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Noncollinear magnetism in manganese nanostructures
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We present ab initio spin-density-functional calculations of the magnetic properties of Mn nanostructures
with a geometry varying between a straight linear wire and a three-dimensional nanorod, including collinear
and noncollinear, commensurate and incommensurate magnetic configurations. With decreasing tension along
the axis of the nanostructure we find a series of transitions first from a straight to a zigzag wire, then to planar
triangular or hexagonal stripes and further to a nanorod consisting of a periodic stacking of distorted octahedra.
At local equilibrium all nanostructures are in a high-moment state, with absolute values of the local magnetic
moments per atom varying between 3.79up for a straight noncollinear antiferromagnetic Mn monowire,
3.54up for a triangular collinear antiferromagnetic stripe, 3.40up for a hexagonal collinear ferrimagnetic
stripe, and 2.96up for an octahedral noncollinear ferrimagnetic nanorod. For all low-dimensional nanostruc-
tures except the monowire we find collinear and noncollinear magnetic structures to be energetically nearly
degenerate, if the geometric and magnetic degrees of freedom are relaxed simultaneously. The energetic
consequences of a modest change in the interatomic distances are comparable to those of a large canting of the

magnetic moments. Compression of the nanostructures leads to a decrease in the magnetic moments.
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I. INTRODUCTION

From the point of view of its magnetic properties manga-
nese is an extremely interesting material. A Mn atom has an
electronic configuration 3d°s? and according to Hund’s rule
it has a maximal spin moment of Sup and zero orbital mo-
ment. The unfilled d states lie about 2.1 eV above the occu-
pied states and this is the reason why dilute Mn atoms in
semiconductors maintain a high magnetic moment and ex-
hibit ferromagnetism.! Dilute Mn atoms in a matrix of noble-
metal or simple-metal atoms couple through oscillatory
Rudermann-Kittel-Kasuya-Yoshida interactions and the com-
petition between ferromagnetic (FM) and antiferromagnetic
(AFM) exchange interactions leads to spin-glass behavior,>
with local moments fluctuating around 3.5up in a Cu-Mn
spin glass, for example.

In the bulk phases of Mn the tendency to adopt a high-
moment state is in conflict with a high bond strength, as
expected for a metal with a half-filled d band—short inter-
atomic distances tend to quench magnetism.* Solid Mn exists
in no less than five allotropic forms with widely different
structural and magnetic properties. a-Mn, the most stable
polymorph under ambient conditions, crystallizes in a com-
plex body-centered-cubic lattice with 58 atoms per cubic unit
cell, it is AFM below a Néel temperature of 7=95 K> In
the AFM phase the crystalline symmetry is reduced from
cubic to tetragonal, the magnetic structure is noncollinear
with large magnetic moments on certain crystallographic
sites and much smaller moments on the remaining positions,
some Mn atoms could even be nonmagnetic. Detailed spin-
density-functional calculations have demonstrated that the
noncollinearity results from frustrated AFM interactions be-
tween Mn atoms in triangular motifs with short interatomic
distances.* In some sense, @-Mn can be considered as an
intermetallic compound between strongly magnetic and al-
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most nonmagnetic Mn atoms—this interpretation is also sup-
ported by the fact that @-Mn is isostructural to certain inter-
metallic compounds. Frustration also determines the
magnetic properties of S-Mn. It has been suggested that the
simple cubic structure of S-Mn with 20 atoms per cell be-
longs to the class of fully frustrated lattices (such as the
pyrochlore structure) where the frustration overcomes any
tendency toward magnetic ordering—fB-Mn is a spin
liquid.>” y-Mn has a face-centered-cubic structure in the
paramagnetic high-temperature phase (stable above 1368 K).
The properties of the AFM phase of y-Mn (Ty~ 570 K) can
be inferred by studying face-centered-cubic alloys such as
v-FeMn and extrapolation to zero Fe content®® or by epitax-
ial growth of y-Mn on a fcc substrate.'%!2 It has been shown
that the paramagnetic to AFM transition always induces a
tetragonal distortion and that the sign of the distortion can be
positive or negative. Contraction along the tetragonal axis is
coupled to layered antiferromagnetism while an expansion
along the tetragonal axis is associated with in-plane
antiferromagnetism,®!°-12 in accordance with theoretical
predictions.'>!* Body-centered-cubic Mn is stable only from
1406 K up to the melting point, for the hypothetical magneti-
cally ordered low-temperature phase multiple locally stable
incommensurate spin-spiral states have been predicted.'*!3
Finally, a hexagonal close-packed e-Mn phase stabilized un-
der pressure is nonmagnetic.”-'6

Nanostructures of Mn display a similar complexity.
Monolayers and bilayers of Mn grown on W(100) have a FM
ground state,!”!® antiferromagnetism develops only in films
with three or more atomic layers. Free-standing square
monolayers and monolayers on W(110) substrates are AFM,
suggesting that the ferromagnetism observed for Mn/W(100)
is substrate-induced. Very recent spin-polarized scanning
tunneling microscopy work has modified the picture of Mn/
W(100) monolayers. It has been shown that the FM state is
modulated by a spin-spiral propagating along the (110) di-
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rections. It was suggested that the spin spiral is stabilized by
a Dzyaloshinski-Moriya interaction induced by spin-orbit
coupling.! Monolayers and bilayers of Mn supported on a
FM Fe(100) substrate adopt a noncollinear spin-flop phase
with the Mn moments oriented roughly perpendicular to the
magnetic moments of the substrate,'*?" arising from the
competition between the AFM coupling within the Mn layer
and the FM coupling through the Fe/Mn interface.

In square layers AFM ordering is possible without frus-
tration, in contrast to the triangular layers formed on a close-
packed (111) fcc surface. For the AFM triangular layer with
nearest-neighbor interactions only it has been shown using
Monte Carlo simulations that the magnetic ground state has
V3 X V3 periodicity, with *£120° angle between spins on
neighboring sites (the Néel phase).?! Ab initio calculations
allowing for noncollinear spins lead to a slightly different
picture: while Cr/Cu(111) monolayers adopt the expected
noncollinear Néel phase, in Mn/Cu(111) a rowwise 2 X 1
AFM phase is preferred,”>?* probably because of the long-
range nature of the magnetic exchange interactions. Kurz et
al.?® discussed also other noncollinear spin structures (in-
cluding three-dimensional structures) derived from complex
spin Hamiltonians but for triangular Mn layers all were
found to be higher in energy.

One-dimensional (1D) nanostructures (linear and zigzag
chains) have recently been investigated by Tung and Guo®*
and Ataca et al.>> While both groups find an FM ground state
for straight and an AFM state for zigzag wires, large differ-
ences are reported in the magnetic moments of the antiferro-
magnetic ground-state configurations. These differences al-
ready highlight the difficulties to achieve converged results
for magnetic Mn nanostructures. For Mn chains supported on
a Ni(100) substrate Lounis et al.?® have reported a surprising
even-odd alternation of the magnetic structure: infinite or
even-numbered chains of Mn atoms adopt a noncollinear
magnetic structure while short chains containing an odd
number of atoms have a collinear ferrimagnetic (FI) ground
state. For larger odd-numbered chains a transition to a non-
collinear state is predicted, for infinite chain length both
even- and odd-numbered chains converge to the same non-
collinear structure. This surprising observation was attributed
to the conflict between the AFM exchange coupling along
the chain and the FM coupling between substrate and ada-
toms. The ratio between the AFM intrachain and the FM
interface coupling also determines the transition length for
odd-numbered chains. A detailed analysis of these even-odd
effects in antiferromagnetic chains within the framework of a
nearest-neighbor Heisenberg model was given by Politi and
Pini.”’

