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We study the phase diagram of a frustrated spin-1
2 ferromagnetic chain with anisotropic exchange interac-

tions in an external magnetic field using the density matrix renormalization group method. We show that an
easy-axis anisotropy enhances the tendency toward multimagnon bound states while an easy-plane anisotropy
favors chirally ordered phases. In particular, a moderate easy-plane anisotropy gives rise to a quantum phase
transition at intermediate magnetization. We argue that this transition is related to the finite-field phase tran-
sition experimentally observed in the spin-1

2 compound LiCuVO4.
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I. INTRODUCTION

The interplay of frustration and quantum fluctuations in
reduced dimensions often leads to unconventional magnetic
order, such as chiral or spin-nematic states �see, e.g., Refs.
1–15�. A particularly simple model yet realizing a fascinating
variety of competing phases is the frustrated ferromagnetic
spin-1

2 chain in the presence of an external magnetic
field,6–8,16,17 described by the Hamiltonian

H = �
l

�J1�Sl · Sl+1�� + J2�Sl · Sl+2�� − hSl
z� ,

�S1 · S2�� � S1
xS2

x + S1
yS2

y + �S1
zS2

z , �1�

where Sl is a spin-1
2 operator acting at site l, J1�0 and J2

�0 are the nearest- and next-nearest-neighbor exchange con-
stants, h is the external magnetic field, and � is the exchange
anisotropy. The system may be alternatively viewed as two
antiferromagnetic chains coupled by a ferromagnetic zigzag-
type coupling whose strength is measured by the frustration
parameter

� = J1/J2. �2�

The isotropic ��=1� version of this model has a rich mag-
netic phase diagram exhibiting states with different types of
competing unconventional orders.6–8,16,17 In particular, the
vector chirality, being the quantum remnant of the classical
helical spin order, competes with multipolar orders which
characterize the pseudocondensate consisting of multimag-
non bound states. A similar effect has been previously
predicted4 and recently confirmed numerically14,15 for the
case of the antiferromagnetic frustrated chain with J1�0,
J2�0.

The vector chirality (spin current) �l= �Sl�Sl+1� can,
even in one dimension, exhibit true long-range order �LRO�,
i.e., the asymptotic value �0

2=lim�n−n��→� C��n ,n�� of the
chirality correlator

C��n,n�� = ��n
z�n�

z 	 �3�

can be finite. In the presence of an external magnetic field or
of a finite anisotropy ��1, the rotational SU�2� symmetry is
broken down to U�1��Z2, and the vector chiral order corre-
sponds to the spontaneous breaking of the discrete Z2 �parity�
symmetry. At a finite magnetization, the presence of a non-
zero vector chirality automatically leads to the emergence of
scalar chirality,18 defined as a mixed product of three spins
on a triangular plaquette. It has been shown recently19 that in
the underlying electronic system the presence of a scalar
chirality always induces charge currents, leading to orbital
antiferromagnetism.

A common feature of the multipolar phases is that the
excitations that correspond to a single spin flip �i.e., to a
change �Sz= �1 of the z component of the total spin� are
gapped, and therefore, the in-plane spin correlator �Sn

+Sn�
− 	

decays exponentially with the distance �n−n��. This distin-
guishes such phases from the usual spin-fluid phases �also
called the XY1 type, in the classification due to Schulz20�
where the �Sn

+Sn�
− 	 correlations decay algebraically. At the

same time, the excitations with �Sz= �2 are gapless in the
quadrupolar phase, those with �Sz= �3 are gapless in the
octupolar phase, etc. The long-range quadrupolar �nematic�
order, characterized by the finite asymptotic value of the cor-
relator

C2�n,n�� = �Sn
+Sn+1

+ Sn�
− Sn�+1

− 	 �4�

at �n−n��→�, would break the U�1� symmetry, such that
those correlations can only be quasilong range �i.e., exhibit-
ing a power-law decay� in purely one-dimensional �1D� sys-
tems, yet they may develop into a true LRO in real materials
where a finite three-dimensional �3D� interaction is always
present. The same applies to the higher multipolar order pa-
rameters such as the octupolar �triatic� order defined by the
correlator of the type C3�n�= �Sl

+Sl+1
+ Sl+2

+ Sl+n
− Sl+n+1

− Sl+n+2
− 	, etc.

