PHYSICAL REVIEW B 80, 144304 (2009)

Dynamics of a narrow-band exciton coupled with optical phonons:
A time-convolutionless master-equation approach
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A time-convolutionless master equation is established for studying the dynamics of a narrow-band exciton
coupled with optical phonons. Within the nonadiabatic weak-coupling limit, the diagonal hypothesis works
quite well so that the exciton-phonon dynamics is mainly governed by the so-called time-dependent dephasing
function. It has been shown that the dephasing function tends to zero by exhibiting damped oscillations that
characterize a series of dephasing-rephasing mechanisms. Indeed, the correlation time of the exciton-phonon
interaction is defined as the time needed to the exciton to cover a few lattice sites. Therefore this correlation
time is sufficiently long so that the system dynamics remains sensitive to the coherent nature of the lattice
vibrations. Because the phonon memory recurs periodically, the exciton experiences a series of dephasing-
rephasing processes. Although each rephasing does not exactly compensate the previous dephasing, the coher-

ence survives. Consequently, the exciton keeps its wavelike nature and a coherent energy transfer occurs
according to an effective hopping constant smaller than the bare hopping constant.
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I. INTRODUCTION

Exciton transfer between atomic subunits in large mol-
ecules and crystals plays a key role in understanding various
phenomenon in both physics, chemistry and biology.!~® Ex-
amples among many are Frenkel exciton dynamics in photo-
synthetic antenna,*-® vibron propagation in a-helices,>'*
amide-I relaxation dynamics as an intermediate agent in
electron-capture dissociation mass spectrometry of helical
peptides,’”” and the vibrational energy flow in adsorbed
nanostructures.'®-18

In that context, the fundamental question arises whether
the exciton motion corresponds to a coherent (wavelike) mo-
tion or to an incoherent (diffusionlike) motion. In a lattice
with translational invariance, the ability of the exciton to
delocalize gives rise to Bloch waves that correspond to su-
perimpositions of local states. Such superimpositions are co-
herent since a phase relation is kept between the local states
when the dynamics is governed by the exciton Hamiltonian,
only. Unfortunately, in real systems, the exciton interacts
with the vibrations of the host medium which are usually
responsible for dephasing. From a phenomenological point
of view, dephasing-limited coherent motion has been de-
scribed within stochastic models.!*2* The main idea is that
the lattice vibrations induce stochastic modulations of the
local state energies. These modulations yield random fluctua-
tions of the phase of each local state which destroy the co-
herent nature of the exciton. As a result, a transition discrimi-
nates between a wavelike motion in the short time limit and
a diffusion like motion in the long time limit.

Although the stochastic approach provides a clear under-
standing of dephasing, the physics that emerges from a mi-
croscopic description of the fluctuating surrounding is more
complex. Indeed, during the last four decades, a special at-
tention has been paid to characterize the dynamics provided
by a Frohlich- type (or Holstein-type) Hamiltonian.?>?® Such
a Hamiltonian gives a general description of an exciton
coupled with either acoustical or optical phonons and it has
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been used in numerous papers to study various transport phe-
nomenon (see for instance Refs. 27-41). The behavior of the
exciton-phonon system strongly depends on the relevant pa-
rameters of the model, i.e., the exciton bandwidth ®, the
phonon cutoff frequency (), (or the optical phonon fre-
quency), the strength of the exciton-phonon coupling and the
temperature. Therefore different regimes have been defined
and one finds that the exciton-phonon system exhibits funda-
mental different behaviors ranging from quantum to classi-
cal, from weak coupling to strong coupling, from adiabatic to
nonadiabatic and from large to small polarons.*?

In the present paper, special attention is paid to study the
nonadiabatic weak-coupling limit in which the coherent na-
ture of the exciton depends on the adiabaticity B=2®d/(),,
only.?83%43 Indeed, dephasing in real space characterizes life-
time in momentum space. Therefore, to lowest order, this
lifetime results from the scattering of an exciton with wave
vector K into a Bloch state with wave vector K = g via the
exchange of a phonon with wave vector g. Such a process
occurs if energy conservation takes place. In the nonadia-
batic limit, i.e., provided that B<<0.5, the energy cannot be
conserved so that the emission or the absorption of a phonon
does not correspond to a real process. Consequently, the ex-
citon is only able to exchange a virtual phonon which is first
emitted and then immediately reabsorbed, and vice versa.
The exciton keeps its wavelike nature and it propagates co-
herently along the lattice whatever the temperature. Note that
similar results have been obtained within the frame of the
generalized Fulton-Gouterman transformation which diago-
nalizes the coupled exciton-phonon Hamiltonian at zero
temperature.

In a recent paper, a time-convolutionless (TCL) general-
ized master equation (GME) has been used for describing a
narrow-band-exciton coupled with acoustic phonons.*? Since
acoustic phonons exhibit spatial correlations over an infinite
length scale, it has been shown that the exciton-phonon in-
teraction yields a fast dephasing-rephasing mechanism which
prevents the exciton diffusivity. More precisely, the decoher-
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ence between two local states is defined in terms of the cor-
relation function of the energy difference between these two
states. It involves the difference between the autocorrelation
function of each site energy and the cross-correlation func-
tion between the two site energies. In the short time limit, the
cross correlation vanishes whereas the autocorrelation func-
tion decays from its maximum. Dephasing takes place indi-
cating that the coherence between the local states tends to
disappear. However, after a time scale of about the time
needs to an acoustic wave to cover the distance separating
the two states, the cross-correlation function switches on.
The coherence recurs resulting in the occurrence of rephas-
ing mechanism. The rephasing exactly compensates the
dephasing so that the exciton propagates freely as if it was
insensitive to the acoustic phonons.

