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Dynamic magnetic properties of arrays of Ni nanorods with a low aspect ratio have been investigated. It has
been shown that the spectra of spin-wave resonances localized on nanorods with a low aspect ratio typically
feature the presence of zones with high density of states resulting in a characteristic two-peak pattern of Stokes
and anti-Stokes lines of magneto-optical �MO� Brillouin light scattering with pronounced Stokes–anti-Stokes
�S-AS� asymmetry. A simple theoretical model based on the analysis of the elliptic character of the polarization
of the optical wave interacting with a dipole magnetostatic wave has been proposed. It has been shown that the
S-AS asymmetry is due entirely to the asymmetry of the MO interaction efficiency with respect to time reversal
of the magnetic precession in a magnon.
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I. INTRODUCTION

Magnetic properties of electrodeposited arrays of metal
�Co, Ni, and Permalloy� nanowires in a dielectric substrate
have been intensively studied during the last decade both
theoretically and experimentally �see Ref. 1 and references
therein�. Nanowires have been shown to exhibit
magnetoresistance,2 giant magnetoresistance �GMR�,3–5 and
support coherent spin waves.6 Potential applications in data
storage devices have stimulated interest in magnetization re-
versal in individual wires,7,8 including current-induced mag-
netization switching �CIMS�.9 Other potential applications of
arrays of magnetic nanowires are in microwave devices. One
of the attractive features of such structures, owing to their
geometry, is the possibility of synthesizing materials with a
desirable value of uniaxial magnetic anisotropy oriented
along the wire axis. Previous experimental ferromagnetic
resonance �FMR� studies10–12 relying mainly on the strip-line
technique have allowed measurement of microwave absorp-
tion in nanowires excited by a homogeneous external elec-
tromagnetic field in a wide frequency range. Using a planar
microstrip transmission line,13–16 dipolar interactions in elec-
trodeposited Ni nanowire arrays were characterized as a
function of the packing density P �4–38%� and the wire di-
ameter �56–250 nm� for typical nanowire length of tens of
microns �aspect ratio over 50�. The dipolar interactions be-
tween the wires were modeled, according to a mean-field
approach assuming an effective uniaxial anisotropy field ori-
ented perpendicular to the wire axis and proportional to the
membrane porosity.

In a broader context, magnetic nanorod and nanowire
structures fall into a broad category of nanocomposite ferro-
magnetic metamaterials whose properties, including dynamic
behavior in the microwave frequencies, can be tailor made
for a specific application. Other noteworthy structures within
this class of artificial materials are based on films comprised
of ferromagnetic nanospheres in a nonmagnetic matrix.17,18

Typically, the size of the magnetic particles is small �on the
order of several nanometers�, which makes applicable the
theoretical methods based on the simplified “superspin”
model.19,20 Here each nanoparticle is associated with a “mag-
netic point” having no internal structure giving a relatively
simple and clear physical picture. In particular, the transition
from superparamagnetism �SPM� �Ref. 19� to superferro-
magnetism �SFM� �Ref. 20� via the superspin glass19 state
has been implemented by simply varying the particle con-
centration. The main physical principle, underlying the static
and dynamic magnetic behavior of nanocomposite materials
is a formation of collective propagating modes from indi-
vidual oscillations initially localized on individual nanoele-
ments. Scenarios of such transition from individual to collec-
tive behavior vary considerably depending on the geometry
of nanoelements. In the widely used Damon-Eshbach con-
figuration, in which magnetization is in the plane of the sub-
strate and electromagnetic wave propagates along the surface
perpendicular to magnetic field, these modes can be the ex-
changeless surface Damon-Eshbach �DE� magnetostatic
waves �MSWs� governed by dipole-dipole interactions
�DDIs� and spin-wave resonance �SWR� modes, whose be-
havior is determined by the exchange interaction.

Early theoretical papers21,22 on magnetic excitations in cy-
lindrical geometry treated them as purely magnetostatic
modes. However, recent theoretical descriptions of dynamic
properties of arrays of nanowires have also taken into ac-
count the dipole-exchange nature of the magnetization waves
in nanowires. Their behavior has been thoroughly investi-
gated by Arias and Mills who have developed a powerful
analytic technique both for dipole-exchange modes localized
in individual cylindrical wires23 and collective modes in ar-
rays of such wires.24 At the same time, their analysis was
limited to the particular case of purely cylindrical geometry
when the external magnetic field and static magnetization are
parallel to the wire axis. A more general situation, with an
arbitrary orientation of the magnetization with respect to the
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axis of symmetry, was analytically treated by
Tartakovskaya.25

It should be noted that all previous experimental research
was carried out on “quasi-infinite” nanowires with the aspect
ratio R typically ranging from 20 to 100. In theory this favors
simplified analytical approaches based on the “quasi-infinite”
solution along the “z” axis. Consequently, vertical spin-wave
resonances were not taken into account and theoretical inter-
pretation relied fully on the azimuthal modes. Interestingly,
to fit experimentally measured frequency separation between
azimuthal modes of the order of several GHz on a 30 nm
nanowire it was necessary to diminish by one order of mag-
nitude, the value of the exchange constant with respect to its
bulk value.25

In this paper we study the dynamic properties of arrays of
Ni nanorods with aspect ratios R=9 and R=2.5 so that ver-
tical spin-wave resonances, previously neglected in the stud-
ies of nanowires with R�50, become extremely important.
In both samples the Ni nanorods were 175 nm long, while
their diameter was equal to 20 and 70 nm, respectively. With
the packing density P being in the intermediate range of
values �12.5% and 15.5%�, both individual and collective
aspects of spin-wave behavior were to be taken into account.

For the observation of magnetic modes, Brillouin light
scattering �BLS� was used. BLS was successfully employed
previously for characterizing thermal magnons localized on
various nanostructures, such as patterned ferromagnetic
multilayers,26–28 arrays of long Ni nanowires,29,30 Co nano-
spheres in a SiO2 matrix,31,32 and arrays of Ni nanorings.33 A
multiscale modeling has been adopted to achieve theoretical
description of the observed effects since a fully rigorous
analysis is hardly realistic in view of the complexity of the
structure studied. We relied on purely numerical techniques
for the analysis of individual magnetic behavior of nanorods,
while simplified analytic expressions based on effective
magnetic and optical parameters were obtained to take ac-
count of the collective features in the dynamic behavior of
the system. The near-field nature of optical interactions in the
nanorod arrays was also taken into account.