Finally, the spin-density correlator
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CSDW�n,n�� = �Sn
zSn�

z 	 − �Sn
z	�Sn�

z 	 �5�

has a power-law decay in multipolar phases �as well as in the
other phases mentioned above�, and depending on the domi-
nant correlations, a multipolar phase can be further charac-
terized as being of the nematic �triatic, etc.� or spin-density-
wave �SDW� type.

In the isotropic model at small ��� the spin gap is pre-
dicted to be either zero21,22 or astronomically small.23 The
zero-field phase diagram of the frustrated ferromagnetic
chain with an anisotropic exchange has been studied, both
for the case of anisotropic nearest-neighbor interactions
only24,25 and for the case in which both exchange paths ex-
hibit the same anisotropy.26–29 For the latter example, rel-
evant to our work, the existence of dimer, spin-fluid, and
�anti�ferromagnetically ordered phases has been suggested.26

Moreover, a chirally ordered phase has been predicted to
exist at ���	1 for ��1.29

The model, Eq. �1�, has been suggested to be relevant for
the description of several recently discovered quasi-one-
dimensional magnetic materials such as LiCuVO4 �Ref. 30�,
Rb2Cu2Mo3O12 �Ref. 31�, Li2ZrCuO4 �Ref. 32�, and anhy-
drous CuCl2 �Ref. 33�.

Our goal is to study the interplay between the exchange
anisotropy and the magnetic field as reflected in the magnetic
phase diagram of the model, Eq. �1�. The motivation for our
work stems from the experimental results30,34,35 for LiCuVO4
that have revealed the existence of a phase transition in a
magnetic field from a helically ordered state at low-field val-
ues into another phase at high magnetic fields where the
magnetic order seems to be collinear and directed along the
field axis.35,36 If one imagines “switching off” the three-
dimensional interactions, the helical phase might get trans-
formed either into the chirally ordered phase or into a usual
spin-fluid XY phase �albeit with incommensurate spin corre-
lations�, while the unknown high-field phase could corre-
spond to the quadrupolar state of the purely 1D model.

However, for the specific parameter values suggested to
be relevant for this particular material, i.e., �
−0.3, the 1D
model, Eq. �1�, with isotropic interactions ��=1� does not
support any phase transitions at intermediate field values.16,34

Numerical results7,8 for ����1 suggest that the vector chiral
phase shrinks very fast with decreasing ��� and thus it is
hardly detectable already at ��−1. Although one might as-
sume that the vector chiral phase still persists in an infini-
tesimally narrow region that vanishes asymptotically at �
→0, this would not suffice to explain the finite-field transi-
tion in LiCuVO4 occurring at a relatively high-field strength
of about 20% of the saturation field.34

At the same time, electron-spin-resonance
experiments37,38 indicate that the exchange interactions in
LiCuVO4 have an easy-plane anisotropy of about 10%. This
puts forward a natural question whether including this type
of an anisotropy may drive the sought for phase transition.
We show that this is indeed the case: there is a finite window
of ��1 where the spin-fluid phase persists at low fields
while the quadrupolar-SDW state occupies the high-field re-
gion.

In the present study, we focus on parameter values rel-
evant for LiCuVO4 �Ref. 30�, anhydrous CuCl2 �Ref. 33�,
and Rb2Cu2Mo3O12 �Ref. 31�, namely, �=−0.3, −0.6, and
−3, respectively. To carry out the numerical analysis, we em-
ploy the density matrix renormalization group �DMRG�
method,39–41 and our study is mainly based on the calculation
of magnetization curves M =M�h� and the chiral order pa-
rameter �0. In Sec. II, we present the analysis of magnetiza-
tion curves M =M�h� as a function of the exchange aniso-
tropy �. From the magnetization curves, we are able to
extract the phase boundaries. The results of the magnetiza-
tion curves analysis are further supported and supplemented
by the analysis of correlations presented in Sec. III. Our main
result, the magnetic phase diagrams derived from the com-
bined analysis of magnetization curves and correlations func-
tions, is presented in Sec. IV. We conclude with a summary
and discussion in Sec. V.