For small gas-phase Mn,, clusters with n=5—22 Stern-
Gerlach deflection experiments have been reported by
Knickelbein.?® The average magnetic moments derived using
a Curie-law analysis of the measured deflections vary non-
monotonically with increasing cluster size. The smallest mo-
ment (0.4up) was reported for Mn,o, the largest moment
(1.7up) for Mn,. For the smallest clusters (Mns and Mng) a
symmetric broadening of the cluster beam was observed and
this was interpreted, in the light of density-functional calcu-
lations, in terms molecular ferrimagnetism of these clusters.
The experiments of Knickelbein have revived an already
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very strong interest in the theory of the magnetic properties
of Mn,, clusters. The spin-density-functional calculations re-
ported so far fall into two broad groups: those considering
only collinear magnetic moments”>*> and those admitting
noncollinear orientations of the local magnetic moments.*0~>2
Even for the simplest case of an Mn, dimer both FM (Refs.
30, 34, and 39) and AFM (Refs. 29, 38, and 40) solutions
have been reported. Comprehensive discussions of the dimer
case have been given very recently by Mejia-Lopez et al.>?
within density-functional theory (DFT) and by Tzeli et al.**
on the basis of multireference Hartree-Fock (MR-HF) theory.
Both approaches lead to the conclusion that locally stable
FM and AFM solutions with bond lengths differing by about
0.3 A coexist. The change in sign in the magnetic exchange
coupling is driven by the different degree of 4s-3d hybrid-
ization varying with the bond length. However, whereas DFT
predicts the AFM solution at short bond length to be more
stable, the MR-HF calculations conclude to the contrary.
Tzeli et al.** also argued that because in the S=5/2 state of
a Mn atom all 34 orbitals are equally occupied, the binding is
of a van der Waals type, different spin states of the Mn dimer
being essentially degenerate. For clusters with n=3 the col-
linear calculations agree on FM in the smallest clusters (with
a magnetic moment per atom equal to 5ug), changing to FI
with increasing cluster size and on a magnetic energy differ-
ence between the FM and FI states growing rapidly with
cluster size. However, there is disagreement on the magni-
tudes of the magnetic moments and on the critical size for
the FM to FI transition. Nayak et al.3'*? found FM solutions
for n=2-35, Pederson et al.’® extended the FM solutions to
Mn,, with n=6-8 with total magnetic moments of 26ug,
29up, and 32up, respectively. In contrast, more recent stud-
ies reported that already beginning with Mns ferromagnetic
and AFM exchange interactions are in competition and the
ground state is FI (Refs. 33-35, 37, 39, 43, and 45). How-
ever, although all these studies have been performed within
the generalized-gradient approximation of DFT, the magnetic
moments for the ground-state configurations differ widely.
For Mng the total magnetic moments of the cluster vary be-
tween 8uy (Refs. 34, 41, and 43) and 27> for Mn; be-
tween Sup (Refs. 34, 41, and 43) and 29ug*" for Mng
between 4u (Refs. 34 and 43) and 34u,°° to be compared
with the experimental estimates of Knickelbein:?® 3.3u for
Mng, 5.04 5 for Mn;, and 8.3 up for Mng. The most compre-
hensive study for all clusters from Mn, to Mn,, has been
presented by Kabir et al.*! For all clusters it has been found
that between two and five magnetic isomers lie in an interval
of only 0.1 eV/atom above the ground state. Taking this into
consideration, the variation in the magnetic moments with
cluster size is in good agreement with the Stern-Gerlach ex-
periments of Knickelbein.?® However, the coexistence of fer-
romagnetic and AFM interactions suggests that the necessar-
ily present frustration may be relieved by adopting a
noncollinear magnetic configuration.

The problem of finding the correct magnetic ground state
becomes even more acute if a noncollinear arrangement of
the local magnetic moments is admitted. Mejia et al.*® find
that all clusters with n=2— 8 have a noncollinear magnetic
structure (although the angles between magnetic moments
differ only rather little from 0° or 180°). Morisato et al.¥’
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reported a noncollinear ground state for Mns and Mng clus-
ters, Longo et al.*®>! show that Mn, and Mnj; clusters remain
FM while clusters with 4, 5, and 6 Mn atoms adopt a non-
collinear structure. For the Mng cluster the magnetic struc-
tures found by Morisato et al. and Longo et al. are in rea-
sonable agreement but those for Mns are significantly
different. The most complete investigation of noncollinear
magnetism has again been presented by Kabir et al.>® for
Mn,, n=2-10, 13, 15, and 19. A collinear ground state is
confirmed for n=7, 15, and 19, for all other clusters a non-
collinear structure is at least slightly lower in energy (al-
though the canting of the directions of the local moments
with respect to the global moment is sometimes rather mod-
est). Compared to the collinear structures, total moments are
sometimes reduced (n=10), in many cases almost unchanged
(n=8,9,13) and in other cases even enhanced (n=6) com-
pared to the collinear results. Compared to experiment agree-
ment may be improved but also worsened. The difficulty
resides in the simultaneous optimizations of all structural and
magnetic degrees of freedom. Previous work on AFM Cr
clusters>® has shown that the frustration of the exchange in-
teraction may be reduced either by geometrical distortions or
by adopting a noncollinear magnetic structure (or both). Un-
fortunately the work of Kabir et al.’® gives no information on
the precise geometry of the clusters showing noncollinear
magnetism, although their previous work*' had shown that
collinear magnetic isomers differ also in their geometrical
structures (bond-length variations by several 0.1 A have
been reported).

In the present work we have investigated the magnetic
properties in periodic Mn nanostructures ranging from one-
dimensional wires over two-dimensional stripes to three-
dimensional nanorods using ab initio density-functional
techniques. Our model consists of six Mn atoms placed into
a box with lateral dimensions large enough to ensure a suf-
ficient separation between the periodic images of our nano-
structures, and a variable length ¢ in the third direction. At
large values of ¢ this corresponds to a straight monatomic
chain of Mn atoms under tension. As c is gradually reduced,
the structure transforms first to a zigzag chain, then to a
two-dimensional stripe and finally to a three-dimensional na-
norod. At each stage the geometric and magnetic structures
are optimized, allowing for both collinear and noncollinear
configurations. In addition for selected geometric structures
incommensurate spin-spiral structures have been explored.
This work extends a recent investigation of the magnetic
properties of Fe and Ni nanostructures,> which was, how-
ever, restricted to collinear ferromagnetic structures.

II. COMPUTATIONAL SETUP

The quantum-mechanical framework of our investigations
is spin-density-functional theory within the semilocal gen-
eralized-gradient approximation. We have used the Vienna
ab initio simulation package (VASP) (Ref. 55) which per-
forms an iterative solution of the Kohn-Sham equations for
periodic boundary conditions in a plane-wave basis. The ba-
sis set contained plane waves with kinetic energies up to 337
eV. The electron-ion interaction was described by pro-
jector-augmented wave (PAW) potentials.’®>” The PAW ap-
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proach shares the computational efficiency of the pseudopo-
tential approach but is an all-electron technique avoiding the
problems related to the linearization of the core-valence ex-
change interaction (this is particularly important for mag-
netic calculations). We use the gradient-corrected exchange-
correlation functional proposed by Perdew et al.’® and the
spin interpolation of Vosko, Wilks, and Nusair.”® The use of
the generalized-gradient approximation is essential for a cor-
rect description of the structural and magnetic ground state
of both ferromagnets®® and antiferromagnets.®'*> The calcu-
lations have been performed in a scalar-relativistic mode,
i.e., spin-orbit coupling has been neglected. This seems to be
justified by two observations: (i) in a free Mn atom the or-
bital moment is zero because the 3d shell is exactly half
filled. (i) In our previous work on Mn monolayers and bi-
layers on Fe(001) (Ref. 14) very small orbital moments on
the Mn atoms (less than 0.02up) have been found. These
orbital moments are smaller by a factor of 2-3 than the or-
bital moments of the substrate atoms. Brillouin-zone integra-
tions have been performed on 1 X 1 X 30 k-point set, using a
modest Gaussian smearing of the eigenvalues. The criterion
used for terminating the self-consistency iterations was the
energy changed by less than 107 eV in succeeding itera-
tions.

Noncollinear magnetism is described with the fully un-
constrained formalism implemented in VASP by Hobbs et
al.>® Density-functional theory is expressed in terms of a 2
X 2 density matrix with elements n*4(r). The electron den-
sity is given by the trace of the density matrix,

Ti[nA(r)] = np,(r) = 2 nr). (1)

The total density matrix may then be defined as
n(r) = [n1(r) 8o + rii(r) - 12, (2)

where & stand for the vector of the Pauli matrices, &
=(0y,0y,0,) and where the spin density is defined by

ii(r) = 2, n%(r) - 3P (3)

aB

The magnetization density is obtained by multiplying the

. . eh
spin density by a factor ; .

The functional derivative of the DFT exchange-
correlation functional with respect to the electron and spin
density leads to the nonmagnetic scalar exchange-correlation
potential,

SE, [nF] de. [n*(r)]
af _ Xc _ af Xt s V-
ey Ly
(4)
and to the magnetic exchange-correlation field,
6 SE, [n®P]  dlri(r)| OE, [nF]
naﬁ _ xc — Xc
b)) oi(r)  an(r)  Slri(r)|
. de[n"(r)]
- m(r)nTr(r) (9|rﬁ(r)| s (5)

where
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Ii(r)]

ani(r) (©)

m(r) =

is the direction of the magnetization density at the point r.

Hence the potential b(r) is parallel to the magnetization den-
sity ni(r) everywhere. For any detail of the implementation
of noncollinear magnetism in the PAW formalism used in
VASP we refer to the work of Hobbs er al.>?