This scenario provides a time resolved picture in real
space of the influence of the exciton-phonon interaction. Its
reveals that the dephasing-rephasing mechanism is equiva-
lent to the emission absorption of a virtual phonon. Never-
theless, it shows that the coherence survival depends on the
ability of the phonons to induce correlations between sepa-
rated local states. Therefore, the fundamental question arises
whether this scenario is modified when the exciton interacts
with optical phonons which cannot propagate. This is the
purpose of the present paper in which the quantum diffusion
of a narrow-band exciton coupled with a bath of optical
phonons is studied. Since we expect the occurrence of non-
Markovian effects, the dynamics is addressed within the TCL
formalism. Indeed, when compared with standard ap-
proaches, the TCL-GME allows a systematic analysis of the
non-Markovian quantum dynamics of open systems through
the use of a different resummation of the perturbation series.
It presents the advantage of being local in time and yields an
evolution equation for the exciton reduced density matrix
independent of all the history of the exciton-phonon cou-
pling. In addition, it has been shown that to second order in
the coupling strength, the TCL-GME gives a better approxi-
mation to the exact solution than the standard GME (see for
instance Refs. 4, 5, and 43-50).

The paper is organized as follows. In Sec. II, the exciton-
phonon Hamiltonian is defined and the key observables re-
quired to study the transport properties are introduced. In
Sec. III, the TCL-GME is established and the time-dependent
diffusion coefficient is defined. The diffusion coefficient is
evaluated numerically in Sec. IV where a detailed analysis of
the energy transfer is performed. Finally, these results are
interpreted in Sec. V.

II. DESCRIPTION OF THE SYSTEM

A. Model and Hamiltonians

In a one-dimensional (1D) lattice with translational in-
variance, each site x=1,...,N is occupied by a molecular
group whose internal dynamics is described by a two-level
system. Let |x) denote the first excited state of the xth two-
level system and wq the corresponding energy. The exciton
Hamiltonian is defined as (in unit A=1)

H,= E o) (x| + D |x + 1){x| + [x)x + 1]], (1)

where @ is the exciton hopping constant. Equation (1) de-
scribes a narrow-band exciton which delocalizes along the
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lattice according to plane waves with wave vector K and
eigenfrequency wg=wy+2®P cos(K). This propagation is ac-
counted by the free propagator G(r)=exp(—iH,t) whose ma-
trix elements are defined in terms of the Bessel function of
the first kind as

G o (1) = (= D)ooty (20r). )

The exciton interacts with the external motions of the lat-
tice which are described by N independent local oscillators
with frequency (). These oscillators form a set of optical
phonons whose Hamiltonian is defined in terms of the stan-
dard phonon operators ai and a, as

H,= > Qoaiax. (3)

According to the potential deformation model, the exciton-
phonon interaction results from a random modulation of each
exciton local state energy as

AH=, Aw |x)x|, (4)

where Aw,=Ay(al +a,) is expressed in terms of the coupling
strength A,

The system dynamics is thus governed by the Holstein
Hamiltonian H=H,+H,+AH which will be used to study the
exciton transport properties. To proceed, we shall restrict our
attention to the nonadiabatic weak-coupling limit in which
the following relations are satisfied: wy> (), y>4®d and
Ay<<Qq. Note that the present model is currently used to
investigate bioenergy transport in « helices and in lattices
involving H bonded peptide units (see for instance Refs.
9-15 and 39). In such lattices, peptide units H-N-C=0 are
regularly distributed and neighboring units are linked by a H
bond. Therefore, each site contains an amide-I mode, i.e., a
high-frequency C=0 stretching vibration, that gives rise to a
vibrational exciton (i.e., a vibron) which delocalizes along
the lattice due to dipole-dipole interaction. This exciton in-
teracts with independent local oscillators (optical phonons)
that correspond to the H bond vibrations.

B. Transport properties

To study the transport properties, we assume that an ex-
citon is initially created on the site x,=0. By contrast, the
phonons form a bath in thermal equilibrium at temperature 7'
whose quantum state is described by the canonical density
matrix p,. The initial density matrix of the exciton-phonon
system is thus defined as p=p, ® p, where p,=|xo)(xo|.

To characterize the exciton motion, we shall study the
time-dependent diffusion coefficient defined in terms of the
exciton mean-square displacement as

1 d<x2(t)>)

D) = 2( da ) ©)

The time evolution of D(¢) gives fundamental information on
the exciton dynamics. Indeed, a linear dependence of D(z)
with respect to time indicates a coherent energy transfer re-
sulting from a wavelike motion of the exciton. By contrast,
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D(t) becomes time independent when an incoherent diffusive
regime takes place and it vanishes when energy localization
occurs.

In Eq. (5), the symbol (...) denotes an average over the
exciton degrees of freedom according to the exciton reduced
density matrix (RDM) o(z) defined as

O'(Xl > X2, t) = Tr[peth|'x2><-xl |€_th] . (6)

The RDM describes the exciton state at time ¢ after perform-
ing an average over the phonon bath. Diagonal elements
yield the exciton density, i.e., the probability for the exciton
to occupy a given local state, whereas non diagonal elements
measure the coherence between different local states. Under
the influence of H, diagonal and non diagonal elements mix
in a complex manner so that the time evolution of the full
RDM must be studied to extract the information that is de-
sired to compute the diffusion coefficient.