II. MAGNETIZATION CURVES

In this section, we present magnetization curves of the
ferromagnetic frustrated chain and discuss their relation to
the phase boundaries of the model, Eq. �1�, in the magneti-
zation vs anisotropy plane. To that end, we compute the
ground-state energies E0�Sz� for all values Sz=�lSl

z of the z
component of the total spin. By subtracting the Zeeman en-
ergy −hSz and carrying out the Maxwell construction, we
find, for each given field h, the quantum number Sz and,
respectively, the magnetization M =2Sz /N of the ground
state, where N is the number of sites. Typically, we use about
m=600 DMRG states and open boundary conditions.

Our results for �=−0.3, −0.6, and −3 are shown in Figs.
1–3, respectively. For both �=−0.3 and �=−0.6, at �=1 the
system is in the quadrupolar phase16,34,42 �also called
“even-odd,”42 or XY2 phase in the classification by
Schulz20�: the magnetization increases in steps of �Sz=2,
due to the presence of two-magnon bound states. In this
phase, the �Sz=2 sector, corresponding to the simultaneous
flip of two spins, is gapless, while single-spin excitations
with �Sz=1 are gapped.6 In terms of correlation functions, at
small fields the leading instability is in the SDW channel
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FIG. 1. �Color online� ��a� and �b� Magnetization curves for
�=−0.3 and �a� �=1.4 and �b� �=0.5. �c� Phase boundaries in the
M vs � plane, based on M�h�, for �=−0.3 �squares: N=96; stars:
extrapolation in 1 /N�.
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while at high fields the quadrupolar �nematic� correlations of
the type �4� dominate.3,6

The results of Figs. 1 and 2 show that an easy-axis aniso-
tropy ��1 simply stabilizes the �Sz=2 phase �see, e.g., Fig.
1�a�.43 In contrast to that, an easy-plane anisotropy, ��1,
disfavors the formation of two-magnon bound states and
eventually, we observe the disappearance of the �Sz=2 re-
gion �see Figs. 1�b�, 2�a�, and 2�b�, giving room to the phase
with �Sz=1. In Sec. III, we will see that this region exhibits
chiral order. The results of the analysis of M�h� for �J1�
�J2 are summarized in Figs. 1�c� and 2�c�: in both cases,
below �	0.5, the quadrupolar phase has disappeared. It is
worthwhile to remark that in the case of a weak coupling
��=−0.6 and �=−0.3�, we observe a reentrant behavior in
the vicinity of ��0.55: as the magnetization increases, one
starts in the �Sz=1 region, then enters into the quadrupolar
phase, and re-enters into the �Sz=1 one at M 
0.75. As we
shall see below, this picture is also supported by the behavior
of the chirality correlations.

In the vicinity of the saturation field �M =1� the position
of the boundary of the quadrupolar phase is in good agree-
ment with the analysis of Ref. 44. According to Ref. 44, the

field hs,2m at which the two-magnon bound-state gap closes is
given by hs,2m /J2= �1+ ��+1�2−�2�1−��2 / �2�1−���
while the respective value for one-magnon states is given by
hs,1m /J2= ��−1��1+��+ �4+��2 /8. Comparing those two
fields, one finds, for example, that for �=−0.3 the instability
of the fully polarized state at the saturation field is by con-
densation of the two-magnon bound states at ���s�0.54,
and by one-magnon states below that value. The critical
point �s is only slightly dependent on the frustration �, e.g.,
at �=−0.6 one has �s�0.58.