The boundary conditions applied to the unit cell also re-
strict noncollinear solutions to periodic magnetic structures.
Incommensurate solutions which are not restricted by the
choice of the periodic boundary conditions may be found by
applying the generalized Bloch conditions introduced by
Herring® (see also Sandratskii®*) and implemented in VASP
by Marsman.®

The implementation based on a vector-field description of
the magnetization density allows a continuous variation in
the direction of the local magnetic moment between atoms.
In this respect it differs from alternative approaches to non-
collinear magnetism admitting a fixed orientation of the spin-
quantization axis around each atom.%®-%% An important ex-
ample where a full vector-field description of magnetization
is required to achieve a correct description of the ground
state is the spin-spiral state in y-Fe with a propagation vector
c]:zf X (0.2,0,1) (Refs. 65 and 69)—all calculations based
on atomic spin-quantization axes produce a spin spiral with
G=2"%(0,0,~0.6).

Nanostructures were modeled by an ensemble of six at-
oms in a periodically repeated tetragonal cell with lateral
dimensions along the x and y axes of 17 A. The axis of the
nanostructures (wire, stripe, or rod) was oriented along the z
direction, tension or compression on the nanostructure was
simulated by changing the height of the cell. Relaxation of
the atomic structure was performed via a conjugate-gradient
method, using the exact Hellmann-Feynman forces acting on
the atoms. A straight monatomic wire was produced by re-
stricting relaxation to changes in the z coordinates of the
atoms. Two-dimensional stripes are generated by permitting
relaxation in a plane passing through the axis of the wire
while either imposing equal interatomic distances along z,
(“xy relaxed”) or allowing an independent relaxation of five
atoms within the plane or in all three directions, imposing
only the periodic boundary conditions fixed by the cell size.
The position of the sixth atom is fixed in the center of the
basis of the cell. If the atoms are constrained to remain
within a plane, we observe with decreasing tension a transi-
tion from a straight to a zigzag wire, the formation of stripes
based on triangular motifs and finally under compressive
strain the disintegration into separated parallel wires. If re-
laxation in all three Cartesian directions is permitted, a tran-
sition to nanorods is observed. For comparison we also in-
clude nanorods formed by a periodic stacking of trigonal
prisms or antiprisms which are not spontaneously formed
upon compression of the cell. These two structures are re-
laxed only in a plane perpendicular to the axis while the
distance between the triangular base and top is fixed by the
periodic boundary conditions. The structural optimizations
were assumed to be converged when all forces acting on the
atoms were smaller than 0.001 eV/A.
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Local magnetic moments are calculated from the inte-
grated local spin-polarized densities of states (DOS). Be-
cause the calculation of the local DOS is based on a projec-
tion of the plane-wave components of the eigenstates onto
spherical waves within atomic spheres, the absolute values of
the local moments depend slightly on the choice of the
atomic radius. The same radius of 1.33 A has been used for
all sites in all configurations. Therefore, while the absolute
values of the local moments are subject to a small uncer-
tainty, the relative magnitude of the moments is reliably re-
produced.

III. MANGANESE NANOSTRUCTURES

In the following we describe the results for the geometric
and magnetic structures of the Mn nanostructures subject to a
decreasing tension along the z axis. Table I summarizes the
results for the local equilibrium configurations in one to three
dimensions. In one dimension the result is rather simple. For
collinear magnetic ordering we find FM and AFM solutions,
with a distinct preference for the antiferromagnetic case
which also allows for a shorter Mn-Mn bond length. What is
not entirely expected is that even for a linear chain a noncol-
linear magnetic structure is preferred. In two and three di-
mensions the situation is much more complex because struc-
tural and magnetic relaxations are in competition—this leads
to a situation where we find multiple local minima in the
multidimensional configuration space spanned by all geo-
metric and magnetic degrees of freedom.

A. Wires

We start our simulations from a 1D monatomic chain with
equal interatomic distances. Minimization of the total energy
with respect to the height ¢ of the cell yields an equilibrium
bond length of d=2.35 A (¢=14.13 A) for an AFM, of d
=2.61 A for a FM, and of d=2.418 A for a wire with a
noncollinear magnetic structure. These interatomic distances
are intermediate between the nearest-neighbor distances in
a-Mn which vary between 2.2 and 2.75 A (for details see
Hobbs et al.* and Villars et al.’®) but they are smaller than
the equilibrium bond lengths in ferromagnetic or AFM
dimers (for AFM Mn, Mejia-Lopez et al’? report d
=2.86 A while Kabir er al*' find d=2.61 A). At equilib-
rium, the magnetic moments are 4.04, 3.70, and 3.78up in
the FM, AFM, and noncollinear phases, cf. Fig. 1 and Table
I. For all magnetic configurations the interatomic distances
are constant along the chain. Dimerization is energetically
favorable only in very strongly stretched chains. This is re-
lated to the very weak binding of the Mn, dimer as reported
by Tzeli et al.**

These magnetic moments are significantly larger than the
local magnetic moments in the noncollinear magnetic «
phase. In paramagnetic cubic @-Mn the atoms occupy four
different types of crystallographically inequivalent sites, due
to the tetragonal distortion associated with AFM ordering,
types III and IV split into two subsets. Mnl atoms occupy the
corners and the center of the body-centered-cubic cells, they
carry the largest magnetic moment of 2.83uy (absolute val-
ues). Mnll atoms have a somewhat smaller magnetic mo-
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TABLE L. Cell height ¢, shortest interatomic distances d (in A), absolute values of local magnetic
moments M, and Cartesian components (M, M, M) of the resultant magnetic moments per cell (in wp), and
total energies (in eV/atom) for Mn nanostructures in one, two, and three dimensions at local equilibrium for
different magnetic structures—FM, AFM, FI, NCL, and SS.

Magnetic c d |M|; (M. My, M) E,o

Structure configuration (A) (A) (up) (up) (eV/atom)
Wire FM 15.66 2.61 4.04 (0,0,24.24) -6.109
AFM 14.13 235 3.70 (0,0,0) -6.175
NCL 1446 242 3.78 (0,-3.73,0.15) -6.230
SS 1446 242 3.79 (0,0,0) -6.229
Triangular FM 8.10 2.56 3.85 (0,0,23.10) -6.739
stripe AFM1 7.92 2.50 3.71 (0,0,0) -6.706
AFM2 7.44 2.40 3.38,3.87 (0,0,0) -6.839
NCLI(Néel) 738  2.46 3.63 (0,-4.76,-1.73) ~6.772
NCL2(3Q) 734 244 3.48,3.69 (0,0,0) ~6.832
SS? 7.38 2.46 3.63 -6.783
Hexagonal FM 5.34 2.56 3.59,3.90 (0,0,22.78) -6.835
stripe AFMI 534 233 2.71,3.68 (0,0,0) ~7.002
AFM?2 4.99 2.41 3.37,3.63 (0,0,0) -7.058
FI1 5.04 2.46  3.00,3.31,3.48,3.79 (0,0,0.93) -7.069
FI2 5.19 2.33 2.82,3.48,3.90 (0,0,-6.49) -7.099
NCL1(Néel) 5.06 2.53 3.41,3.71 (0.42,-0.27,-0.11) -7.058
NCL2(3Q) 5.18 2.36 3.23,3.57,3.70 (0,2.2,-2.73) -7.074
Ssé 5.06 2.53 3.29,3.75 -7.042
Prismatic AFM1 4.803 2.40 3.64 (0,0,0) -6.942
rod AFM2 4781 2.39 3.34,3.49 (0,0,0) -7.061
Tetrahedral AFM 5.093 2.28 3.31,3.55 (0,0,0) -7.184
rod NCL 5.029 232 3.40,3.51 (0,0.01,0.04) -7.214
Octahedral AFM 3.689 2.38 1.18,3.50 (0,0,0) -7.503
rod NCL 3.581 234 1.88,3.50 (-0.71,-7.15,-0.02) -7.509

Calculations for spin spirals have been performed at a fixed geometry identical to that of the NCL (NCL1)

phases.

ment of 1.83up while Mnllla and MnlIIb carry magnetic
moments of 0.74 and 0.48 3, and MnIVa and MnIVb atoms
have moments of 0.59 and 0.66 .y according to the magnetic
neutron-diffraction data of Lawson et al.’> The DFT calcula-
tions have elucidated the mechanism leading to the forma-
tion of a noncollinear magnetic structure; under compres-
sion, the MnlV atoms forming a triangular arrangement
become nonmagnetic and simultaneously the noncollinearity
vanishes, in an expanded state the MnlV moments increase
and the canting of all magnetic moments becomes more pro-
nounced. Hence noncollinearity arises from the frustration of
the AFM interaction between the MnlV atoms occupying
triangular motifs with short interatomic distances and is es-
sentially the result of a geometric frustration.