II. SAMPLE PREPARATION AND EXPERIMENTAL
TECHNIQUE

A. Sample fabrication

To fabricate a template for nanorod electrodeposition, Al
films were grown on buffer layers of gold and tantalum on
silicon substrates by rf magnetron sputter deposition. The
tantalum was necessary as an adhesion layer to avoid delami-
nation on anodization of the aluminum and the gold layer
allows good electrodeposition into the pores.34 Anodization
and hence pore formation were carried out at constant volt-
age using a platinum counter electrode. The size and spacing
of the pores is found to be linearly dependent on the anod-
ization voltage. For this work the aluminum was anodized at
20 V in 0.3 M sulphuric acid which produced 20-nm-
diameter pores with �40 nm spacing and at 40 V in 0.3 M
oxalic acid to produce 70-nm-diameter pores with �90 nm
spacing. The electrolyte was cooled below 275 K and the
temperature monitored throughout the process. After a brief

etch to remove the barrier layer at the bottom of the pores,
nickel rods were grown by potentiostatic electrodeposition
from a 0.1 M NiSO4 solution at a voltage of −1 V versus a
saturated calomel electrode. Both samples were grown for 60
s to produce rods of �175 nm as estimated from electron
microscope images �Figs. 1 and 2�. These images of the ar-
rays of the nickel rods deposited in the 20 nm �sample A�
and 70 nm �sample B� pores, respectively, also show that the
filling fraction of the pores is high in both cases and is close
to 100% for the 20 nm pores.

B. Neutron scattering

In order to check overall characteristics of the samples,
neutron reflectivity was performed at the Laboratoire Léon
Brillouin �LLB� laboratory with a neutron wavelength �
=8 Å. The sample was rotated, and the reflected neutrons
were collected in a two-dimensional �2D� X-Y detector of
128�128 pixels �64�64 cm� situated at a distance D0
=4 m from the sample position. The data obtained on the
two samples are shown in Fig. 3. The schematic of the ex-
periment is shown as inset.

Specular reflectivity is sensitive to the in-depth atomic
composition profile of the surface. The refractive index of a
simple surface is given by the product of the atomic density
� and the nuclear neutron scattering length b:

n = 1 −
�2

2�
�b .

The critical angle �c of total reflection is given, as in classi-
cal optics, by

a)

b)

200nm

)

)

FIG. 1. �a� SEM image of Ni nanorods grown in 20 nm pores.
The alumina matrix has been briefly etched to expose the rods. �b�
TEM cross section of 20 nm Ni rods.
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sin��c� =��b

�
� .

In a multilayer, these expressions are more complicated and
we resort to a model taking into account the atomic compo-
sition and densities of the various layers. During fitting, all
the parameters of the inner layers �thickness, density, and
composition� are kept fixed according to the sample param-
eters derived form SEM images �Figs. 1 and 2�. To avoid

“overparameterization,” the neutron-scattering length param-
eters b are also kept fixed according to the porosity of the
arrays and the ratio of Ni to Al2O3 in the sample. The thick-
ness and the density of the Al2O3 /Ni layer are floating pa-
rameters. The results of the fits are shown in Fig. 3. A good
overall agreement is found with a critical angle �c=0.5° so
that ��b�=37.3�10−6 nm−2. We find that a good description
of the reflectivity profile is achieved by considering total
nanoporous layer thickness of 160 nm for sample A and 370
nm for sample B. This is good agreement for the 20 nm rod
sample but gives an overestimate of the length of the 70 nm
rods. It should be noted that the thickness evaluation se-
verely depends on the porosity and the exact content of the
pores. The obtained atomic densities are in agreement with a
12.5% and 15.5% pore concentration inferred from scanning
electron microscopy �SEM� data.

C. Brillouin scattering

The BLS measurements in the p-s polarization configura-
tion were carried out in the Damon-Eshbach geometry: the
bias magnetic H� �0.0–10 kOe� field was applied parallel to
the plane of the film and the direction of the in-plane wave
vector characterizing the investigated magnetic excitation
was normal to H� . Light from a single-mode Ar+ laser of 350
mW power at wavelength �=514 nm was focused onto the
sample and the frequency spectrum of the backscattered light
was analyzed using a computer controlled Sandercock-type
�2�3�-pass tandem Fabry-Pérot interferometer. The wave
number K was changed by varying the angle of light inci-
dence � measured with respect to the surface normal of the
sample from 0° to 65°:

K = �4�/��sin � .

Cross polarizations between the incident and scattered beams
were used in order to practically suppress the light scattered
by phonons. The acquisition time in BLS measurements was
on the order of 1 h which compares favorably with 8 h re-
ported in Ref. 30.

III. RESULTS AND DISCUSSION

A. Magneto-optical properties

Studies of magnetic hysteresis were carried out by sensing
the magneto-optical Kerr effect �MOKE�, using a photoelec-
tric modulator based instrument,35 at 633 nm. The hysteresis
loops are shown in Fig. 4 and were measured in two con-
figurations: the Longitudinal configuration, where the ap-
plied magnetic field was in the plane of the sample and per-
pendicular to the rods; the polar configuration, where the
applied magnetic field was perpendicular to the plane of the
sample and along the axis of the rods.

In both configurations, the loops showed significant rema-
nence and coercivity although the latter was particularly high
for the polar measurements. In the longitudinal configura-
tion, the 20 nm nanorods had higher remanence and were
more easily magnetized than the 70 nm nanorods, and in the
polar configuration, the 20 nm rods had lower remanence
and were less easily magnetized than the 70 nm rods.

a)

b)

100nm

)

)