III. TCL-GME AND DIFFUSION COEFFICIENT
A. TCL-GME

To determine the GME for the exciton RDM, we use the
standard projector method of the TCL approach.*>*-0 Since
it has been detailed in Ref. 43, we only give here a brief
summary of the main results. Therefore, in the local state
basis, the GME is expressed as

id-(-xl’-x2’t) = (I) 2 [G(xl + Ss-stt) - U(xlsxz + Sst)]

s==*1

- 12 j(-xl’x%fl’f%t)o(fl’fbt)' (7)
XX
The first term in the right-hand side of Eq. (7) describes the
coherent dynamics under the exciton Liouvillian £,
=[H,,...]. By contrast, the influence of the phonons is char-
acterized by the relaxation operator 7(¢) defined as

t
j(xth’fI’fZ’t) = E f ddgxz,fz(cxl,x(T)
X 0

- sz,x(T))le,x(T)G;I’x(T) + 5x1,fl(C;2,x(T)
- (DG (DG, (7], (®)

where Cxl,xz(t)=<wal(t)wa2(O)>p is the coupling correla-
tion function. The symbol (...), denotes an average over the
phonon bath and the time dependence results from an
Heisenberg representation with respect to H,,. Since optical
phonons do not propagate, C, . (1)=Cy(1)é, ., where Cy(7)
is defined in terms of the Bose-Einstein distribution
no=1/(exp(Qq/kzT)—1) (kg is the Boltzmann constant) as

Co(r) = A%(Zno + 1)cos(Qgt) — iAS sin(Qof). 9)

The GME is isomorphic to the Schrédinger equation for a
particle moving on a two-dimensional (2D) lattice that is a
graphical representation of the Liouville space. Therefore,
o(x,,x,,1) plays the role of a wave function whose dynamics
is governed by the time-dependent effective Liouvillian
L,—iJ(). Although L, yields an anisotropic dynamics trans-
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lationally invariant along the directions x; and x,, a symme-
try breaking is induced by J(). Nevertheless, as shown in
Ref. 43, the 2D Liouville space remains translationally in-
variant along the direction x;=x,. Consequently, o(x;,x,,?)
only depends on x; and r=x,—x;, and it can be expanded as
a Bloch wave as

1 .
U(xl’xl + r’t) = WE ’\Ijk(r»t)e_lk(XI+r/2)' (10)
k

Since k is a good quantum number, the effective Liouvillian
is block diagonal and the GME can be solved for each k
value. In that case, the resulting GME becomes isomorphic
to the Schrodinger equation for a particle moving on a 1D
lattice. It can be expressed in a formal way since W, (r, ) can
be viewed as the component of the vector |W(¢)) in the site
representation {|r)}. Given that |¥,(0))=|0), Vk, the evolu-
tion of |W(1)) is governed by a Schrodinger like equation as

{0 (1)) = Hy(0)[¥,(0)). (11)

The effective Hamiltonian H,(z) is defined as
Hi(r,7,t) = O (8,741 + 6,721) — iTi (1, 7 1), (12)

where ®,=2® sin(k/2) and where J,(7) is expressed as

t

Ti(rrn)=2i"" Ref e Mr=247C(7)
0

X[Goo(1)G, 7o(1) = Gro(DGro(D]. (13)

B. Diffusion coefficient: general expression

As detailed in Ref. 43, the expression of the diffusion
coefficient D(f) can be extracted from Eq. (11). To proceed,
one first defines (x*(¢)) in terms of the second derivative of
W,(0,7) with respect to k. Then, |V ())=U(1)|0) is ex-
pressed in terms of the evolution operator U (7) associated to
Eq. (11). Consequently, after simple algebraic manipulations,
D(1) is defined as

Hrltd(1)]0) )
T . 14
< . (14)

D) =id D, i

r=%1 =

The time evolution of D(f) is governed by the long-
wavelength behavior of U(r). This behavior can be extracted
from Eq. (11) by applying a standard perturbation theory in
which k is assumed to be a small parameter. By expanding
U (1) in a power series with respect to k, one finally obtains

D= D, ldt1<r|g(t,t1)7—[(’)(t1)g(t1,0)|0), (15)

r=x1J0

where  G(t,,1,)=Uy(t,)Uy'(t,) involves the unperturbed
evolution operator Uy(f) connected to Hy(z), i.e.,
Uo(1)=—To(Uy(7). In Eq. (15), the prime denotes a deriva-
tive with respect to k and the index 0 means that the operator
is evaluated for k=0.
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C. Diffusion coefficient: the diagonal hypothesis

In Ref. 43, it has been shown that the exciton-phonon
dynamics is very well described by using the diagonal hy-
pothesis. Within this hypothesis, the zero wave vector relax-
ation operator reduces to Jy(r,7,1) = 8,:1":(t) where I'(¢) is
the TCL expression of the so-called pur dephasing constant
expressed as

12

(1) =2 Re f dt, Co(t)[|Goo(t) > = |G, o(t)|*]. (16)
0

Note that I'’(z) evolves in time and it does not represent a
constant. Therefore, to avoid confusion, it will be called the
dephasing function in the following of the text.

Due to the ability of the exciton to delocalize along the
lattice, its eigenstates correspond to extended states written
as a superimposition of local states. Therefore, I'/(z) de-
scribes the way the phonon bath modifies the coherence be-
tween two local states |x) and |y=x+r). This modification
results from the random fluctuations of the energy difference
Aw(f)-Aw, (1) which affect the phase relation between the
two local states involved in the superimposition. Therefore,
the TCL formalism generalizes the standard expression of
the dephasing function given by the stochastic approach. In-
deed, from Eq. (8), I'’(¢) is defined in terms of the correlation
function between the energy difference Aw, (f)—Aw,(¢) at
time ¢ and the energy difference dw, (1)~ dw(t) at time ¢=0.
In this latter expression, ﬁwx(t):EZG;Z(—t)AwZ(O)sz(—t) is
the energy at time =0 when the exciton occupies a quantum
state that evolves freely into |x) at time ¢. Consequently, due
to the translational invariance and since optical phonons do
not propagate, it is easy to show that this correlation function
yields Eq. (16). The dephasing function is the difference be-
tween two contributions so that the term involving
Co(1)|Goo(1)]* generalizes the concept of autocorrelation
function of the site energy whereas the term involving
Co(D)|G,.o(1)]* describes the cross-correlation function be-
tween different site energies. In a marked contrast with the
standard stochastic approach, both terms explicitly account
on the ability of the exciton to propagate during its interac-
tion with the phonon bath.