Let us now turn to the regime of strong coupling, �=−3.
In the isotropic case, the system is in a chiral phase at small
magnetizations, and with increasing M one enters a multipo-
lar �actually, octupolar� phase.8 This octupolar phase is char-
acterized by �Sz=3 steps in the magnetization curve,16

which indicates that three-magnon bound states are excita-
tions with the lowest energy per unit of �Sz. Similar to the
����1 case, an easy-axis anisotropy ��1 stabilizes the
�Sz=3 multipolar phase. We illustrate this behavior in Fig.
3�a�, showing the magnetization curve for �=1.1. In the
easy-plane region ��1, the magnetization curve further ex-
hibits a kinklike feature at about M �0.6, as the example of
�=0.4, plotted in Fig. 3�b�, shows. We trace this kink back
to the incommensurability and the emergence of multiple
Fermi points, following the reasoning of Refs. 42 and 45.
The resulting phase diagram for �=−3, based on the M�h�
curves, is presented in Fig. 3�c�.

Summarizing the results of this section, one can say that
the main feature, common for all values of the frustration
parameter � considered here, is that an easy-plane anisotropy
��1 gives rise to a midfield phase transition from the �Sz

=1 “phase” at low fields to a multipolar ��Sz
2� phase at
high fields. In Sec. III, we will further focus on characteriz-
ing the region with gapless triplet excitations �i.e., �Sz=1�
and show that it actually contains several different phases.

III. CORRELATION FUNCTIONS

In this section, we study the correlation functions,
complementing the analysis of the magnetization curves pre-
sented in the previous section. While the multipolar phases
are most easily detected by the appearance of the �Sz�1
steps in the M�h� curves, the region corresponding to �Sz

=1 can actually contain several different phases. Indeed, the
spin-fluid �XY1� phase of the easy-plane spin chain, de-
scribed by the one-component Tomonaga-Luttinger �TL1�
liquid, the two-component �TL2� spin-fluid phase,45 and the
chirally ordered phase all have gapless excitations in the
�Sz= �1 channel. Thus all those phases will show up as a
single �Sz=1 “phase” and cannot be further discerned from
the M�h� studies. Analyzing the chiral correlation function
C��n ,n��, we can identify the chiral phase, and the rest of the
�Sz=1 region can be divided into the TL1 and TL2 phases
by the line where a kink occurs in the magnetization curve
�see Sec. II�.

Within the multipolar ��Sz= p
2� phases, an additional
analysis of correlations is necessary to distinguish between
the regions with dominant spin-density-wave correlations
�SDWp “phases”� and those with dominant multipolar �nem-
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atic, triatic, etc.� ones. Although the transitions between, e.g.,
SDW2 and nematic is only a crossover and not a true phase
transition in our purely one-dimensional model, such an
analysis can be helpful in understanding what could be the
resulting order in a real material, where frustrated chains are
coupled by a weak three-dimensional interaction.

A. DMRG methods for the calculation of the vector chirality

Using the finite-size DMRG method40,41 in its matrix-
product formulation,46 we have studied correlators �3�–�5� in
chains of N=256 spins. This length has been chosen since,
on the one hand, it is sufficiently large to study the
asymptotic long-distance behavior of the correlations, and on
the other hand, it is small enough to ensure that the DMRG
calculation converges with a moderate number m of repre-
sentative states kept. The typical value of m necessary to
reach good convergence strongly depends on the frustration
parameter �=J1 /J2: while for �=−3, m=400 is normally
sufficient, at smaller coupling ��=−0.6� this figure grows to
m�600–800, and in the regime of weakly coupled chains
��=−0.3� one needs m�800–1200, even for large magneti-
zations M �0.7 where the convergence is generally faster.
The correlators �3�–�5� have been calculated for a large num-
ber of ground states in sectors with different Sz. They have
been averaged over the starting and final positions n, n�, and
contributions with n or n� being closer as a fixed “cutoff”
�taken here to be 20 sites� to the chain ends have been dis-
carded. Typical chiral correlation functions are shown in Fig.
4. From such data we have extracted the asymptotic value of
the correlator which corresponds to the square of the chiral-
ity �0