FIG. 2. �a� SEM image of Ni nanorods grown in 70 nm pores,
the aluminum oxide has been briefly etched to expose the rods. It
can be seen that the filling ratio is lower than for the 20 nm pores.
�b� TEM cross section of 70 nm Ni rods.
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FIG. 3. �Color online� Neutron specular reflectivity of Ni 20 nm
and Ni 70 nm obtained on the spectrometer PAPYRUS at LLB-
Saclay �CEA-CNRS� with a neutron wavelength �=8 Å. The angle
� is the incident angle.
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The magnetic behavior of the samples in the polar geom-
etry can be explained in terms of conventional reasoning.
Within the “macrospin” model, the coercive field in this con-
figuration is determined entirely by the anisotropy of the
sample. Since there is little difference in the packing density
of the samples, the major factor relevant to this discussion is
the aspect ratio. Sample A is characterized with a higher R
=9.0, which corresponds to a high “initial” value of the an-
isotropy in an isolated wire and less pronounced inter-rod
interactions with respect to the case R=2.5. Numerical esti-
mations performed according to the method reported in Ref.
36 based on the macrospin approach, return the following
values of the demagnetizing factor: Ixx= �2���0.86 for
sample A and Ixx= �2���0.78 for sample B, thus confirming
the tendency following from the qualitative considerations. It
is also corroborated by the experimental curves in Figs.
4�a�–4�c�. However, there is a considerable quantitative dis-
crepancy between the approximate theoretical approach and
the experiment, pointing to the inadequacy of the macrospin
concept in the investigated samples especially in the case
when the cylinders are not saturated. More specifically, it
emphasizes the importance of the inhomogeneity of the static
magnetization including the presence of the domain struc-
ture. This discrepancy becomes even more pronounced in the
longitudinal geometry, where the remanence and the coercit-
ivity are entirely due to the above-mentioned inhomogeneity.
The analytical formalisms developed so far although flexible
and computer friendly rely entirely on the simplistic “even
magnetization” approximation and thus must be fully ex-
cluded from being applied to the geometry studied. That is
why in our theoretical analysis a rigorous numerical ap-

proach, however time consuming, is employed. Taking into
account the complex inhomogeneous nature of the distribu-
tion of the magnetization in a nanorod, in the static as well as
in the dynamic calculations, it ensures reliable and adequate
theoretical description.

B. Brillouin scattering

As is well known, for zero external magnetic field H=0
the magnetization inside an individual rod of infinite length
is parallel to its axis owing to the shape anisotropy. This is
also the case for our finite cylinders. For an infinite cylinder
the effective field of perpendicular uniaxial shape anisotropy
Ha is equal to 2�Ms. To take account of the inter-rod dipolar
interactions the authors of Ref. 15 have introduced effective
anisotropy Ha

dip=Ha−6�PMs, where P is the packing den-
sity of nanorods. Thus for P=0, Ha

dip is equal to its value in
an individual rod and for P=1 to its value for a continuous
film. Introduction of effective parameters describing simulta-
neously both types of anisotropy, as has been shown in Refs.
15 and 16 is justified in the case of purely magnetostatic
modes in quasi-infinite �R�10� nanorods. It is not evident,
however, that it works even for purely magnetostatic modes
in the case of rods of finite height. Lateral and transverse
sizes being comparable, all three sets of exchange modes:
azimuthal, radial, and vertical should be taken into account.
That is why for the theoretical analysis we have chosen a
numerical technique based on a finite-element approach37

that can fully describe the dynamic response of individual
nanorods. For comparison, we also consider analytically de-
scribed modes in spheroidal particles �the Kittel modes� re-
placing a cylinder by a prolate spheroid �long semiaxes a
=88 nm along Oz, small semiaxes b=c=10 or 35 nm along
Ox and Oy axes� with the applied external field along the Ox
direction. Its frequency is given for the nonsaturated case
H	 �Nx−Nz�4�Ms by


 = ����Nz − Nx�4�Ms�2 − H2 �1�

and for the saturated case H� �Nx−Nz�4�Ms


 = ��H�H + �Nz − Nx�4�Ms� , �2�

where � is the gyromagnetic factor and Nx, Ny, Nz are the
demagnetizing factors38 of a prolate spheroid.

Preliminary theoretical analysis based on the bulk value
of the exchange constant shows that in an array of nanorods
175 nm high the mode frequency separation due to the ver-
tical �along z axis� quantization of the spin-wave number can
exceed several GHz and needs to be taken into account.
These modes will be referred to subsequently as vertical
SWRs. Naturally, the frequencies of the azimuthal and radial
resonances localized on the cylinders of diameter of 20 and
70 nm are higher. It should be noted that the expected cross
section of BLS scattering from vertical SWR modes must be
greater than that from the azimuthal modes.

Two sets of BLS measurements, both in the Damon-
Eshbach geometry, have been performed. We started with the
dependence of the modal frequency on the intensity of the
magnetic field applied in the plane of the film and normal
therefore to the rod axis.
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FIG. 4. The polar and longitudinal MOKE hysteresis loops for
20 and 70 nm diameter Ni rods measured at a wavelength of 633
nm. The loops are as follows: �a� polar loop for 20 nm nanorods; �b�
longitudinal loop for 20 nm nanorods; �c� polar loop for 70 nm
nanorods; �d� longitudinal loop for 70 nm nanorods. Schematics of
the polar and longitudinal configurations are also shown.
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The dependence of the theoretical �empty symbols� and
experimental �filled circles� values of resonance frequencies
as a function of the intensity of the magnetic field applied
perpendicular to the axis of a rod are given in Fig. 5 for both
samples. The nature of the SWR resonances involved as well
as the symbols employed will be discussed later, in the con-
text of the Fig. 7, illustrating the identification of SWRs.

The angle of incidence of light was 45°. The following
numerical values were taken for the magnetic parameters of
Ni:4�Ms=6000 G, g=2.18 and exchange constant A=8
�10−7 erg /cm. The numerical analysis made by the finite-
element method includes the contribution of the exchange
and the intrarod dipole interaction but not the inter-rod cou-
pling. In other words, actual resonances on individual rods
are considered. Also shown is the calculated frequency of the
Kittel mode for an ellipsoid with a 175-nm-long axis and the
value of the diameter taken as small axis �solid line�. Experi-
mental peaks are marked with solid circles. Theoretical fre-
quencies are represented by empty symbols. Even in a
smaller 20 nm rod array the theoretical spectra in a nonsat-
urated sample are so dense and irregular that one can hardly
trace the evolution of the frequency of a given mode with the

increasing magnetic field �Fig. 5�a��. In the bigger 70 nm one
it is practically impossible �Fig. 5�b��. On the contrary, if the
films are saturated the modes excited at a given frequency
are easily identifiable. Interestingly, in both cases, the nu-
merically estimated frequency of the lowest mode agrees
fairly well with the Kittel mode frequency determined ana-
lytically with the corresponding ellipsoid geometry �prolate
spheroid� especially in a saturated sample. This coincidence
is closer for the rods with a higher aspect ratio, i.e., in the
case of D=20 nm. Apparently, for the 70 nm rods, the rela-
tion between the geometric parameters of a cylinder and an
equivalent ellipsoid is less straightforward.