It is therefore quite surprising that in a Mn nanowire the
magnetic ground state is also noncollinear, with an energy
which is 55 meV/atom lower than in the collinear AFM state.
The noncollinear magnetic structure of the wire is similar to
that of the noncollinear Néel phase of a frustrated triangular
antiferromagnet.?! Spins on neighboring sites are rotated by
120°, in addition they are slightly canted relative to the plane
in which they are rotated (see Fig. 1), resulting in a net

magnetic moment nearly perpendicular to the wire.

The three different magnetic configurations display
strongly contrasting electronic structures. Figure 2 shows the
spin-polarized local electronic DOS at a Mn atom of the
monowire in the FM, AFM, and noncollinear states. An AFM
wire is characterized by a narrow, strongly exchange-split d
band. The band of the occupied majority states is centered at
an energy —2.80 eV below the Fermi energy, the bandwidth
of the d,, and d,>_,» components forming ddé bands is less
than 0.5 eV, the majority dd7 band formed by the d,, and d,,
states is only slightly broader. The d 2 states form ddo bonds
and hybridize with the s states through dso matrix elements.
As a consequence they undergo a stronger broadening. The
minority-spin states are more extended, leading to a more
pronounced broadening of the d,, and d,, states, the lower
edge of the band overlapping with the Fermi level. The ddé
bands are completely spin-polarized, spin polarization is
weaker for the ddm band and almost absent for the ddo
band—this explains the magnetic moment of 3.70up. It is
remarkable that the ratio of exchange splitting (A,
~3.8 eV) and of the local magnetic moment (M=3.70uz)
corresponds to a value of the Stoner parameter I=A,,./M of

144414-5



ZELENY, SOB, AND HAFNER

c(d)
10.8 12.0 13.2 144 156 16.8 18.0
B
(@) | (b)
X AFM
5.6 + FM -
i v NCL

5.7

-5.81—

591

E § (eV/atom)

ot

-6.0

-6.11—

-6.2

[ A O Y N B |
18 20 22 24 26 28 30

d(A)

FIG. 1. (Color online) (a) Energy vs interatomic distance for
FM, AFM, and noncollinear magnetic wires of Mn atoms and (b)
equilibrium noncollinear magnetic structure of a straight Mn
monowire. Cf. text.

1~0.97 eV/up very close to the universal value of [
~0.95%£0.1 eV/up for bulk itinerant ferromagnets and
antiferromagnets.”!~73

In contrast, the bands of a FM Mn monowire are much
wider, they show the characteristic structure of a 1D chain of
d-metal atoms with a narrow ddé (d,, and d,>_2) band, a
somewhat wider ddm (d,, and d,.) band, and a very broad
ddo (d2) band, all displaying the DOS maxima at the band-
edges characteristic for a one-dimensional configuration. The
differences in the degree of spin polarization are less pro-
nounced than for the AFM configuration. The exchange split-
ting is different for the three subbands, it is largest for the &
component (about 4.1 eV) and smallest for the m-bonded
states (about 3.2 eV), in accordance with the degree of spin
polarization. On average, an exchange splitting of A,,.~3.5
eV and a magnetic moment of 4.04 u, leads to a value of the
Stoner parameter close to that calculated for the AFM phase.
For the noncollinear phase no decomposition of the total
DOS into majority and minority components is possible
(only for the local atomic DOS an approximate decomposi-
tion with respect to a quantization axis oriented along the
direction of the average local moment would be possible).
The total spin-averaged DOS [see Fig. 2(c)] shows a charac-
ter intermediate between the ferromagnetic and AFM solu-
tions: very narrow and completely spin-polarized ddé band,
bandwidth and degree of spin polarization decreasing in the
sequence ddd— ddm— ddo. The differences in the exchange
splitting between the subbands is slightly larger but leads
again to the same universal value of the Stoner parameter.
The sum of the one-electron energies is lower for the non-
collinear than for the antiferromagnetic and FM configura-
tions.

The AFM, FM, and “Néel” phases of the Mn wire may be
regarded as special cases of a spin spiral (SS). The stability
of the different magnetic configurations may be discussed in
terms of a simple Heisenberg model (forgetting for the mo-
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FIG. 2. Electronic density of states of a straight Mn monowire:
[(a) and (b)] spin-polarized local and angular momentum decom-
posed density of states at a Mn atom in (a) a FM and (b) an AFM
wire. (c) Total and angular-momentum decomposed density of
states of a wire with a noncollinear magnetic structure. Cf. text.

ment that the Mn nanostructures are itinerant magnets). For a
strictly periodic chain, the rotation of the magnetic moment
from one site to the next must be constant along the chain.
Hence with exchange-pair interactions J,, between nth near-
est neighbors the total energy is given by

E=2J,cos ¢—2J,cos2¢p+2J3¢c083¢.... (7)

If the range of the exchange interaction is restricted to near-
est and next-nearest neighbors, the extrema of the total en-
ergy with respect to variations in the angle of rotation are
determined by the condition
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FIG. 3. Phase diagram of a Heisenberg model of a straight mag-
netic wire with nearest (J;) and next-nearest (J,) exchange interac-
tions. Cf. text.

ﬁ—2' Ji+4J =0 8
06 sin ¢(J, +4J, cos ¢) =0. (8)

This condition has multiple solutions: (i) sin ¢=0 describing
the FM (¢$=0°) and AFM (¢$=180°) solutions, and (ii)
cos <ﬁ=—4]712 describing a spin spiral. For |4]7]2|21 only the
collinear solutions exist. Outside this range, the collinear so-
lutions are lower in energy than the noncollinear spin-wave
state for J; =0 whereas the spin-wave solutions are preferred
for J;=0. A Néel phase with an angle of rotation of 120° is
stabilized for J;, J,=0, and J;=2J,. The spin-wave solu-
tions are twofold degenerate for clockwise and anticlockwise
rotations of the spins. A schematic phase diagram for the
Heisenberg chain is shown in Fig. 3. The noncollinear phase
with an angle of rotation of about 120° is found to arise from
strong AFM interactions between both nearest and next-
nearest neighbors. Hence in contrast to the bulk phases, the
frustration arises from the competition between short-range
and long-range AFM coupling.

Periodic boundary conditions suppress incommensurate
spin waves. Hence the solution with ¢=120° resulting from
the DFT calculations could be imposed by the periodicity of
the computational cell (six times the interatomic distance)
while the sign and relative magnitude of nearest-neighbor
and next-nearest-neighbor exchange interactions would pre-
fer a different angle of rotation between nearest-neighbor
spins. An incommensurate solution which is not restricted by
the choice of the periodic boundary conditions may be found
by applying the generalized Bloch conditions introduced by
Herring® and implemented in VASP by Marsman.% Figure 4
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FIG. 4. (Color online) (a) Total energy relative to the AFM state
and (b) magnetic moments of an incommensurate spin spiral on a
Mn chain, calculated as a function of the spiral wave vector and for
different interatomic distances. Cf. text.

shows the total energy and magnetic moments of a SS on a
periodic Mn wire as a function of the wave vector, calculated
for different interatomic distances. At the equilibrium dis-
tance (d=2.41 A) calculated for the noncollinear periodic
phase, we find a minimum for a SS with ¢=(0,0,0.33)
X 27” which coincides with the periodic noncollinear solu-
tion. The FM state at the zone center and the AFM state
realized at ¢=(0,0,0.5) X 2777 are higher in energy. Remark-
ably, the magnetic moment is almost independent of the
wave vector of the SS, as a consequence of the large ex-
change splitting—this justifies our simple Heisenberg model.
If the Mn chain is expanded to d=2.75 A, the FM state
becomes favored over the AFM state but the energetically
most favorable solution is an incommensurate SS with ¢
~(0,0,0.28) X 27” If the chain is compressed (while main-
taining the strictly one-dimensional structure), the total en-
ergy of the FM and SS solutions increase strongly relative to
the AFM solution, the spin-spiral solution becomes unstable.
With the simple Heisenberg model discussed above, this cor-
responds to an increase in the nearest-neighbor exchange
coupling such that |J;|=4J,].