2.
A proper finite-size scaling analysis of chirality correla-

tions is, however, hampered by strong boundary effects7,14,15

that tend to spoil the bulk correlations for smaller system
sizes. Due to that, it becomes difficult to distinguish the chi-
ral LRO from a nonchiral phase in those situations where the
chiral order parameter �0 becomes very small. In such cases,
we have complemented the finite-size DMRG study with an-
other technique, namely, the recently proposed47 matrix-
product formulation of the infinite-size DMRG algorithm
�iDMRG� which allows to treat systems with finite magneti-
zation �in contrast to the conventional infinite-size DMRG
method, see, e.g., Ref. 10�. We utilize an algorithm with
conserved U�1� symmetry to constrain the average magneti-

zation per unit cell. The convergence rate of iDMRG is es-
sentially independent of the size of the unit cell, which can
be arbitrarily large. The advantage of the iDMRG is that the
scaling in �m ,N� is replaced by the scaling in the number of
states m alone, which can be translated into a scaling with
respect to the correlation length via ��m, where the corre-
lation length � is determined from the next-leading eigen-
value of the transfer operator.48 For critical states described
by a conformal field theory �CFT�,  is a function of the
central charge.49 The spectrum of the transfer operator also
gives detailed information about the exponents and operator
content of the CFT.50

In the standard finite-size DMRG formulation, the degen-
eracy of two chirally ordered ground states will be lifted by
finite-size corrections. Therefore the purely real ground state
of a finite system is obtained as a superposition of states with
��0. The iDMRG,47 in contrast, allows for a spontaneous
breaking of the parity symmetry, which also breaks time-
reversal symmetry and leads to a complex-valued wave func-
tion. This gives a transfer operator that is not Hermitian but
is instead complex symmetric. The chirality order parameter
can then be calculated just as �0=I�Sn

+Sn+1
− 	. The iDMRG

randomly selects one of the two ground states with �0 either
positive or negative. For broken-symmetry states the iD-
MRG is quite efficient because the broken-symmetry state
requires fewer basis states than a superposition. For example,
the representation of a superposition of the ��0 states in a
form of a matrix-product state requires precisely double the
number of basis states because the reduced density matrices
of the two degenerate ground states have no overlap in the
thermodynamic limit. In a finite-size calculation, the mixing
of the two states leads to somewhat less than a factor 2 in the
required basis size, nevertheless one still requires generally
fewer states in iDMRG compared with its finite-size coun-
terpart.

B. Vector chirality in the weak-coupling regime (�J1��J2)

The results for the weak-coupling regime ����1 are
shown in Fig. 5. One can see that the finite-size DMRG
results give the impression that both at �=−0.6 and �=
−0.3, the vector chiral LRO vanishes in the low-field part of
the �Sz=1 region. However, as mentioned above, we cannot
reliably detect the presence of a very small chiral order with
the finite-size DMRG method because of strong boundary
effects. Applying the iDMRG technique, one can clearly see
that the finite-size DMRG tends to underestimate the value
of the chiral order parameter �0, cf. Figs. 5�a� and 5�b�.51

As can be seen from Figs. 5�c� and 5�d�, the magnitude of
the chiral order parameter diminishes quickly when ��� de-
creases, and also when one approaches the boundary of the
�Sz=1 region. The convergence in those cases becomes very
slow. Figure 6 shows the convergence of the iDMRG method
at a point close to the �Sz=1 boundary: a finite chirality is
detected when the largest intrinsic correlation length � of the
method exceeds 100 sites. Taking guidance from the
bosonization picture,4,7 it is fair to assume that the chirality
can be detected only after 1 /� drops below the value corre-
sponding to the spectral gap in the antisymmetric sector.52
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This gap becomes very small when one approaches the �Sz

=1 phase boundary or the M =0 line.23 In such cases �see,
e.g., the low-field region at ��0.4 for �=−0.3 in Fig. 5�b�,
one can use an extrapolation in 1 /� to extract the chirality
�0; Fig. 7 illustrates that this procedure yields a finite value
of �0. Continuity arguments suggest that the entire �Sz re-
gion belongs to the chiral phase, both for �=−0.6 and �=
−0.3. This is also consistent with the theoretical prediction29

of a chiral phase emerging at zero field in a wide range of �
in the limit ���→0, based on the analysis of small systems �if
the system is in the chiral phase already at h=0, it is reason-
able to assume that the chirality persists at finite field as
well�.