As is predicted by an approximate magnetostatic theory
the frequency of the lowest resonance turns to zero when
H=Ha

dip. The shape anisotropy of an individual infinite rod is
equal to Ha=2�Ms=3000 G, while the overall anisotropy,
taking into account the inter-rod dipole interaction for the
sample D=70 nm with a packing density P=0.15 amounts
to Ha

dip=1650 Oe. The value of H corresponding to the zero
frequency H0 obtained via theoretical estimations, both nu-
merical and analytical, of eigenfrequencies in an individual
cylinder with a small aspect ratio R=2.5, is of the order of
1800 Oe, which is rather close to 1650 Oe. In other words, in
this particular geometry the influence of inter-rod dipole in-
teractions and the influence of a finite aspect ratio of an
individual rod R on the effective value of magnetic aniso-
tropy H0 are similar. Both factors diminish the magnetic an-
isotropy. For the sample with a higher aspect ratio this dif-
ference is more pronounced: Ha

dip=1875 Oe and H0
=2400 Oe.

Typical BLS spectra in fully saturated samples for the
angle of incidence �=45° are given in Fig. 6�a� �the sample
with D=70 nm saturated with an external magnetic field H
=7000 Oe� and Fig. 6�b� �the sample with D=20 nm satu-
rated with an external magnetic field H=5000 Oe�. While in
the 20 nm sample only one peak is observed, at least two
separate peaks can be resolved in the case of 70 nm rods with
the exception of two points in the vicinity of H=2000 Oe.
This value corresponds to the transition from out of plane to
the in-plane magnetization orientation, in which case the
resonance frequencies drop considerably. For this reason
only peak has been observed in the BLS spectra. The width
of each peak as well as the overall width of the double spec-
tral line in Fig. 6�a� is indicated with arrows. These data are
represented in Fig. 5�b� with vertical error bars. To avoid
overcharging of Fig. 5�b�, we have plotted this information
only for one value of the saturating magnetic field, namely,
H=7000 Oe. For other external fields no appreciable varia-
tions of the width of the spectral lines has been observed.
Interestingly, while there is a pronounced Stokes–anti-Stokes
�S-AS� asymmetry in the spectra obtained on 70 nm nano-
rods, in the case of the 20 nm nanorods the Stokes–anti-
Stokes bands are only slightly asymmetric.

To identify the modes appearing in Figs. 5 and 6 we cal-
culated the profiles of the first five lowest in frequency reso-
nances. To classify resonances we ascribe three indices to
each mode: n for vertical resonances along the axis of each
rod �z axis�, m for azimuthal �angular� modes, and l for radial
modes. In the case of thin 20 nm cylinders with a high value
of the aspect ratio �R=9� results are easily predictable: all

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

S
pi
n
w
av
e
fre
qu
en
cy
(G
H
z)

H (Oe)

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

S
pi
n
w
av
e
fre
qu
en
cy
(G
H
z)

H (Oe)

Sample A 20 nm

Sample B 70 nm

a)

b)

)

)

FIG. 5. �Color online� The dependence of the theoretical �empty
symbols� and experimental values �filled circles� of resonance fre-
quencies as a function of the intensity of magnetic field applied
normally to the axis of a rod for the sample �a� D=20 nm and �b�
D=70 nm. Also shown is the calculated Kittel mode for an ellip-
soid with a 175-nm-long axis and the value of the rod diameter
taken as a small axis �line�.
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five modes are vertical, i.e., resonances along the z axis. For
obvious reasons the first azimuthal and radial modes �m=1,
l=0 and m=0, l=1� will appear only at the frequencies in the
vicinity of vertical resonances with n	R=9.

Identification of the modes in thick rods required far more
considerable theoretical effort. Their azimuthoradial as well
as vertical profiles for the 70 nm sample are presented in Fig.
7. The value of the external magnetic field was taken equal to
H=3000 Oe, which is sufficient to saturate the sample. The
code used in the numerical simulations based on the
dissipation-fluctuation theorem and finite element approach
returns the distributions of the square of the dynamic mag-
netization �the z component� of thermal magnons on the axis
of a nanocylinder. It is clearly seen that along the vertical
axis z these functions are periodic or quasiperiodic and can
be classified, as in the previous case, according to the num-
ber of nulls: n=0,1 ,2 , . . .. Although, strictly speaking, not
purely sinusoidal along z, their shapes are close to that in an
infinite continuous film. For this reason, a reasonable rough
estimation of the resonance frequencies can be made from
the formulas for a continuous film using the effective param-
eter approach.

However, the behavior of the modes in the vicinity of the
top and bottom surface of a finite cylinder is not trivial. It
resembles the distribution of purely magnetostatic modes lo-
calized on an infinite stripe magnetized along its axis inves-

tigated analytically39,40 and numerically.41 These distribu-
tions can be described in terms of the useful notion of
“dipolar pinning” introduced in Ref. 39. Although in our
numerical simulations the spins were taken to be free at the
top and bottom surfaces of a nanocylinder in neither case,
like in a purely magnetostatic approximation,39–41 the deriva-
tive of the magnetization with respect to z tends to zero at
z=0, h �here h is the height of a cylinder�. This can be
explained by an appreciable contribution of dipolar interac-
tions within each cylinder. Nonzero “dipolar” pinning is
most pronounced in the fundamental mode n=0 where the
role of demagnetizing field at the edges is most significant.
One of the consequences of these edge effects is the fact that
the corresponding wave number characterizing the standing
wave resonances is no longer described by a simplified rela-
tion k=n� /h. According to Ref. 41, n should be replaced by
n−1 /3 to take into account dipolar demagnetizing in an in-
finite stripe. It is not certain, however, that such a simple
correction is sufficient in the case of nanocylinders. A similar
tendency to nonzero pinning at the edges can be seen in the
rigorous theoretical analysis of dipole modes on nanostripes
carried out in Ref. 39. Clearly, by appropriately decreasing
the meshing step of the numerical procedure one could arrive
at vanishing of the derivative with respect to z in the very
vicinity of each edge, thus explicitly revealing the “free
spin” boundary conditions assumed for numerical simula-
tions. However, the overall tendency to dipolar pinning em-
phasizes the role of magnetostatic interactions and inad-
equacy, in the case considered, of the Aharoni approximation
taking into account only exchange coupling in the analysis of
submicron particles.42

