecvec

n

FIG. 3. Normalized wall speed vw versus average electron drift
speed ve, according to Eqs. �16�. Here, P and Pn are the current-
polarization and electron-density polarization factors. These are de-
fined in Eqs. �12�.
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which indicate a large ratio 3–20 of spin-up to spin-down
conductivities. Again, despite s-d hybridization, it is these
distinct properties which justify giving the name 4s to these
spin-up electrons at the Fermi level. They are responsible for
most of the electrical conductivity.

It appears, therefore, that the s-d exchange model �Sec. II�
would be more reasonable15,17 for the problem of current-
induced torques on domain walls, in many materials. One
exception is iron-rich Fe-Mn, Fe-Cr, Fe-V, and Fe-Ti, where
deviations from Matthiessen rule25 show conduction by spin-
down 3d carriers to be dominant. Hall effect data for Fe-Cr
�Ref. 26� show these carriers to be holelike. There, our
purely 3d model may apply even for current-induced torques
�Sec. IV�.

VII. CONCLUSIONS AND FINAL REMARKS

The model based on 3d itinerant electrons only, used by
Tserkovnyak et al.7 for their original derivation of Eq. �2� is
conceptually simpler than the s-d exchange model, which
uses two different kinds of electrons. Also, it is less plagued
by uncertainties arising from s-d hybridization.

Our present treatment of Gilbert damping in this model
achieves maximum mathematical simplicity, as well as maxi-
mum physical clarity and insight �Fig. 1�b��, through the use

of a semiclassical equation �our Eq. �6�� for the precession of
a 3d spin sn. This method was pioneered by Turov5 in con-
nection with the s-d exchange model, but has almost been
forgotten since.

Further simplification happens because we do not try, like
Tserkovnyak et al., to rederive known results about spin re-
laxation �see Refs. 3 and 8�. Instead, we just focus on the
Gilbert damping part of the problem.

The most important and least trivial ingredient for our
calculation is the choice8 of the direction s0 toward which the
spins relax �Eq. �4� and �7��, also made by Turov for the s-d
exchange model.

In the case of current-induced torques on a domain wall,
the formulas obtained for the angle � �Eq. �12�� and for the
fictitious field Hnad �Eq. �15�� are the same as they would be
in a similar theory14,15,17 based on s-d exchange, even though
exchange plays a much less explicit role in the equations. Of
course, the values of parameters such as P , Pn and ne may be
somewhat different. Our results are consistent with those of
Tserkovnyak et al.;7 for example, the dimensionless coeffi-
cient �, used by these authors to describe the intensity of the
nonadiabatic torque, can be shown in the 3d model to be
equal to the Gilbert constant �, itself given by our Eq. �2�.
On the other hand, ��� holds in the s-d exchange model.
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