C. Vector chirality in the strong-coupling regime (�J1��J2)

The behavior of the chiral order parameter in the regime
of strong-coupling �=−3, as extracted from the finite-size
DMRG and iDMRG calculations, is shown in Fig. 8. It indi-
cates the existence of a chiral phase, that is, contained inside
a relatively narrow stripe 0.5���1, and the rest of the
�Sz=1 region should belong to a nonchiral spin-fluid phase.
The presence of a kink in the magnetization curves further
suggests that this spin-fluid phase is in turn divided into the
one-component �TL1� and two-component �TL2� spin-fluid
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the �Sz=1 phase boundary�; �d� vs the frustration parameter ���=−J1 /J2 at fixed �=0.2 and M =0.703125. Open symbols denote the
finite-size DMRG results and solid symbols correspond to iDMRG.
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FIG. 6. �Color online� Convergence of the iDMRG method at
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length � of the matrix-product iDMRG method �Ref. 47� and square
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becomes very small, cf. Fig. 5�b�. Up to m=1000 steps were kept in
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phases, occupying the low- and high-field regions, respec-
tively.

As can be seen from Fig. 8�a�, the transition between the
chiral phase and the TL1 phase is very sharp: the chiral order
drops from a sizeable value to zero in the entire low-field
region, when the anisotropy changes from �=0.7 to �
=0.65. This suggests that the transition is of the first order.

Figure 8�b� illustrates that for �=−3, the iDMRG results
agree very well with the finite-size DMRG data for a 256-
spin chain. This fact, together with the abrupt character of
the transition from the chiral phase to the TL1 spin fluid,
gives us reasons to conclude that in the strong-coupling case
the observation of nonchiral regions is not an artifact of the
DMRG convergence, but is due to existence of spin-fluid
phases, in contrast to the behavior in the weak-coupling re-
gime ����1.

D. Crossover between the spin-density-wave and nematic
at �=−0.6

We have analyzed the crossover between SDW2 and nem-
atic correlations inside the quadrupolar �Sz=2 phase at �=
−0.6. The typical behavior of the SDW and nematic correla-
tions as defined by Eqs. �4� and �5� is shown in Fig. 9. One
can see that both correlators decay as power law, but the
SDW correlations dominate in the low-field region, while the
nematic correlations take over at high magnetizations, in
agreement with the bosonization analysis and earlier numeri-

cal results.6,16,17 The effect of the anisotropy � on this cross-
over is rather mild: an easy-plane anisotropy ��1 shifts the
crossover boundary toward higher M, making the nematic
region more narrow, and the crossover boundary seems to be
insensitive to an easy-axis anisotropy ��1.

IV. MAGNETIC PHASE DIAGRAMS

Summarizing all the information extracted from the
analysis of magnetization curves and correlations, one can
establish the phase diagrams of the anisotropic frustrated fer-
romagnetic spin-1

2 chains in the presence of a magnetic field.
Such phase diagrams in the �M ,�� plane at different values
of the frustration �=J1 /J2 are presented in Fig. 10.

We reiterate here that we ascribe the entire �Sz=1 region
to the chiral phase for �=−0.3 and �=−0.6, based on the
very smooth character of how the order parameter vanishes
approaching the �Sz=1 boundary, on theoretical estimates
for zero-field case,29 and by invoking continuity arguments.
In principle, from our data, we cannot exclude the existence
of a small nonchiral region in the low-field part of the phase
diagram near the �Sz=1 boundary, but we think that this
scenario is rather unlikely. Thus, in the regime of weakly
coupled chains, the phase diagram contains just the chiral
and quadrupolar phases, the transition between them being
likely a smooth �second-order� one.