The distribution in the “r�” plane, normal to the axis of
the cylinder for these first three modes, is uniform. In other
words, these are purely vertical SWRs with n=0, 1, and 2.
Such standing modes are denoted with triangles with its se-
quential number “n” indicated nearby: “0,” “1,” and “2” �see
Fig. 5�. Next comes the first azimuthal mode m=1 with a
uniform vertical n=0 distribution. It should be mentioned
that, strictly speaking, its radial distribution is not absolutely
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FIG. 6. Typical BLS spectra in a fully saturated samples for
angle of incidence �=45° for the case �a� D=70 nm, H
=7000 Oe and �b� D=20 nm, H=5000 Oe.
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n = 1, m = 0

n = 2, m = 0

n = 0, m = 1

n = 3, m = 0

FIG. 7. �Color online� Profiles of dynamic magnetization local-
ized on a nanocylinder of height h=175 nm and with a diameter
D=70 nm and �aspect ratio equal to 2.5� with the saturating mag-
netic field H=3000 Oe.
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uniform, just as in the case of the classic Bessel function
solution. However, this inhomogeneity can be barely seen
�Fig. 7, cross section n=0, m=1�. Correspondingly, its fre-
quency does not fall into the same category as the series of
the first three vertical modes and is designated with a square.
The next resonance is again purely vertical: n=3, m=0, and
l=0, indicated, as previously, by a triangle with its ordinal
number “3.” Further calculations show that it is followed a
mode of the radial type n=0, m=0, and l=1. It is indicated
by a lozenge. Interestingly, for the given value of the aspect
ratio R=2.5 the latter three modes are closely spaced in the
frequency domain, thus forming a “cluster” of three consecu-
tive resonances. In other words, the simulations have re-
vealed two points of high density of states in the SWR spec-
tra. To facilitate the interpretation of the symbols in Fig. 5, a
special inset in Fig. 5�b� has been added. It is a large-scale
reproduction of the SWR spectrum for a given value of the
magnetic field �H=6000 Oe�. As it has been mentioned
above, to distinguish the nature of resonances, the following
symbols are used for each type of mode: open triangles for
vertical resonances, open squares for azimuthal resonances
and open lozenges for radial ones.

We have not succeeded in resolving the optical response
of each single SWR mode, which is not surprising: the
samples are not homogeneous enough. This concerns mainly
the height of individual nanorods, which leads to broadening
of the BLS lines. At the same time, the BLS resolution is
sufficient to reveal the two distinctive peaks related to the
two points of spectral concentration of SWR resonances lo-
calized on nanorods. This double-peak BLS fine structure is
the characteristic signature of the investigated sample con-
figuration. The first subpeak, as usual, corresponds to the
fundamental Kittel mode and its nearest neighbor. Typically,
in all planar ferromagnetic structures their magnetooptical
contribution is most significant. In our case, however, the
MO interaction takes place in the near-field regime and the
character of the overlapping of the interacting optical field
and high-frequency magnetization is not at all trivial espe-
cially since the optical skin effect is also to be taken into
account. This important point will be dealt with in detail in
the last section of this paper, focusing on the role of the MO
mechanisms involved. As for the second sub-peak, it is en-
gendered by a cluster of vertical, azimuthal, and radial
modes in the vicinity of the n=3 mode. The later feature is
due to the specific value of the aspect ratio R=2.5.

As it has been mentioned above, in the 20 nm sample all
the frequencies appearing in Fig. 5�a� correspond to modes
of vertical type with n=0, 1, 2, 3, and 4. Thus no points with
high density of states can possibly appear in the SWR spec-
trum. Moreover, the contribution of the fundamental Kittel
mode is preponderant in the optical BLS response. The ex-
planation lies in the near-field nature of the MO interaction
within the sample, which manifests itself in two ways. First,
the optical field penetrates the nano-size sample from all
sides in more or less symmetric way, there is no “shadow”
side for a nanoelement. Second, due to the fact that the di-
ameter of 20 nm is smaller than the optical skin depth, the
distribution of the optical field within a nanorod is relatively
even. This means that the overlap integral of the interacting
optical and magnetic fields, characterizing the MO effi-

ciency, is considerably reduced for higher SWRs �n�1�, es-
pecially for antisymmetric odd modes. Thus the absence of
the points of concentration of the density of states in the
SWR spectra together with a relative suppression due to
symmetry considerations, of the responses of higher SWRs
invariably lead to a single-peak BLS line in the thin 20 nm
sample.

It is well known that a perfectly homogeneous distribution
of the static magnetization in a saturated state can be reached
only in the samples of ellipsoidal form. In a cylinder of a
finite aspect ratio, which is not strictly speaking an ellipsoid,
there are zones, in the vicinity of the sample edges, of highly
uneven static magnetization. They can be regarded as tiny
resonance cavities with highly localized SW modes confined
within each such zone. This effect has been discovered in
arrays of micrometric stripes of by the authors of the Refs.
43 and 44. Interestingly, they used a conventional BLS setup
without additional microfocusing. Although such cavities,
also known as “quantum wells,” are small, still in the case of
scattering by micrometric stripes, the conventional far-field
diffraction mechanisms are predominant. For obvious rea-
sons an extremely wide angle scattering from these objects
has been observed: the signal was completely smeared in the
inverse “K” space. In our case of nanosize three-dimensional
�3D� magnetic scattering elements the localization of the
“wells” is far more pronounced. Moreover these tiny nano-
zones produce a purely near-field diffraction pattern. In other
words, the expected cross section of such scattering is insig-
nificant and, not surprisingly, we have not detected the opti-
cal response of the quantum well modes.