Within the diagonal hypothesis, the unperturbed evolution
operator U(t) is diagonal. Its matrix elements are written as
Uy(r,7,1)= 6,7 exp(—¢,(t)) where the decoherence factor
exp(—¢,(1)) is expressed in terms of the decoherence func-
tion ¢,(r) defined as

(1) =J dnT(ty). (17)
0

Consequently, the knowledge of U(r) yields G(¢) so that Eq.
(15) can be solved. Since H(r) exhibits two contributions,
the diffusion coefficient is the sum of two terms, i.e.,
D(1)=Dg(t)+D(t). The coefficient Dg(t), proportional to
®2, defines the band diffusion coefficient which basically
accounts for dephasing-limited band motion. By contrast,
D(1) is the cross-diffusion coefficient proportional to both
® and J(¢). These two terms are defined as
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t
DB(I) = 2(1)2€_¢1(I)J dt1€¢1(r1),
0

t
D(1) =220 f dre® " y(t)), (18)
0

where 7(f) is expressed as

2 t
7(t) = almf dt,Co(11)Go (1)) G o(1)). (19)
0

Finally, within the diagonal hypothesis, the characterization
of the exciton transport properties reduces to the knowledge
of few parameters, namely the dephasing function between
neighboring local states I"(¢), the decoherence function ¢, (7)
and the parameter 7(z).

IV. NUMERICAL RESULTS

In this section, the previous formalism is applied to study
the exciton motion within the nonadiabatic weak-coupling
limit. To proceed, typical values for the parameters are used.
The phonon frequency is fixed to ;=60 cm™' and the ex-
citon hopping constant ® ranges between 0 and 15 cm™.
The exciton-phonon coupling strength is considered as a free
parameter that extends from 0 to 5 cm™!. Although the in-
fluence of the temperature has been checked, the results dis-
played in this section correspond to 7=300 K. Note that
these parameters typically describe a vibrational exciton
coupled with low-frequency phonons in both adsorbed nano-
structures and a-helices.?18:37-4043

To check the diagonal hypothesis, let first analyze the na-
ture of both Jy(¢) and Uy(¢) within the concept of diagonal
dominance. Indeed, a matrix A is said to be row diagonally
dominant if G,(A)=|A;|-2;./A;|=0 and column diagonally
dominant if F[A]=|A;[-2;.]A;[=0, Vi. Consequently, the
matrix A is both row and column diagonally dominant if
filAl=G[A]+F[A]=0, Vi.

In Fig. 1, the time evolution of f,[ 7,(¢)] is shown for few
r values. It reveals that J,(¢) is mainly diagonal in the short
time limit, only. Over a time scale of about the vibrational
period of the optical phonons Ty=27/),, J(¢) is real and
both row and column diagonally dominant. In fact,
Re Jo(r,r,1) first develops oscillations whose amplitude in-
creases with both T and A,. Nevertheless, these oscillations
decrease with time so that Re Jy(r,r,t) becomes negligible
after a few ps. In the same time, off diagonal matrix elements
switch on so that the diagonal dominance of 7,(¢) breaks
down. This effect is pronounced for r=1 due to the influence
of both Re Jy(1,-1,1) and Re Jy(~1,1,1) that switch on at
t=3T,/2. Note that, in a general way, Re J,(r,7,1) takes a
significant value for a time proportional to the time required
to the exciton to cover a distance of about |r—7|. This feature
is clearly seen for large |r—7| values. However, the maximum
value exhibited by these off diagonal matrix elements is al-
ways smaller than the maximum reached by Re J,(r,r,?) in
the short time limit. In addition, from Eq. (13), Im [J,(z) only
provides temperature independent off diagonal contributions.
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FIG. 1. Criteria to check the diagonally dominant behavior of
the relaxation operator Jo(f) (see the text) for 7=300 K,
Qp=60 cm™', Ay=3 cm™!, and ®=6 cm™.

Nevertheless, at room temperature, Im J,(z) is typically one
order of magnitude smaller than Re J(t).

These results show that J(7) is diagonally dominant in
the short time limit, only. Nevertheless, provided that
0, >4d, both diagonal and off diagonal elements converge
to zero in the long time limit. Consequently, although it ap-
pears counterintuitive, the diagonal hypothesis still remains
valid.

This feature is illustrated in Fig. 2 that displays the time
evolution of F[Uy()]/Uy(r,r,1). Tt reveals that Uy(r) is
mainly diagonal over a very long time scale. It reduces to the

1.02 4

r=1
1.00 1
0.98 W\/\W
0.96 -
0.94 |
1.02 1 r=2
1.00 A
0.93 \/\W\/J\/VW
0.96 -
0.94 1
= 102 r=3
£ 1.00 1
IS
2 o \/\\NV\/W
S 0.96 A
% 0.94 |
0 2 4 6 8 10

time (ps)

FIG. 2. Criteria to check the diagonally dominant behavior of
the evolution operator Uy(f) (see the text) for 7T=300 K,
0p=60 cm™!, Aj=3 cm™!, and =6 cm™".
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FIG. 3. Time evolution of the dephasing function T'j(r) for
T=300 K, Qy=60 cm™!, Ay=3 cm™' and (a) ®=6 cm™,
(b) ®=8 cm™, (¢) ®=10 cm™!, (d) ®=12 cm™!, and (e)
®=14 cm™'.

decoherence factor that involves the diagonal part of J,(z),
only. The element Uy (r,r,1) is real and equal to unity at time
t=0. As time increases, it exhibits small amplitude oscilla-
tions that slowly converge to a finite value very close to
unity. By contrast, off diagonal elements are negligible and
their contribution is about three orders of magnitude smaller
than Uy(r,r,t). Note that as T decreases, the dominance of
the diagonal part of U/y(r) is enhanced. However, we have
verified that the diagonal hypothesis breaks down when both
Ay and B=2d/(), increase. In particular, a fully different
behavior occurs when B reaches a critical value B.=0.5 since
F[Uy(t)] becomes negative. The evolution operator is no
longer diagonal and off-diagonal elements contribute signifi-
cantly.