B. From wires to stripes

When the height of the computational cell is reduced the
straight wire adopts a zigzag structure which transforms
upon decreasing tension first to a triangular and then to a
hexagonal stripe. The relaxation of the atomic coordinates
has been performed in two different modes: keeping the at-
oms equidistant along the z direction (xy relaxed) or allow-
ing an unconstrained relaxation. The constrained relaxation
leads to a gradual transformation from a straight to a zigzag
wire and further to a triangular stripe while maintaining the
same type of noncollinear magnetic structure as shown in
Fig. 5(a). An unconstrained relaxation leads to a different
scenario for the transformation from a one-dimensional
nanostructure to a two-dimensional nanostructure, even at a
modest reduction in the cell height the formation of
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FIG. 5. (Color online) Geometric and magnetic structures of one- and two-dimensional Mn nanostructures for varying height of the
computational cell, (a) produced by xy relaxation where the difference in the z coordinates of neighboring atoms is the same for all atoms
and (b) resulting from an unconstrained relaxation in a plane. Cf. Fig. 6 and text.

crosslinks between atoms favors clustering in the center of
the cell while some of the outer bonds are broken, see Fig.
5(b). In this case no continuous triangular stripe is formed.
At a cell height of ¢~8 A corresponding to the local equi-

librium for a triangular stripe [see Fig. 6(a)] a cluster with a
similar geometry but contracted interatomic distances is
formed. The change in the geometric structures is also re-
flected in the magnetic structures. In a zigzag chain where all
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FIG. 6. (Color online) (a) Total energy and (b) magnetic moments (per Mn atom) of one- and two-dimensional Mn nanostructures as a
function of varying height of the computational cell. Cf. Fig. 5 and text.
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interatomic distances are equal the Néel structure remains
energetically favorable down to ¢~ 10 A. At this point the
magnetic moments begin to rotate, at c~9.5 A the magnetic
structure consists of pairs of antiferromagnetically coupled
spins, with the pair located at the two central atoms roughly
perpendicular to the spins on the outer atoms. At c~8.5 A
the moments are aligned roughly parallel to the edges of the
stripe. The periodicity does not allow to form an AFM se-
quence but imposes an ...| T | | T |... alternation such that
the AFM coupling is necessarily frustrated. Upon further
compression of the stripe, a Néel structure with 120° angles
between neighboring moments and alternating positive and
negative helicities of the triangles is adopted. This structure
is conserved over a wide range of further compression, al-
though the magnitude of the moments decreases [see Figs.
5(a) and 6(b)]. For the structures produced by unconstrained
relaxation we note a tendency to stabilize collinear or nearly
collinear magnetic structures which is most pronounced at
c~9—6 A [see Fig. 5(b)]. This reflects the fact that in the
absence of geometric constraints, frustrations of the mag-
netic interaction may in many cases be relieved by structural
distortions. Upon further compression to ¢~35.5 to 4 A
complex three-dimensional noncollinear magnetic structures
are adopted.

Figure 6(b) shows the variation in the magnetic moments
in the one- and two-dimensional nanostructures as a function
of the cell height (measuring the average interatomic dis-
tance). While for a straight wire the magnetization varies
roughly as M «|d—d |F with B~0.5 and d.~1.35 A (corre-
sponding to a second-order transition with mean-field expo-
nents), for the two-dimensional stripes the magnetization de-
creases rather abruptly once the interatomic distances fall
below a critical value.

It must be emphasized, however, that the geometric and
magnetic structures shown in these graphs are generated by a
stepwise contraction of the nanostructures along the z axis
and do not necessarily represent the ground state which may
not be reached in this way. A more detailed exploration of the
magnetic configuration space has been performed around the
local equilibria for triangular and hexagonal stripes.

C. Stripes

Figure 6 shows the variation in the total energy of Mn
wires and stripes as a function of the height of the computa-
tional cell, as resulting from a step-by-step compression of a
straight wire under different constraints. In the following we
discuss the local equilibrium configurations found with the
two different relaxation modes, based on a more extended
search in geometric and magnetic configuration space (using
different initializations for the geometric and magnetic struc-
tures).

1. Triangular stripes

If a collinear magnetic structure is assumed, xy relaxation
leads to local equilibria for a FM triangular stripe with mag-
netic moments of 3.85u; at c=8.10 A which is about 33
meV/atom lower in energy than the configuration AFM1 at
c=7.92 A, consisting of a stripe of isosceles triangles [see

PHYSICAL REVIEW B 80, 144414 (2009)

Figs. 7(a) and 7(b)]. Equilibrium cell heights and interatomic
distances have been determined by a smooth interpolation
between the data points shown in the figure. All Mn atoms
have a magnetic moment of £3.71ug, atoms along the edges
of the stripe are ferromagnetically coupled, coupling across
the stripe is AFM. The distance between antiferromagneti-
cally coupled atoms is slightly shorter (d=2.50 A) than be-
tween ferromagnetically coupled pairs (d=2.64 A). This so-
lution corresponds essentially to the rowwise 2 X1 AFM
state which is the ground state of a free-standing triangular
Mn layer if the spin orientation is restricted to the atomic
plane.?>?3 However, this is not the AFM configuration with
the lowest energy.

If a noncollinear spin structure is admitted the resulting
equilibrium configuration depends on the initial magnetic
structure. If the calculation is started from a planar Néel
structure with magnetic moments on neighboring sites ro-
tated by 120° and alternating positive and negative helicity
in the triangles forming the stripe, the system relaxes to a
local equilibrium at ¢=7.38 A and a total-energy lower by
33 meV/atom than in the FM state [configuration NCL1, see
Fig. 7(d)]. Interatomic distances along the stripe are 2.46 A,
distances across the strip are 2.57 A and the acute angle in
the isoceles triangle is 57°. All atoms have a magnetic mo-
ment of 3.63up, projected on x and z planes, the angle be-
tween neighboring moments remains close to 120° such that
the frustration of the AFM nearest-neighbor coupling in the
triangles is relieved. The relative orientation of next-nearest-
neighbor moments is FM. However, the moments are rotated
out of the plane [see Fig. 7(d)], and this leads to an appre-
ciable net magnetic moment so that this configuration can be
described as noncollinear FI.

If the magnetic structure is initialized with substantial
components of the moments perpendicular to the plane of the
stripe [essentially in a configuration corresponding to the
“3Q” structure described by Kurz et al.?® for Mn/Cu(111)
monolayers], the stripe is contracted (c=7.34 A) and the
total energy is further reduced by 60 meV/atom. The geo-
metric and magnetic structure of configuration NCL2 is
shown in Fig. 7(e). The distortion of the triangles is stronger
than in the configuration NCL1, interatomic distances vary
between 2.44 and 2.62 A. The magnetic moment of the
atom occupying the acute angle (55.7°) is slightly larger
(3.69) than that on the other two sites (3.48up). The mag-
netic structure of the stripe may be considered essentially as
consisting of two commensurate spin spirals running along
the edges of the stripe, similar to the noncollinear structure
found for the one-dimensional wire. The two SS are coupled
antiferromagnetically across the stripe such that the lower
magnetic moments couple in pairs across the short diagonal
of a parallelogram whereas the larger moments couple anti-
ferromagnetically through the long diagonal. The difference
between configurations NCL1 and NCL2 is in the coupling
between next-nearest neighbors. In a parallelogram formed
by two edge-sharing triangles, in the state NCL1 the spin
coupling is under 120° along the edges and the short diago-
nal and FM along the long diagonal. In state NCL2 the cou-
pling is ~120° along the edges and AFM along the short and
long diagonals. In this configuration the total magnetic mo-
ment is exactly zero, hence NCL2 is a noncollinear AFM
phase.
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FIG. 7. (Color online) Geometric and magnetic structures of a flat triangular stripe of Mn atoms in different locally stable magnetic
configurations: (a) FM, [(b) and (c)] antiferromagnetic (AFM1 and AFM2), and [(d) and (e)] noncollinear (NCL1 and NCL2). The configu-
ration NCL1 is derived from a planar Néel-type starting configuration and is ferrimagnetic, configuration NCL2 is derived from a 3Q starting
configuration and is AFM. Part (f) shows the energies of all configurations as a function of the cell height. Cf. text.

Configuration NCL2 is energetically almost degenerate
with a collinear configuration AFM2 which is related to an
even stronger distortion of the triangular geometry and larger
differences in the local magnetic moments [3.87 and 3.38 up,
see Fig. 7(c)]. This configuration consists of isosceles tri-
angles with edges of 2.40 and 2.64 A of ferromagnetically
aligned moments, two such triangles couple antiferromag-
netically along bonds of 2.49 A.

The electronic densities of states of the collinear magnetic
phases of the stripe are compared in Fig. 8. The FM phase
has a very simple two-peaked DOS with a pronounced
bonding-antibonding splitting in the majority band and a
broader, less structured minority band. In contrast to the one-
dimensional Mn wires, the bandwidth of the AFM stripes is
not significantly reduced as compared to the FM phase be-

cause in both configurations we have FM coupling in part of
the stripe: along the edges for AFM1 and in triangles for
AFM2. A striking feature is that the DOS of the minority
states is strongly structured for the energetically favored
AFM?2 and noncollinear NCL2 configurations, with a deep
DOS minimum at the Fermi level. Inspection of the partial
DOS shows that for configuration AFM2 the occupied mi-
nority states are mostly d.. and d,. states promoting bonds
between the ferromagnetically coupled atoms across the
stripe which are longer than the bonds along the edges. A
similar statement also applies to the most favorable noncol-
linear state NCL2 [see also Figs. 7(c) and 7(e)].