One of major points addressed in this paper is the mecha-
nism underlying dynamic magnetic properties of a nanocom-
posite material. More specifically, we focused on the role of
the long-range dipole-dipole interactions between individual
nanoelements comprising a nanocomposite planar structure
in the collective dynamic behavior of the structure as a
whole. The most significant features of the latter manifest
themselves via collective modes propagating in the bulk of
such structures. In other words, we seek to establish the re-
lation between the effective parameters governing the behav-
ior of the above-mentioned collective modes and the geom-
etry of the nanostructure. In order to clarify this, the
dispersion 
�K� of SWR modes was measured for different
values of the applied magnetic field. The BLS spectra for
different values of �, i.e., for different values of K, are shown
for sample B for H=8000 Oe in Fig. 8. For such a high
value of the applied magnetic field the sample is fully satu-
rated as indicated in Fig. 5. For normal incidence �=0 �Fig.
8�a�� the BLS spectrum, i.e., Stokes and anti-Stokes compo-
nents, is almost perfectly symmetric. There are two pairs of
peaks at a relatively low frequency of approximately 23 GHz
�marked with arrows� and another one at a relatively high
frequency of 28 GHz. Their origin, as explained above, is
due to two points of concentration of resonance frequencies
characteristic for the specific aspect ratio value of the
sample. With the increase in � the position of both peaks
fluctuates around its mean value and do not show any ob-
servable dispersion. At the same time their amplitude
changes drastically. First, low frequency peaks demonstrate a
striking S-AS asymmetry even for a relatively small angle of
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incidence �=15° �Fig. 8�b��. In a continuous film such asym-
metry is a characteristic signature of a surface MSW mode
�DE mode� confined to one of the film surfaces. Its wave-
length is greater than the period of the array. In line with
Damon-Eshbach behavior when �=−15° �Fig. 8�c��, the
asymmetry is inverted. For �=55° �Fig. 8�d�� the anti-Stokes
low-frequency peak dominates the spectrum: the amplitude
of symmetric high-frequency maxima is at least two times
smaller and the low-frequency anti-Stokes response practi-
cally disappears.

Interestingly, a similar two-peak structure of BLS spectra,
including S-AS asymmetry, has been observed on nanocom-
posite films comprised of Co 4 nm grains imbedded in a
SiO2 matrix in the superferromagnetic �SFM� state31 where
symmetric high-frequency peaks are attributed to SWR non-
propagating resonances, while S-AS asymmetry is a distinc-
tive signature of the Damon-Eshbach mode. In our case,
however, the geometry of the nanocomposite medium is dif-
ferent: it is an assembly of relatively big nanorods character-
ized by a pronounced shape anisotropy whose spacing ex-
cludes direct exchange coupling. At the same time, the
fundamental physical mechanisms leading to the formation
of the purely dipole Damon-Eshbach mode, characterized by
a pronounced dispersion, are identical. In both cases it is due
to long-range dipole-dipole interactions �DDIs� coupling the
fundamental �Kittel� modes �n=0, m=0, l=0� of purely
dipole nature, localized on individual nanorods or nano-
spheres. In this respect, the system studied, in the saturated

state, is close to a superparamagnetic state: its high-
frequency dynamics is determined entirely by DDIs between
nanoelements with a quasihomogeneous distribution of dy-
namic magnetization.32 The analogy between the two sys-
tems however ends here. Higher exchange modes are created
according to entirely different scenarios. While in dense
SFM nanogranular films they are formed due to strong inter-
particle exchange interactions, in arrays of nano-rods studied
in this work these are SWR due entirely to the intraparticle
exchange stiffness, that are very weakly coupled though
long-range DDIs.

In order to model the properties of the DE mode in nano-
rod arrays, the approximate mean field theory of the ferro-
magnetic resonance in arrays of magnetic rods proposed in
Ref. 15 and outlined above was extended to the case of mag-
netostatic waves propagating in such structures with nonzero
wave number K. In line with the effective medium mean
field approach, applied to nanocomposite ferromagnetic
films, we have supposed the effective magnetic anisotropy
and the effective saturation magnetization to be equal to

Ha
ef f = 2�Ms�Nz − Nx��1 − P� , �3a�

4�Ms
ef f = 4�PMs. �3b�

In Eq. �3� P is a packing density of nanorods. To test validity
of this approach we used the simple analytic formula derived
in Ref. 45 for the Daman-Eshbach mode propagating in a
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FIG. 8. BLS spectra measured in the sample with D=70 nm saturated with in-plane magnetic field H=8000 Oe in the Damon-Eshbach
geometry �a� �=0°, �b� �=15°, �c� �=−15°, and �d� �=55°.
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magnetically anisotropic film for relatively low values of
wave numbers Kh1. Here h is the film thickness. For the
particular case of purely uniaxial magnetic anisotropy it can
be further simplified


 = �
H�
H + �
M
ef f − 
a

ef f�� +

M

ef f�
M
ef f − 
a

ef f�
�
H�
H + �
M

ef f − 
a
ef f��

Kh

4
.

�4�

Here 
H=�H, 
M
ef f =�4�Ms

ef f, and 
a
ef f =�Ha

ef f. According
to Eq. �4� the group velocity of the DE mode in an aniso-
tropic film is determined by vgr=
M

ef f�
M
ef f

−
a
ef f� /�
H�
H+ �
M

ef f −
a
ef f��h /4. In other words the disper-

sion changes sign when the effective anisotropy exceeds the
effective saturation magnetization. Let us consider two lim-
iting cases: a continuous monolayer �P=1� and an individual
isolated rod �P=0�. In the first case 
M

ef f =
M and 
a
ef f =0

which leads to the classic dispersion formula for the DE
mode. The notion of wave number loses sense for an indi-
vidual rod, i.e., K=0. Besides, in this case 
M

ef f =0 and 
a
ef f

=2�Ms, which brings us back to Eq. �2�. For an infinite
isolated cylinder this gives the classic formula for the ferro-
magnetic resonance 
=��H�H−2�Ms�.

Having defined effective parameters, we were able to es-
timate DE dispersion in our nanocomposite films making use
of the tensor magnetic Green’s-function approach. The re-
sults obtained for the 70 nm nanorods are given in Fig. 9.
The order of the matrix reduction46 was set equal to 3. It is
clearly seen that the frequency range of approximately 100
MHz is largely insufficient to ensure detection of the disper-
sion by the BLS technique. Not surprisingly, numerical re-
sults obtained for the second 20 nm sample confirm the same
conclusion. This explains why we have not succeeded in
detecting the DE dispersion. In other words, although the
inter-rod dipole interactions are non-negligible, clearly mani-
festing themselves in the static behavior �see the earlier dis-
cussion�, they are, at the same time, not sufficiently strong to
be noticeable in the dynamics.