Consequently, the diagonal hypothesis works quite well
within the nonadiabatic weak-coupling limit. The diffusion
coefficient is thus defined in terms of both the dephasing
function I'j(7), the decoherence function ¢,(7), and the pa-
rameter 7(¢), whose behavior is presented in the following of
the text.

The time evolution of I'(#) is illustrated in Fig. 3. In the
short time limit, FT(I) is almost @ independent. It increases
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0.5
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0.2 ®=10 cm” )
®=8 cm’ ,
®=6 cm”
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0.0 : . : :
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FIG. 4. Time evolution of the decoherence function ¢;(¢) for
T=300 K, Q=60 cm™', A;=3 cm™' and (a) ®=6 cm™,
(b) ®=8 cm™, (¢) ®=10 cm™!, (d) ®=12 cm™!, and (e)
®=14 cm™.

from zero to reach a maximum value of about 2.0 cm™' for
t=Ty/4 indicating that dephasing occurs. Note that I"|(¢) de-
pends linearly on the coupling correlation function Cy(t) [see
Eq. (16)]. It thus scales as A} and it is proportional to the
Bose-Einstein distribution . As time increases, I'|(¢) devel-
ops damped oscillations and it becomes alternatively positive
and negative. In other words, a series of dephasing-rephasing
mechanisms takes place. However, two regimes occur de-
pending on whether ® is weak or strong. For weak ® values
[Figs. 3(a) and 3(b)], I'j(¢) shows a series of well defined
extrema that occur for specific times 1,=T/4+pTy/2,
V p=0,1,2,... These extrema take place when Re C(r)
vanishes indicating that both dephasing and phonon dynam-
ics are strongly correlated. In addition, the figures reveal the

occurrence of specific features for which I’ 1(r) vanishes (lo-
cal extrema and inflection points). These features are almost
regularly distributed according to a period 75/2 where
Tp=2m/4D is the time required to the exciton to cover a
lattice site. For strong ® values [Figs. 3(d) and 3(e)] I'j(z)
results from a frequency mixing involving , and 4®. It
shows low-frequency (Qy—4®) damped oscillations that
support a high-frequency (Qy+4®) small amplitude modu-
lation. Finally, V®, I'{(#) converges to zero indicating that
the coherence between neighboring local states is restored in
the long time limit. This convergence is a rather slow process
since I'](#) exhibits an algebraic decay and it typically scales
as 1/¢. At this step, let us mention that Fig. 3 displays results
for <15 cm™, ie., B <B,, only. We have verified that for
B>B,, I'|(7) tends to a positive finite value in the long time
limit so that the coherent nature of the exciton disappears.
The time evolution of the decoherence function ¢,(r) is
illustrated in Fig. 4. In the short time limit, ¢,(r) increases
with time from zero. It typically scales as #* until it reaches a
maximum value. The time required to reach that maximum
increases with @ and it ranges between 0.31 and 2.56 ps
when ® extends from 6 to 14 cm™'. Then, ¢,(¢) exhibits
damped oscillations around a finite value ¢;(). It finally
converges to that finite value in the long time limit. Note that
¢,(0) increases with ® and it is successively equal to 0.042,
0.051, 0.067, 0.108, and 0.320 for ®=6, 8, 10, 12, and
14 cm™'. Moreover, both the main period of the damped
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FIG. 5. Decoherence factor exp(—¢;()) vs B for =300 K and
Qy=60 cm™!. Ag=1 cm™! (circles), Ay=3 cm™' (squares) and
Ay=5 cm™! (triangles). Full lines represent the corresponding ana-
lytical expressions (see Sec. V).

oscillations as well as the time required to reach ¢,(%) in-
crease with ®. Finally, for B> B, (not drawn in Fig. 4), we
have verified that ¢,(r) does no longer converge to ¢, (%) but
it increases linearly with time.

The behavior of the decoherence factor exp(—¢;()) ver-
sus the adiabaticity is shown in Fig. 5. Note that full lines
represent analytical expressions that will be discussed in Sec.
V. Figure 5 reveals that the critical adiabaticity B.=0.5 dis-
criminates between two regimes. When B <B,., the decoher-
ence factor is a slowly decaying function of the adiabaticity
that remains close to unity. For instance, for Aj=3 cm™, it
is larger than 0.9 provided that B<<0.4. In that regime, the
coherent nature of the exciton survives in spite of its cou-
pling with the phonon bath. By contrast, when B=B,, the
decoherence factor suddenly vanishes indicating that pure
dephasing takes place. In that regime, as mentioned previ-
ously, ¢,(7) increases linearly with time so that the decoher-
ence factor vanishes in the long time limit.

The curve 7(f) versus time is displayed in Fig. 6. In the
short time limit, 7(r) is almost ® independent. It increases
from zero to reach a maximum value for r=T7,/2, whose
amplitude increases with both 7 and A,. As time increases,
7(r) decreases and finally converges to a negative finite
value. However, for weak ® values [Figs. 6(a) and 6(b)], it
exhibits specific features (extrema, inflection points, etc.)
that are regularly distributed according to both periods T(/2
and Tg/2. By contrast, for strong ® values [Figs. 6(d) and
6(e)], n(tr) shows low-frequency (Q2y—4®d) damped oscilla-
tions that support a high-frequency (Qy+4®) small ampli-
tude modulation. Finally, in the long time limit, 7(¢) tends to
a negative finite value 7(%) which decreases with ®. For
instance, for Ay=3 cm™!, 7(») is successively equal to
—-0.038, —0.042, —0.048, —0.059, and —0.091 for ®=6, 8§, 10,
12, and 14 cm™!. Moreover, 7() decreases with both T and
Ay. For ®=6 c¢cm™' and T=300 K, it is successively equal to
—-0.004, —-0.017, —0.038, —0.068, and —0.106 for Ay,=1, 2, 3,
4, and 5 cm™'. Note that we have verified that a singular
behavior takes place when ® reaches 15 cm™', i.e., when
B=B,. In that case, 7(r) does no longer converge to a finite
value but it decreases with time.