We have also investigated the formation of spin spiral
with a wave vector oriented along the direction of the stripe.
The geometric structure is the same as the equilibrium struc-
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FIG. 8. Electronic density of states of a triangular stripe of Mn
atoms: [(a) and (b)] spin-polarized local and angular momentum
decomposed DOS of the collinear ferromagnetic and antiferromag-
netic (AFM2) phases and (c) total and angular momentum decom-
posed DOS of the noncollinear AFM configuration NCL2. Cf. text.

ture of configuration NCL1 with straight Mn wires along the
edges. The primitive unit cell for this configuration contains
two inequivalent sites, for g=0 the magnetic moments at
these sites can be either parallel or antiparallel. For larger
wave vectors both solution converge to the same result. The
equilibrium configuration is an incommensurate spin spiral
with §=(0,0,0.4) X 27?7, corresponding to a rotation of the
magnetic moment by 72° from atom to atom (see Fig. 9).
The total energy is —6.783 eV/atom, i.e., 56 meV above the
AFM2 state but slightly lower than for configuration NCL1
(see Table I). Since the geometric structure supporting the SS
has been frozen, a lower energy could eventually be found
for a fully relaxed incommensurate spin spiral. The geomet-
ric relaxation would have to be performed separately for any
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FIG. 9. (Color online) (a) Relative energy as a function of the
wave vector. (b) Geometric and magnetic structures of a spin spiral

formed on a flat triangular stripe of Mn atoms (fixed geometry). Cf.
text.

value of the wave vector. This would require a very large
computational effort. It remains an open question whether
this would eventually lead to a new minimum-energy con-
figuration.

2. Hexagonal stripes

Unconstrained relaxation within a plane leads to the for-
mation of a broader stripe consisting of a distorted hexagonal
arrangement of the Mn atoms and a noncollinear magnetic
structure (see Figs. 5 and 6). Again we have performed a
more extensive search for low-energy structures around the
energy minimum, using different initializations of the geo-
metric and magnetic structures. For the hexagonal stripes we
have found local minima corresponding to a collinear FM
state, two collinear antiferromagnetic states AFM1 and
AFM?2 with small differences in the atomic geometry and the
magnetic moments, two collinear FI configurations FI1 and
FI2 with widely different net magnetic moments per cell, and
two noncollinear AFM configurations NCL1 (starting from a
flat Néel structure) and NCL2 (starting from a three-
dimensional 3Q structure). The lowest energy is found for
the configuration FI2, it is lower in energy by 41 meV/atom
than the configuration NCLI1 resulting from a step-by-step
compression starting from a one-dimensional nanostructure.
Geometric data and magnetic moments are summarized in
Table I and Fig. 10.

The antiferromagnetic configuration AFM1 at c=5.34 A
consists of two dimerized FM chains of opposite magnetic
moments (M= *3.68ug) at the edges of the stripe and an
AFM chain with lower magnetic moments (M= *2.71up) in
the center. The AFM chain has a zigzag structure because
the distances between antiferromagnetically coupled pairs
(d=2.33 A) of atoms are smaller than between ferromag-
netically aligned moments (d=2.48 A). Both distances are
significantly lower than between the atoms occupying the
FM chains at the edges (d=2.61 A and d=2.72 A). The
configuration AFM2 at ¢=4.99 A consists of three parallel
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FIG. 10. (Color online) (a) Geometric and magnetic structures of a flat hexagonal stripe of Mn atoms in a ferromagnetic state, [(b) and
(c)] in two locally stable collinear AFM states, [(d) and (e)] in two locally stable collinear FI states, and [(f) and (g)] in two locally stable
noncollinear structures. The calculations leading to the noncollinear structures have been initialized with a planar Néel structure and a
three-dimensional 3Q magnetic structure, respectively. The total energy of all configurations as a function of cell height is shown in part (h).

Cf. text.

AFM chains with constant interatomic distances of 2.49 10\,
the magnetic moments at the edges of the stripe
(M= =*3.63up) are larger than those on the central chain
(M= *3.37ug). The hexagonal arrangement of the atoms is
sheared parallel to the axis of the stripe, the mechanism lead-
ing to this shear distortion is again the tendency to enhance
the distances between ferromagnetically aligned moments
(d=2.70 A) and to shrink the distance in antiferromagneti-
cally aligned pairs (d=2.41 A). The average of long and
short distances across the stripe is close to the interatomic
distance along its axis.

The ferrimagnetic configuration FI1 at c=5.04 A consists
of a similar arrangement of three stripes with alternating
positive and negative magnetic moments but because the
moments have different magnitude (A|M;]=0.31uy) the
chains are FI, the net moment per cell is 0.93u. All three
chains are dimerized but the difference between long and
short distances is larger for the central chain (Ad=0.30 A)
than along the edges (Ad=0.04 A). The chains at the edges
adopt a zigzag structure, again because of different nearest-
neighbor distances in ferromagnetically and antiferromag-
netically coupled pairs. This FI configuration is lower in en-
ergy by 11 and 67 meV/atom than the antiferromagnetic
configurations AFM2 and AFM 1, respectively, but lies in en-
ergy in between two noncollinear configurations (see below).
A second ferrimagnetic configuration FI2 can be produced at
the expense of an even stronger geometric distortion. It con-
sists of two dimerized zigzag FI chains at the edges with

alternating large negative (—3.90up) and small positive
(+3.48u5) moments and an even more strongly dimerized
straight FM chain with moments of 2.82u in the center [see
Fig. 10(e)]. All local magnetic moments add to a net large
magnetic moment oriented in the z direction. Configuration
FI2 is lower in energy by 30 meV/atom than FII and repre-
sents the ground state of a hexagonal stripe.

Calculations admitting a noncollinear structure have been
initialized with a planar Néel and a three-dimensional 3Q-
type structure, respectively, and result in configurations
NCLI1 and NCL2. This last calculation leads to a lower en-
ergy which is, however, still higher by 25 meV than for the
FI2 state. In this configuration the atoms are aligned antifer-
romagnetically with moments of 3.70u; along one edge and
almost antiferromagnetically with moments of 3.57up along
the other edge. Atoms in the center of the stripe carry lower
moments of 3.23u; [see Fig. 10(g)]. However, the moments
are strongly misaligned, with a net magnetic moment of
[M,,|=3.50up per cell. If the magnetic moments are initial-
ized in a planar Néel configuration, relaxation leads to a
rotation of the magnetic moment out of the plane formed by
the atoms while the projections of the moments on the plane
do not deviate too far from the Néel model [see Fig. 10(f)].
The magnetic moments are 3.41up in the center and 3.71up
along the edges of the stripe, the geometric structure consists
of nearly equilateral triangles with edges of 2.54+0.01 A.
In this case the stability of a true Néel structure is suppressed
by the periodic boundary conditions; the formation of spin
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FIG. 11. (Color online) (a) Relative energy as a function of the
wave vector. (b) Geometric and magnetic structures of a spin spiral
formed on a flat hexagonal stripe of Mn atoms (fixed geometry). Cf.
text.

spirals with a 120° angle between nearest-neighbor moments
requires a periodicity of three along the direction of the
stripe. With a hexagonal arrangement this is possible only
with at least nine atoms per cell. The magnetic structure
relieves the frustration caused by the periodic boundary con-
ditions by rotating the moments out of the plane. The con-
figuration is not entirely magnetically compensated, there is
a net magnetic moment of |0.51|u per cell. The total energy
is higher than for configuration NCL2 and also higher by 41
meV/atom than for FI2.

We have also explored incommensurate spin-spiral solu-
tions, using a fixed geometry corresponding to configuration
NCLI1. The resulting solution (see Fig. 11) is a spin spiral
with a periodicity of about 18 interatomic distances. The
angle of rotation between nearest neighbors along the direc-
tion of the stripe is 162°, i.e., this is essentially a long-period
modulated AFM configuration. The total energy of the lo-
cally stable spin spiral is higher than that of both noncol-
linear or FI configurations. This shows that a complex relax-
ation of both geometric and magnetic degrees of freedom is
required to achieve a minimum-energy configuration.