In the strong-coupling regime, �=−3, our results suggest
a rich phase diagram, displaying four phases: the octupolar,
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the chiral, and two types of spin-fluid phases �which can be
characterized as one- and two-component Tomonaga-
Luttinger liquids�. The transition between the chiral and the
spin-fluid TL1 phase is very sharp and is likely first order.

V. SUMMARY

Motivated by recent experimental results for several
quasi-one-dimensional magnetic materials,30–36 we studied
the model, Eq. �1�, of an anisotropic frustrated ferromagnetic
spin-1

2 chain in an external magnetic field, at finite values of
the magnetization. We showed that an easy-axis anisotropy
��1 stabilizes multipolar phases,6–8 in which the total z
projection of the spin Sz increases by steps of �Sz�1. In the
presence of even a small easy-axis anisotropy, such phases
occupy the entire range of finite magnetizations up to full
saturation. Further, we found that an easy-plane anisotropy
��1 may favor several types of phases: chirally ordered and
nonchiral one- and two-component spin fluids. We showed
that the presence of a moderate easy-plane anisotropy leads
to the possibility of a field-induced quantum phase transition

at a substantially large value of the magnetization M, even in
the purely one-dimensional model, Eq. �1�, which might pro-
vide an explanation for the field-induced transition34–36 from
a helically ordered to a collinear state observed in LiCuVO4.

Assuming that LiCuVO4 is a system of weakly coupled
one-dimensional chains and further assuming that the pres-
ence of an exchange anisotropy drives the experimentally
observed midfield phase transition in this material, our re-
sults imply that the low-field region would be in a helical
cone-type phase �see Ref. 53 for a recent study of helical
order in a 3D magnet in high magnetic fields� while the
SDW instability in the high-field region would turn the high-
field region into a collinear, magnetically ordered state with
long-range incommensurate �Sz�x�Sz�0�	 correlations. The
former conclusion �a helical phase in the low-field region� is
in agreement with the available experimental data30,34,35

while the latter conjecture of collinear incommensurate
order could be tested by neutron-scattering experiments and
is consistent with the nuclear-magnetic-resonance
measurements35,36 suggesting that the magnetic order be-
comes collinear in applied fields above 
7.5 T. It should be
mentioned that a similar incommensurate collinear structure
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FIG. 10. �Color online� Phase diagrams of Hamiltonian �1�, represented as slices in the space of the magnetization M and anisotropy �,
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�red� denote points in the octupolar ��Sz=3� phase without specifying the dominant type of correlations �SDW3 or triatic�.
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has been recently observed54 in the quasi-1D material
BaCo2V2O8 with easy-axis anisotropy.

For �=−0.3, our data suggest that the low-field, chiral
region opens up at a finite anisotropy; within the numerical
accuracy of our calculations, we were able to resolve the
emergence of this region for �	0.8 �see Fig. 10�b�. This
has to be contrasted against the experimental estimate of the
easy-axis anisotropy of about 10%,37,38 and against the fact
that in the magnetization measurements in LiCuVO4, the
midfield transition is observed at 7.5 T, corresponding to
about 20% of the saturation field.30,34 We stress that our re-
sults do not serve to unambiguously prove the exchange an-
isotropy to be the relevant mechanism behind the midfield
transition in LiCuVO4; nevertheless, our results clearly indi-
cate that, using the values for � and � suggested for
LiCuVO4, this material is very close to the quantum critical
point at which, as a function of decreasing �, a midfield
phase transition develops. This transition point shifts to
larger field as the anisotropy increases �� decreases�.

The vicinity to many competing phases then makes this
material so interesting but also renders it difficult to quanti-

tatively predict its phase diagram. Additional experimental
data are highly desirable to clarify the nature of this phase
transition, while, in conclusion, our work shows that the
emergent physics in this model, driven by the magnetic field,
quantum fluctuations, and broken exchange symmetry, is
very rich.
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