The time evolution of the diffusion coefficients is shown
in Fig. 7 for ®=6 cm™'. In that case, numerical simulations
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FIG. 6. Time evolution of the #x(r) for T=300 K,
0y=60 cm™!, Ay=3 cm™! and (a) ®=6 cm™!, (b) ®=8 cm™’, (c)
®=10 cm™, (d) =12 cm™', and (e) P=14 cm™.

have been carried out to check that both Egs. (14) and (18)
lead to the same D(r) values. Figure 7(a) shows that the band
diffusion coefficient Dg(f) is almost A, independent. More-
over, calculations performed at different temperatures have
revealed that Dy(¢) is also temperature independent. In fact,
Dg(1) increases linearly with time and it behaves as
Dy(t)=2d?%. In a marked contrast, the cross-diffusion coef-
ficient D(t) strongly depends on both T and A [Fig. 7(b)].
In the short time limit, it decreases from zero according to a
linear law that supports a small amplitude high-frequency
modulation. The larger are A, and 7, the faster is the decay
of D(t) and the larger is the amplitude of the modulation. As
time increases, the modulation disappears after a few ps so
that D(r) decreases linearly with time. As shown in Fig.
7(c), the full diffusion coefficient D(#) is rather insensitive to
the modulation exhibited by D(¢). This feature results from
the fact that |D(¢)| is about one order or two orders of mag-
nitude smaller than Dg(z). In analogy with the behavior of
Dg(1), D(t) increases with time according to a linear law

D(t)zZCIA)Zt. This result reveals that the exciton propagates
coherently along the lattice according to an effective hopping

constant & that is different from the bare hopping constant

d.
In Fig. 8, the variation of & with respect to B is shown for
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FIG. 7. Time evolution of the diffusion coefficients (a) Dgl(2),
(b) D) and (c) D(r) for T=300 K, =60 cm™', and
®=6 cm™'. Ay=1 cm™' (full lines), Ay=2 cm™!(long dashed
lines), Ay=3 cm™' (short dashed lines) and Ay=4 cm™!'
(dotted lines).

different A, values and for 7=300 K. Note that full lines
refer to analytical expressions which will be presented in

Sec. V. For all non vanishing A values, d is always smaller
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FIG. 8. Effective hopping constant & vs B for T=300 K and
Qy=60 cm™'. Ag=1 cm™! (circles), Ay=3 cm™' (squares) and
Ap=5 cm™! (triangles). Full lines represent the corresponding
analytical expressions (see Sec. V.).
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than ® and it slightly decreases with both Ay and 7. For

instance, for ®=6 cm™!, d is successively equal to 5.9871,
5.9484, 5.8834, 5.7911, and 5.6703 cm™' for Ay=1, 2, 3, 4,
and 5 cm™!. For small B values, i.e., provided that B<<0.4,

disa slowly decaying function of the adiabaticity that typi-

cally scales as CIAD(B):(IA)(O)—aBZ. The parameter « increases
with both Aj and 7. In the very weak-coupling limit, i.e., for

Ag=1 cm™!, @ almost vanishes and $=~0.99% when B ex-

tends from O to 0.4. By contrast, when Ay=5 cm™!, O re-
duces from 0.95® to 0.91P when B extends from O to 0.4.
When B reaches B,, a different behavior takes place since the

smaller is the difference B.— B, the faster is the decay of o
with respect to B. This feature is enhanced by both A, and 7.
Nevertheless, at the critical point, decoherence takes place so
that D() does no longer increase linearly with time. It is thus
impossible to define an effective hopping constant by fitting
the curve D(f) versus time.

V. DISCUSSION AND INTERPRETATION

The numerical results have revealed that the diagonal hy-
pothesis works quite well to characterize the exciton-phonon
dynamics within the nonadiabatic weak-coupling limit. An
accurate description of the physics is thus obtained from the
knowledge of the time-dependent dephasing function. In that
context, we have shown that the dephasing function tends to
zero in the long time limit indicating the absence of the
exciton diffusivity. The exciton propagates freely along the
lattice as if it was insensitive to the phonon bath. Keeping its
wavelike nature, it provides a coherent energy transport ac-
cording to an effective hopping constant that remains smaller
than the bare hopping constant. This motion is characterized
by a diffusion coefficient that increases linearly with time.

Although these features are similar to those observed
within the Frohlich model,* the coherence survival within
the Holstein model does not result from the occurrence of a
single dephasing-rephasing mechanism. Indeed, the oscilla-
tions of the dephasing function reveal that the coherence is
kept because the exciton experiences a series of dephasing-
rephasing processes. To understand this feature in a more
detailed way, a special attention is first paid to characterize
the physics described by the dephasing function. Then, both
the time evolution of the diffusion coefficient and the nature
of the effective hopping constant will be discussed.

A. Origin of the coherence survival

In a general way, I'}(7) describes the way the phonon bath
modifies the coherence between neighboring states |x) and
|x = 1). According to Eq. (16), it exhibits two contributions
whose physics can be explained as follows. At time =0, the
exciton on a site x interacts with the phonons. It excites the
xth local oscillator which develops coherent oscillations with
frequency (). In the same time, the exciton propagates and
its quantum state becomes a coherent superimposition in-
volving |x) and |x = 1). At time ¢, two mechanisms affect the
coherence of that superimposition. First, the weight of the
state |x) is modified, and consequently its phase relation with
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|x = 1) is perturbed, if a coupling occurs between |x) and the
x th local oscillator. This coupling depends on the probability
|G,.(1)]* to observe the exciton on site x at time # given that
it was on site x at r=0. Moreover, it depends on the ampli-
tude of the xth local oscillator which is given by the corre-
lation function C(f). Then, in addition to the coupling me-
diated by the exciton Hamiltonian, the phonon bath induces
correlations between |x) and |x = 1). These correlations de-
pend on both the ability of the exciton to reach the state
[x+1) at time 7, ie., |G+ (f)’, and the ability of the
phonons to interact with the state |x) at time ¢, i.e., Cy(t).
In that context, a moment’s reflection will convince the

reader that the time derivative FT(t) is a correlation function
that measures the system memory at time 7 and on site x of
the initial exciton- phonon interaction. This memory function
involves the bath memory through its dependence with re-
spect to Cy(z). Moreover, it depends on the transfer function
P(t):Jé(2<I>t)—J%(2(I)t), i.e., the difference between the ex-
citon density on site x and on site x = 1, which accounts for
the time spent by the exciton in the interacting region. It is
thus defined as