3. Vector-field description of the magnetization density

Our investigations are based on a vector-field description
of the magnetization which allows for a continuous rotation
of the direction of magnetization. It is therefore interesting to
analyze the noncollinear magnetic structures in more detail.
The graphical representation of the vector field is, however,
quite demanding. Hence we show in Fig. 12 only one rela-
tively simple example, the distribution of the local magneti-
zation in a triangular stripe (configuration NCL2 derived
from the 3Q starting structure). The three panels show the
spatial variation in the absolute magnitude of the magnetiza-
tion and of the polar and azimuthal angles. The geometry and
the orientation of the local magnetic moments for this con-
figuration are shown in Fig. 7(e). This analysis shows that
the magnetization vectors remain almost parallel within a
sphere around each atom, the rotation of the magnetization
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FIG. 12. (Color online) Vector field of the magnetization density
in the atomic plane of a triangular stripe of Mn atoms for the non-
collinear configuration shown in Fig. 7(e). The small arrows indi-
cate only the direction but not the strength of the local magnetiza-
tion, projected onto the plane. In part (a) the color coding visualizes
the local strength of the magnetization in up (note that the scale is
logarithmic), in parts (b) and (c) the color represent the polar and
azimuthal angles of the magnetization vector, respectively. Cf. text.

vectors is confined to a transition region representing an
atomic analogon to a domain wall. Interestingly, the width of
the transition region is rather variable but here the strength of
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8A 7A 6A 5A 4A

FIG. 13. (Color online) Geometric and magnetic structure in the
transition regime from two-dimensional to three-dimensional nano-
structures as a function of the height ¢ of the computational cell. Cf.
text.

the magnetization is relatively weak. In this configuration the
magnetic structure is fully three dimensional, on two of the
six atomic sites the magnetization is directed perpendicular
to the plane of the stripe, on the remaining four sites the
orientation is oblique to the plane. Between two such atoms,
the transition region is relatively broad. In the center of the
triangles formed by atoms with the same vertical component
of the magnetization one even observes an antiparallel orien-
tation of the local magnetization. Graphs of the magnetiza-
tion fields for the other noncollinear magnetic configurations
of the triangular and hexagonal stripes will be published on
our website.

D. From stripes to rods

If the compression of the cell is continued beyond the
point where a flat triangular stripe represents the equilibrium
configuration and a full three-dimensional relaxation is ad-
mitted, a continuous transition to three-dimensional nanorod
takes place. The stages of this transformation are illustrated
in Fig. 13. The starting state is a flat triangular stripe with a
slightly noncollinear FI configuration realized for c=8.5 A
as shown in Fig. 5. Already at c=8 A a slight puckering of
the stripe is observed—interestingly, this allows a nearly par-
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allel alignment of the local magnetic moment. Compression
to ¢=7 A induces a strong buckling of the stripe and a
strong rotation of the local moments. At ¢=6 A a rather
regular transitional structure is found, consisting of a stripe
of distorted rectangles, each rectangle being capped by an-
other atom. Atoms occupying the short edges of the trapeze
couple antiferromagnetically, with an orientation perpendicu-
lar to the moments on the other side of the trapeze. The
moments of the capping atoms are directed essentially per-
pendicular to the stripe, with alternating up and down orien-
tations. The net magnetic moment is almost zero, hence this
configuration is noncollinear AFM. Compression to c=5 A
creates a structure describable in terms of corner-sharing tet-
rahedra with a nearly collinear AFM configuration. Further
compression to ¢~4 A results in a structure consisting of a
stacking of face-sharing distorted octahedra. Alternatively,
this structure could also be described in terms of a stacking
of distorted antiprisms. The local magnetic moments are
slightly canted relative to the axis of the rod, four large mag-
netic moments point down and two lower moments point up.
The resultant magnetic moment per cell is large, hence this
configuration is noncollinear FI (details will be given in the
following section). Continued compression would lead to a
structure in which all six atoms per cell form a nearly planar
arrangement, with a periodicity of one along the axis of the
nanorod. Although this leads to a further lowering of the total
energy, the periodicity imposes rather strict geometric con-
straints, therefore these structures have not been further ana-
lyzed in the present study.

E. Nanorods

The three-dimensional nanostructure described above has
been generated by a continuous compression of a triangular
stripe. To examine whether this results in the energetically
most favorable geometric and magnetic structure, we have
investigated also other configurations. The total energies and
magnetic moments of the optimized structures are shown in
Fig. 14 as a function of the cell height. The first geometry we
have tested consists of a stacking of triangular prisms (see
Fig. 15). In this case only two collinear AFM configurations
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FIG. 14. (Color online) Total energy (a) and magnetic moments (b) of the three-dimensional nanostructures as a function of the height

of the cell. Cf. text.
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AFM1

FIG. 15. (Color online) Equilibrium geometric and magnetic
configurations of a Mn nanorod formed by a stacking of trigonal
antiprisms. Cf. text.

were found to be at least locally stable. Configuration AFM1
consists of equilateral triangles of ferromagnetically coupled
atoms, with the direction of the magnetization alternating
along the axis of the rods. Distances between antiferromag-
netically coupled atoms are shorter (2.40 A) than the edges
of the triangles (2.63 A), all moments are 3.63uz. Configu-
ration AFM2 consists of three AFM chains at the edges of
the prism. The magnetization direction in one of the chains is
phase shifted relative to the other two, the magnetic mo-
ments are also slightly larger (3.49u;) than along the other
two chains (3.34up). The triangular facets consist of isosce-
les triangles. Configuration AFM2 is 119 meV/atom lower in
energy than AFM1.

Because the total energy of a nanorod formed by stacking
of trigonal prisms is higher in energy than that of the octa-
hedral configuration resulting from a step-by-step compres-
sion of the unit cell, we also tested the intermediate structure
shown in Fig. 16 derived by shearing the trigonal prisms
along the axis of the rod. This configuration is intermediate
between a prismatic and an antiprismatic (or octahedral) con-
figurations, it can also be considered as a chain of corner-
sharing distorted tetrahedra. An AFM configuration is real-
ized in the form of two ferromagnetically coupled chains
with moments of *3.31up and one AFM chain carrying
slightly larger moments of 3.55uz. A noncollinear configu-
ration [see Fig. 16(b)] allows to lower the total energy by 30
meV/atom while leaving the geometric structure almost un-
changed. However, the total energy is still higher than for the
octahedral configuration.

For the octahedral configuration an AFM structure can be
realized by aligning the magnetic moments along the direc-
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AFM
()

FIG. 16. (Color online) Equilibrium geometric and magnetic
configurations of a Mn nanorod in the tetrahedral configuration. Cf.
text.

tion of the rod. On the trigonal facets shared by the octahedra
two atoms carry large (3.50up) ferromagnetically coupled
moments while the third atom carries a much lower (1.18 )
antiparallel moment. The orientation of the magnetic mo-
ments is reversed from one trigonal facet to the next. The
basic octahedra forming the nanorod are quite strongly dis-
torted, the edge lengths varying between 2.38 and 2.83 A
(see Fig. 17). If a noncollinear magnetic structure is admit-
ted, the geometric distortion becomes even more pronounced
(interatomic distances varying between 2.34 and 2.97 A),
the strongly quenched moments increase from 1.18 to
1.8845. Note that the configuration shown in Fig. 17(b) is
equivalent to that derived by a step-by-step compression of a
triangular stripe at 4 A (see Fig. 13), the two configurations
differ only by a global rotation of the direction of magneti-
zation. Although the local magnetic moments are strongly
misaligned, there is a considerable resultant magnetic mo-
ment of 7.2 per cell, i.e., this configuration (which is about
6 meV/atom lower in energy than the AFM solution) is non-
collinear FI.

We have also tested incommensurate magnetic configura-
tions, based on the geometry of the noncollinear FI state.
However, for a three-dimensional nanorod, a spin spiral does
not allow enough flexibility to lower the total energy suffi-
ciently. Already in the ¢=0 limit (where the magnetic con-
figuration is identical to AFM), the relatively modest differ-
ences in the geometrical structure increase the total energy
by about 32 meV/atom. A SS state with g=0.2 X 27” is about
10 meV/atom lower in energy—but this is still distinctly
above the AFM and noncollinear (NCL) configurations of
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AFM

FIG. 17. (Color online) Equilibrium geometric and magnetic
configurations of a Mn nanorod in the octahedral configuration. Cf.
text.

the octahedral rod. This again confirms that a simultaneous
relaxation of both geometric and magnetic degrees of free-
dom is required.

IV. DISCUSSION AND CONCLUSIONS

Due to recent progress the investigation of the magnetic
properties of nanostructures certainly belongs to the frontiers
of condensed-matter science. Although thanks to tremendous
efforts the properties of FM nanostructures (clusters, chains,
and ultrathin films) are now quite well understood, relatively
little is known about the behavior of AFM nanostructures.
Here the key problem is magnetic frustration, i.e., the impos-
sibility to simultaneously satisfy competing exchange inter-
actions between neighboring atoms. Frustration can be re-
lieved by creating noncollinear magnetic structures, by
geometric distortion—or both occurring simultaneously. The
resulting structures can be of unprecedented complexity,
combining low symmetry of the geometrical structure with
magnetic moments aligned on quantization axes changing
from atom to atom and continuously rotating in between the
atoms. In this paper we have presented detailed spin-density-
functional studies of the geometric and magnetic structures
of nano-objects formed by Mn atoms under constraints vary-
ing from straight monatomic chains over flat two-dimen-
sional stripes to three-dimensional nanorods under varying
axial tension. Collinear and noncollinear magnetic structures
have been investigated and in addition incommensurate mag-
netic configurations in the form of spin spirals have been
explored. In contrast to previous investigations of free Mn
clusters® the varying geometrical constraints applied to our
nano-objects (periodicity, dimensionality, tension,...) allow
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to study in detail the interplay between the relaxation of the
geometric and magnetic degrees of freedom.