Thus, relatively low concentration of magnetic nanoele-
ments excludes direct detection of dispersion in the compos-

ite structure studied. However, as it has been shown in Refs.
31 and 32, the fine structure of the BLS spectra, especially
the asymmetry in the amplitude of the Stokes and anti-Stokes
components, can be very helpful in identifying the physical
nature of magnetic excitations in nano-composite films.
While exchange dominated non-propagating SWRs are char-
acterized by a symmetric S-AS pattern, the purely dipole DE
mode has a distinctive asymmetric signature. It should be
noted that it is known for a long time, having been discov-
ered as early as the late seventies.47 At this early stage it was
ascribed to the asymmetry of the spatial distribution of the
DE mode with respect to the inversion of the magnetic field
H� : if in the first case it is localized near the top of the ferro-
magnetic layer, in the second one its localization shifts to the
bottom of the layer. Shortly afterwards, the subject was
treated in full detail in Refs. 48 and 49, where the most
general formalism based on the fluctuation-dissipation theo-
rem �FDT� and optical Green’s functions for a multilayer has
been developed. Thus both the thermal stochastic nature of
the magnons and macroscopic well defined magneto-optical
properties of the structure were simultaneously taken into
account. Computer simulations carried out have confirmed
the presence of the S-AS asymmetry. Moreover, the subject
was especially addressed in Ref. 50 which focused on the
role of the nondiagonal spin-spin correlation functions
�SxSy�. This formalism, rigorous and sophisticated, was
based on the earlier papers48,49 and took into account mul-
tiple nontrivial aspects of the BLS in a planar structure, in-
cluding their stochastic nature. Not surprisingly, no simple
analytic expressions could have been derived. In the context
of the present paper, considering a system of very complex
geometry it is unjustifiably complicated. Sacrificing the gen-
erality, we propose an alternative approach focusing on the
symmetry of the MO interaction. Being perfectly straightfor-
ward, it can be formulated in terms of a single surprisingly
simple expression �see Eq. �A1��, thus providing more physi-
cal insight, lacking in the papers on the early 1980s. More-
over, it is compatible with the purely numeric COMSOL simu-
lations �see the discussion below�, which has allowed us to
estimate, to the first approximation, the degree of the S-AS
asymmetry.

Thus, in view of the complexity of the system studied, a
fully rigorous analysis is hardly realistic that is why a mul-
tiscale approach has been adopted by us. We were seeking a
compromise theoretical description approaching the real situ-
ation from the two natural limiting cases, namely, a quasi-
continuous monolayer characterized by effective physical
�magnetic and optic� parameters and an assembly of indi-
vidual isolated nanorods. Thus, simple and efficient numeri-
cal procedures can be developed backed by simple and clear
analytical expressions. Moreover, being mutually comple-
mentary, they ensure a comprehensive and adequate physical
picture of the major features of the investigated effects.

In order to further clarify the important issue of the influ-
ence of the polarizations of the interacting waves: the inci-
dent optical wave, the scattered optical wave and the MSW,
a very simple ad hoc analytical relation for the S-AS asym-
metry has been obtained in the Appendix. The calculation is
based on the purely classical approach, which makes it
straightforward and its result physically clear: the S-AS
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FIG. 9. Dispersion curves for the Damon-Eshbach mode and the
first three spin-wave resonances.
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asymmetry reflects the fact that the mixed product
�e��i� · �e��s��m� �� is not symmetric with respect to the complex
conjugation of one of two complex vectors �e��i� and m� � ap-
pearing in it. The latter reflects the symmetry of MO effects
in metals described by the antisymmetrical unitary Levi-
Civita tensor. Actually, the latter statement can be reformu-
lated in a surprisingly simple way which amounts to the
following. In the case of scattering in p-s polarization con-
figuration, the Stokes and anti-Stokes efficiency is propor-
tional to the scalar product formed by two complex 2D po-
larization vectors. These are the polarization of the incident
“p” wave �with its components permuted� and that of the
polarization of the MSW in the anti-Stokes case �scattering
by a magnon with a positive frequency +
� or its complex
conjugate in the Stokes case �scattering by a magnon with a
negative frequency −
�. This complex conjugation is due to
the fact that the inversion of the sign of the frequency of a
magnon is equivalent to the time reversal of the magnetic
precession in a magnon. In other words, the S-AS asymmetry
is engendered entirely by the asymmetry of the MO interac-
tion efficiency with respect to the time reversal of the mag-
netic precession.

To investigate the behavior of the polarization of the light
scattered in the nanorod array, rigorous numerical finite ele-
ment modeling was used �COMSOL MULTIPHYSICS package51�.
The nanorod array was assumed to have a square lattice,
corresponding to the packing density of about 15%. The evo-
lution in time, during a full period, of the electric field vector
E� �i� components of the incident p-polarized optical wave in-
side a 70�175 nm nanorod was followed in the simulations
for the optical wavelength used in the experiment �
=514 nm �Fig. 10�.

The top inset illustrates the configuration of the points
1–7. To make the graphs more clear for understanding and to
avoid complicated designations, the horizontal time axis is
normalized to a full period, thus the abscissa varies from 0 to
2�. Moreover, such format of presentation of the results al-
lows direct reading of the phase shift between the compo-
nents of the electric field, which is necessary for the estima-
tion of the S-AS asymmetry. The angle of incidence was set
equal to the values used in the experiment: 0°, 15°, and 55°.

As expected, the field in the middle of the rod is attenu-
ated due to a small skin depth of Ni which is on the order of
30 nm. The near-field nature of electromagnetic diffraction
by nanorods results in the situation that amplitudes in sym-
metric points on opposite sides of the rods are practically
equal �points 3 and 7�. At the same time, the simulations
have revealed several interesting features. First, polarization
is almost linear in all the points lying on the center line �2, 4,
and 6�, especially in point 4 that is the center of symmetry of
a nanorod. In contrast, there is a non-negligible ellipticity in
the polarization of E� �i� on the surface of the rod �1, 3, and 5�,
being especially pronounced in point 3. Interestingly, even in
the case of normal incidence, there are zones where the el-
lipticity is nonzero in particular in points 3 and 7 that are
situated symmetrically with respect to the center-line of the
rod. However, as can be seen in Fig. 10, the sign of the phase
mismatch in point 3 is reversed with respect to that in point
7. This polarization behavior explains the presence of S-AS

asymmetry in the Brillouin scattering spectra. There are two
characteristic zones within each nanorod where the light po-
larization is strongly elliptic: these are symmetric points 3
and 7. Besides, the direction of the rotation of the E� �i� vector
in these points is opposite, which means that the zones en-
gender two S-AS patterns with opposite asymmetry. In the
case �=0°, for obvious reasons, the distribution of the E� �i�
field is identical in both zones which means that the two
contributions to the optical response are equal and their su-
perposition finally produces an entirely symmetric S-AS pat-
tern. With the increase in � the contribution of the zone 3
becomes preponderant.