I7(r) = 2A5(2n + 1)cos(Q1) P(r). (20)

When ®=0, P(r)=1 V¢ indicating that the exciton is im-
mobile. Therefore, the system memory of the initial interac-
tion reduces to the lattice memory. It thus oscillates accord-
ing to the phonon frequency and a series of memory revivals
takes place periodically with period T,. Over a single period,
two mechanisms occur. Over the first half of the period T,
the memory disappears giving rise to a positive I'](¢) value.
A dephasing process takes place. However, over the second
half of the period T, the memory recurs so that I'](z) be-
comes negative. A rephasing occurs that exactly compensates
the previous dephasing. Consequently, the exciton experi-
ences a series of dephasing-rephasing processes so that it
keeps its coherent nature over an infinite time scale.

For non vanishing ® values, the physics is more complex
because the memory function depends on the transfer func-
tion. To understand this feature, let us perform a Fourier

analysis. To proceed, let 13(w) denote the Fourier transform
of P(t). It vanishes if |w|>4®. Otherwise, it is expressed in
terms of the Legendre function of the second kind Q,(z) as®!

) | » \2 o \?
P(“’)=7T_q)[Q‘“2<1_<4CI>> >_Q1/2<1_<4¢> )]
(21)

As illustrated in Fig. 9, ﬁ(w) exhibits a continuous band
which extends from —4® to +4®. At the band edges, it
reduces to 1/® whereas it is equal to 2/7® at the band
center. The continuous nature of that band gives rise to an
irreversible decay of P(¢) which exhibits damped oscillations
whose frequency is about 4®, i.e., half the bandwidth. To
illustrate this feature, let us approximated Eq. (21) in terms
of the rectangular function rect(z)=1 Vze[-1,1] as
f’(w)xrect(ﬁ)/cb. As a result, P(t)=(4/)sin c(4®r)
where sin c(z)=sin(z)/z is the sine cardinal function. It
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FIG. 9. Fourier transform of the transfer function (open circles).
The full line represents the approximate expression given by Eq.
(28).

shows oscillations with frequency 4® and whose amplitude
decays as 1/¢.

Combining Egs. (20) and (21), it is straightforward to
show that the spectrum of the memory function involves two
bands symmetrically located around —(), and +€),. Since the
bandwidth of these two bands is equal to 8P, they do not
overlap provided that Q,>4®, i.e., B<B,. Therefore, the
Fourier transform of the memory function being an even
function, Eq. (20) can be rewritten as

I"]k(t) = %TAS(ZnO + I)J dwﬁ(a) —Qp)cos(wr), (22)
D

where D defines the range w e [Qy—4P, Q,+4P]. Equa-
tion (22) shows that the memory function reduces to the sum
of oscillating functions whose frequencies belong to a finite
bandwidth band. Interferences take place between the differ-
ent Fourier components of that sum so that the memory func-
tion finally vanishes in the long time limit. In other words,
the system loses the memory of the initial interaction be-
cause the exciton leaves the interacting region due to its de-

localization along the lattice. Note that when P(w) is ap-
proximated by a rectangular function, Eq. (22) yields

Ii(r) = %Aé@no + 1)cos(Qqt)sin c(4dt). (23)

According to Eq. (23), the system memory disappears over a

time scale of about Tx=27/4®. Moreover, it vanishes when

both t=Ty/4+pTy/2, Vp=0,1,2,..., and t=kTy/2,

Vk=1,2,.... These specific times lead to the features (well

defined extrema, local extrema and inflection points) that

have been observed in the time evolution of I'{(#) (Fig. 3).
From Eq. (22), I'[(r) can be rewritten as

sin(wt)

(0 = ::Ag(zno +1) f dwP(w— Q) (24)
D

Similarly to the behavior of the memory function, I'j(7) is the
sum of sine functions whose frequencies belong to a finite
bandwidth band centered around (),. Destructive interfer-
ences occur so that FT(t) tends to a constant value whose
amplitude is defined in terms of the zero-frequency compo-
nent of the spectrum of the memory function. From Eq. (22),
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this value is given by F’f(oo)=A(2)(2no+1)I3(Qo). Therefore,
within the nonadiabatic limit, i.e., provided that ,>4®,
Eq. (21) shows that I'j(°) vanishes indicating that decoher-
ence does not take place. In other words, the coherent nature
of the exciton remains provided that the phonon frequency is
outside the spectrum of the transfer function. Nevertheless,
the finite nature of the bandwidth gives rise to oscillations in
the time evolution of the dephasing function. To illustrate
this feature, an approximate expression of I'{(#) can be ob-
tained by integrating Eq. (23) as

2
IMOES %(2n0+ D[Si(Q,1) = Si(Q_1)], (25)

where Si[z] is the Sine integral function’' and where
Q. =Qy*4®P. When Q;>4d, I'|(r) reduces to the differ-
ence between two Sine integral functions. It thus tends to
zero in the long time limit by exhibiting damped oscillations
involving both a high-frequency contribution (y+4®) and
a low-frequency contribution (y—4®). Note that Eq. (25)
works quite well to represent the behavior of I'}(7) displayed
in Fig. 3.