For a Mn monowire, the ground-state configuration is a
straight chain with an interatomic distance of 2.41 A and a
high-moment noncollinear structure. Magnetic moments at
neighboring atoms are rotated by about 120° such as in the
Néel phase of a frustrated triangular antiferromagnet but in
addition they are slightly canted relative to a plane through
the chain, resulting in a perpendicular net magnetic moment.
Calculations admitting an incommensurate spin-spiral struc-
ture also predict a rotation of the magnetic moment by 120°
between nearest neighbors but the magnetic moments lie in a
plane such that the net moment is zero. Noncollinear and
spin-spiral solutions are energetically degenerate to within 1
meV/atom. This demonstrates that around the minimum the
potential-energy surface in magnetic configuration space is
very flat. The noncollinear ground state of a linear Mn chain
is at first a surprising result. In contrast to the bulk phases
where noncollinearity is caused by the geometric frustration
of the nearest-neighbor exchange coupling, the noncollinear
antiferromagnetism of a Mn wire is caused by competing
short-range and long-range AFM interactions.

If the tension stabilizing a straight chain is gradually re-
duced (while still imposing a dimensional constraint), two-
dimensional stripes of various types are formed, depending
on the presence/absence of further constraints. If constant
distances between all atoms are imposed, zigzag chains and
finally triangular stripes are formed. Remarkably, the “Néel-
type” noncollinear arrangement exists over a considerable
range of tensions, from c=14 to c~9.5 A. At intermediate
values of ¢ ~ 8.5 A, however, a collinear AFM configuration
is stabilized but the noncollinear structure reappears at fur-
ther reduced cell height. For triangular stripes in a locally
stable state a collinear and a three-dimensional noncollinear
AFM configuration with slightly different geometries (see
Fig. 5) are energetically almost degenerate (the difference in
total energy is 7 meV/atom). Small differences in the atomic
geometry lead to significant differences in the hybridization
between different 3d states and further to different magnetic
structures. The closeness of the structural and magnetic en-
ergies demonstrates that in this case the frustration caused by
both the geometry and competing short-range and long-range
exchange interactions may be relieved either by a modest
geometric distortion or by a strong canting of the magnetic
moments.

If the constraint of equal distances along the axis of the
nanostructure is dropped, clustering of the atoms in the
center of the cell is permitted. The increased freedom to
relax the geometry stabilizes collinear magnetic structures
all along the transformation to a hexagonal stripe, starting
already at ¢~10 A [cf. Fig. 5(b)]. Determination of the
ground state of a hexagonal stripe is complicated by the
interplay of geometric and magnetic degrees of freedom
and of periodic boundary conditions. The magnetic ground
state is collinear FI, with a net magnetic moment of
about 1.08up/atom along the axis of the stripe. Two non-
collinear configurations (also weakly FI) become competi-
tive at slightly reduced distances when the geometric frus-
trations begin to prevail (see Fig. 7). The occurrence of FI
states in hexagonal Mn stripes may be related to FI states
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reported for bulk &Mn (bcc) and for Mn clusters. Moruzzi
and Markus™ and Sliwko et al.”> found that a FI state is
stabilized in expanded bcc Mn in the transition region be-
tween CsCl-type and layered AFM states. Mohn et al.'® have
argued that this FI state is just the projection of a spin-spiral
state on collinear spin-quantization axes. Mn,, clusters with
n=5-40 have been found to be FI in the experiments of
Knickelbein,”® with average magnetic moments per atom
fluctuating between 0.5 and 1up/atom. Density-functional
calculations*'*83% have reached at least semiquantitative
agreement with the experiment. Mejia et al.*® have argued
that the clusters consist of nanodomains with antiparallel di-
rection of magnetization. In the present case these “nano-
domains” of the collinear FI configuration would be simply
groups of three atoms with antiparallel moments.

For both the triangular and hexagonal stripes we have also
tested incommensurate spin spirals, albeit at a fixed geom-
etry. With this restriction the modest lowering of the total
energy realized by adopting an incommensurate structure is
not sufficient to produce a competitive low-energy configu-
ration.

If the dimensional constraint is lifted, the transformation
to a three-dimensional nanorod sets in already at c~7 A
(see Fig. 13). It leads to the formation of a structure describ-
able in terms of a stacking of distorted octahedra. Two con-
figurations with only a modest difference in the atomic ge-
ometry but widely different magnetic structures, a collinear
AFM and noncollinear FI one, differ by only 6 meV/atom in
their total energies. We have also tested two other geometries
but these were found to be energetically disfavored. A re-
markable feature of both configurations is that for two out of
six atoms in the unit cell the magnetic moments are strongly
reduced to 1.18uy for the collinear and to 1.88uy for the
noncollinear configuration. The atoms with quenched mo-
ments are characterized by short interatomic distances. If the
nanorod is further compressed along the axial direction,
these atoms become even nonmagnetic [see Fig. 14(b)]. The
prismatic and tetrahedral nanorods become even completely
nonmagnetic at modest compression. Again, this parallels a
pressure-induced transition to a nonmagnetic state in a-Mn
which is observed before a pressure-induced transition to
equally nonmagnetic e-Mn (hexagonal close-packed) occurs.
However, one should keep in mind that for the small unit
cells of our nanorods, periodic boundary conditions begin to
play an essential role.

The coexistence of atoms in a rather loosely packed envi-
ronment (large nearest-neighbor distances) with high mag-
netic moments and atoms in a more tightly packed environ-
ment and low magnetic moments is evidently reminiscent of
bulk a-Mn, with strongly magnetic and only marginally
magnetic moments at inequivalent crystallographic sites.
Hence even in the nanostructures the competition between
strong chemical binding due to a half-filled d band and the
tendency to maximize the magnetic moments according to
Hund’s rule characteristic for the bulk phases*’ begins to be
felt. At the other extreme we have the case of the isolated
Mn, dimer formed by atoms with S=5/2, where the occupa-
tion of all d states by electrons with parallel spins leads to
the formation of a closed d shell and a very weak binding.
Clusters and nanostructures fall in between these extremes.

PHYSICAL REVIEW B 80, 144414 (2009)

In the nanostructures subject to different constraints we find
that the possibility to adopt the optimal geometry tends to
suppress noncollinearity—or at least to the coexistence of
collinear and noncollinear states with different geometrical
structures but nearly equal total energies. In clusters external
geometrical constraints are absent so that the atoms can
adopt optimal geometries. If strong binding leads to closely
packed structures characterized by triangular motifs, geomet-
ric frustrations can induce noncollinearity—the open ques-
tion is whether geometrical distortion can again suppress
noncollinearity. So far only a few results are available for
comparison. Morisato et al.*’ have shown that in Mns clus-
ters forming a trigonal bipyramid, collinear and noncollinear
FI configurations with different interatomic distances differ
by only 10 meV/atom in total energy while for Mng clusters
forming different distorted octahedra, a much larger energy
difference between the noncollinear ground state and the en-
ergetically most favorable collinear configuration (both FI) is
reported. Similar results have been found by Longo et al.*6-!
but the differences in the geometrical structures have not
been documented. The same remark also apply to the study
of Kabir et al.>® listing the total energies and magnetic mo-
ments for a large series of collinear and noncollinear
magnetic isomers of Mn, clusters with n=2-10 and
n=13,15,19. It is not clear whether for the magnetic isomers
the geometry has been relaxed independently or whether the
geometries are all the same as determined in earlier work
admitting only collinear configurations.

In summary, our investigation has demonstrated that the
complexity of the geometric and magnetic properties of Mn
nanostructures equals that of the bulk phases. We have dem-
onstrated that a simultaneous relaxation of all structural and
magnetic degrees of freedom is required to find the true
ground state. Slight differences in the geometry of the clus-
ters (if permitted by the external constraints) are in general
found to be as efficient in lowering the total energy as large
rotations of the magnetic moments. This shows that the po-
tential-energy surface in magnetic configuration space is
relatively flat. As a consequence, an optimization of the mag-
netic structure is a rather tedious process, it requires different
magnetic starting configurations to achieve the true ground
state.

Finally we emphasize that our calculations have been
based on an unconstrained vector-field description of the
magnetization density. The example shown in Fig. 12 dem-
onstrates that the spatial variation in the magnetization den-
sity is quite complex. Although the reorientation of the mag-
netization directions occurs mostly in domains where the
magnetization density is rather low, still a precise description
is required because these are also precisely the regions where
chemical bond formation takes place.
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