To numerically estimate the plausibility of this hypoth-
esis, we calculated the ratio Ianti-Stokes / IStokes �see the Appen-
dix�, taking into account the field polarization around the
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FIG. 10. �Color online� Numerical simulations of the distribu-
tion of the electric field components within a nanorod in points 3, 4,
and 7 for different angles of incidence �0°, 15°, and 55°�. The
evolution in time, during a full period, of all the components of the
electric field vector E� �i� of the incident p-polarized optical wave
inside a 70�175 nm nanorod. The inset on top illustrates the ge-
ometry of the points 1–7.
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nanorods. To this end, the actual values of light polarization
were extracted form numerical simulations �Fig. 10�, while
the ellipticity of the magnetic mode was taken equal to that
of the Kittel mode.52 This simple theoretical model predicts
the increase in the S-AS asymmetry with the growth of �.
Moreover, for the specific experimental values of �=15° and
�=55°, Ianti-Stokes / IStokes=1.6 and Ianti-Stokes / IStokes=2.4,
which correspond well to the experimental values.

IV. CONCLUSION

The BLS spectra from nanorods with a low value of the
aspect ratio are characterized by two major features, namely,
a two-peak structure of BLS lines and a high degree of S-AS
asymmetry. The former is explained by the presence of zones
with high density of states in the spectrum of the SWR
modes localized on a nanorod, each producing a separate
subpeak. To estimate the SWR spectra and to identify the
modes, we used a purely numerical finite element technique
which returns also the distribution of the dynamic magneti-
zation. These numerical simulations have revealed non-
negligible dipole pinning on the top and on the bottom of a
rod. The effect is the most pronounced for the purely dipole
Kittel mode.

No SW dispersion has been detected which is explained,
within a simple mean-field theory, by too low packing den-
sity. The S-AS asymmetry, typically ascribed to collective
behavior of the DE type, here is due entirely to the elliptic
character of the polarization of the light interacting with
magnetostatic waves. Moreover, it is a direct consequence of
the asymmetry of the MO interaction efficiency with respect
to the time reversal of the magnetic precession in a magnon.

Numerical simulations of the light polarization within a
nanorod led to a simple theoretical model providing a quali-
tative and partially quantitative description of this effect.
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APPENDIX

Typically, in the BLS experiment a plane optical wave,
backscattered by a SW mode in the metallic film, is created
by a plane-wave incident on the air-metal interface under an
angle �. For the sake of simplicity, let us consider the case of
a semi-infinite metal slab. Since optical attenuation in metal-
lic media is significant, its index of refraction has a pro-
nounced imaginary component n+ i� and consequently �
=�1+ i�2= �n2−�2�+ i2n�. Thus the components of the wave
vector k� =kxu�x+kzu�z are given by the following complex
expressions:53

kx = k0 sin �, kz = k0�q + ip� ,

where

q = ���1 − sin2 ��2 + ��2�2�1/4cos��/2� ,

p = ���1 − sin2 ��2 + ��2�2�1/4sin��/2� ,

with

� = arctan
 �2

�1 − sin2 �
� .

There are two major factors that determine the efficiency of a
three-wave MO interaction. The first one is the overlap inte-
gral which quantifies the spatial correlation of distributions
of the fields of three interacting waves within the interaction
volume. Henceforth we will refer to it as the spatial factor.
The second one is a factor which quantifies the “correlation”
of the polarizations of the three waves referred as the vector
factor. The latter takes into account the symmetry of MO
effects. In our case it is the Faraday effect whose symmetry
is described by the unitary antisymmetric tensor of the third
rank, known the Levi-Civita tensor, and as a result, the effi-
ciency of the MO interaction � is described by a mixed prod-
uct of the three interacting polarizations:54

� = �e��s�
� · �m� � e��i��� = �e��i� · �e��s� � m� �� ,

where e��i� is the polarization of the incident optical wave, e��s�
is the polarization of the scattered optical wave, and m� is the
polarization of the spin wave. Here we made use of the sym-
metry of the mixed product with respect to a circular permu-
tation. Besides, in our experiment we used the p-s scattering
geometry which means, in particular, that the polarization of
the s type of the scattered wave is normal to the plane of the
MO interaction, i.e., the XZ plane and consequently e��s�

�

=e��s�.
The polarization of the incident wave, being of the p type,

lies in the XZ plane. Besides, due to the transversal nature of
optical waves, is perpendicular to the wave vector �k� ·e��i��
=0. Hence the non-normalized polarization can be written as

e��i� = �q + ip�u�x − sin �u�z.

Thus, the polarization of the incident wave is also described
by a complex vector. In other words, it is elliptically polar-
ized, which is very important for the following discussion. A
second major point consists in the elliptical nature of the
polarization of the spin wave. In the Damon-Eshbach geom-
etry, the latter is described by u�x� i
H /
u�z,

55 where 
 is the
frequency of the spin wave and 
H=�H. Sign “+” corre-
sponds to the up-shifted anti-Stokes scattering, while sign
“−” corresponds to the downshifted Stokes scattering. In
other words, the Stokes line corresponds to scattering by a
SW with a positive frequency −
, while the anti-Stokes one
to that by a SW with a negative frequency +
. Physically,
this change in sign amounts to an inversion of the direction
of the rotation of the vector of magnetization with the time
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reversal, corresponding to the time reversal, which is taken
into account mathematically by complex conjugation:

m� anti-Stokes = m� = u�x + i

H



u�z = �m� Stokes��.

Finally one arrives at two different expressions for the vector
factor in the scattering efficiency:

�anti-Stokes = �e��i� · �e��s� � m� �� = 
sin � − p

H



� + iq


H



,

�Stokes = �e��i� · �e��s� � m� ��� = 
sin � + p

H



� + iq


H



.

Hence the ratio of the intensities of the Stokes and anti-
Stokes lines, describing the Stokes–anti-Stokes asymmetry,
mentioned in the text is given by

Ianti-Stokes

IStokes =

sin � − p


H



�2

+ 
q

H



�−2


sin � + p

H



�2

+ 
q

H
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