From a physical point of view, the absence of dephasing
in the nonadiabatic limit can be understood as follows.
Dephasing occurs if the phase difference between neighbor-
ing local states accumulated during the correlation time of
the exciton-phonon interaction exceeds 2. Within the
Fohlich model, this correlation time was the time required to
the acoustic phonons to cover a lattice site. In a marked
contrast, in the Holstein model, this correlation time is an
intrinsic property of the exciton. Indeed, as shown previ-
ously, the system memory of the initial interaction disappears
after a time scale of about Ty=27/4®, i.e., the time needs to
the exciton to leave the interacting region. When 75> T, the
correlation time is sufficiently long so that the exciton- pho-
non dynamics remains sensitive to the coherent nature of the
lattice vibrations. Therefore, similarly to the case ®=0, the
exciton experiences a series of dephasing-rephasing pro-
cesses. Although each rephasing does no longer exactly com-
pensate the previous dephasing, the coherence survives be-
cause the phase difference accumulated during the
correlation time remains smaller than 277. Note that the con-
dition T>T, gives rise to y>4®d, i.e., B<B.,.

When Q,<4®, I'{(r) mainly behaves as the sum of two
Sine integral functions. It thus tends to a finite positive value
by exhibiting damped oscillations. In fact, when Tp<T,
(Qy<4®), the exciton is so fast that the coherent nature of
the phonons does not have enough time to manifest itself.
Dephasing occurs in the short time limit without any rephas-
ing process. The phase difference accumulated during the
correlation time becomes larger than 27 so that the coher-
ence of the exciton disappears.

The coherence survival within the nonadiabatic limit is
characterized by the behavior of the decoherence function
¢,(¢) in the long time limit. Therefore, by integrating Eq.
(24), ¢,(r) is written in terms of the Fejér Kernel
K (w)=[sin(7rw7)/ moT]? as>?
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( )

(1) = ny+ 1)J doP(w- QK (). (26)

In the short time limit, ¢,(r) scales as Ad(2ny+1)s?,
as displayed in Fig. 4. However, from the standard
properties of the Fejér Kernel, it is easy to show that

¢1(t)/t—>A (2ng+ l)P(QO) when t— . We thus recover the
expression of I'j(%) which vanishes when the phonon fre-
quency is outside the spectrum of the transfer function. This
result shows that ¢;(f) converges to a finite value defined as
(see Fig. 4)

by () = —(2n0+1) f de(“’ D) o)

To our knowledge, there is no analytical expression of Eq.
(27). Nevertheless, it is possible to extract an approximate
expression for ¢,(e) by using the following approximation
for the Fourier transform of the transfer function (full line in
Fig. 9)

Is(w) ~ éreot(%){l - (l - %)cos(%)]. (28)

Therefore, inserting Eq. (28) into Eq. (27) gives

L 1-ym (1)} 29
(B/B)2 T f4B ’ )

where S=(Eg/Q)(2no+1) is the so-called coupling constant
expressed in terms of the small polaron binding E B:Aé/QO
(Ref. 42) and where f(x) is defined in terms of the Sine and
Cosine integral functions as®!

f(x) = x*[Ci(x — 7/2) — Ci(x + 7/2) Jsin(x) — x*[Si(x — 7/2)
— Si(x + 7/2)]cos(x). (30)

As illustrated in Fig. 5 (full lines), Eq. (29) yields results in
a very good agreement with the numerical observations. It
reveals that ¢,() involves the product between two
functions. The first function is a characteristic of the
exciton-phonon interaction that depends on both the
coupling strength E/{), and the temperature. By contrast,
the second function only involves the adiabaticity. Therefore,
different regimes occur depending on whether B is
weak or close to B,.. For B=0, ¢;(*)~1.97S indicating that
the decoherence factor is typically about the square of the
dressing factor exp(—S). For non vanishing B values,
¢(0) =S[1.97+17.25B%] in the weak adiabaticity limit, i.e.,
provided that B<<0.4. Finally, when B reaches B,, a diver-
gence takes place and ¢,() typically scales as |B,—B|™".
This divergence originates from a resonant effect that arises
because the phonon frequency belongs to the spectrum of the
transfer function. The decoherence function does no longer
converge to a finite value but it increases linearly with time
indicating that dephasing-limited coherent motion occurs.

-]

B. Diffusion coefficient and effective hopping constant

The TCL-GME approach provides a time resolved picture
of the influence of the exciton-phonon interaction. It reveals
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that the coherent nature of the exciton results from a series of
dephasing-rephasing mechanisms. These features prevent the
exciton diffusivity provided that the system memory is suf-
ficiently long when compared with the period of the lattice
vibrations. In the language of the second quantization, this
series of dephasing-rephasing mechanisms corresponds to a
series of virtual-phonon exchanges during which a phonon is
first emitted and then immediately reabsorbed. This dressing
of the exciton by virtual phonons induces a renormalization
of the exciton energy that is described by the parameter 7(z).
In that context, after a time scale of about Ty, I'(r) almost
vanishes and 7(¢) converges to a constant value 7() (see
Figs. 3 and 6). Therefore, Eq. (18) can be solved easily as

D(1) = 2®7[1 + 5(0)]r. (31)

Equation (31) shows that the exciton propagates as if it was
insensitive to the phonon bath. It keeps its wavelike nature
and a coherent energy transfer takes place along the lattice.
The corresponding time-dependent diffusion coefficient in-
creases linearly with time, as observed in Fig. 7. This coher-
ent motion is characterized by the effective hopping constant
d=P\1+5() where the parameter 7() is given by Eq.
(19) in the long time limit. After simple algebraic manipula-
tions, this equation yields

7() = 2S&(B), (32)
where &(B) is defined as

1 1
_EQ—1/2<§_1):|- (33)

As shown in Fig. 8 (full lines), Eq. (32) leads to an effective
hopping constant in a very good agreement with the numeri-
cal results. The correction to the bare hopping constant is
defined in terms of the product between two functions. The
first function, equal to 2S, accounts for the exciton-phonon
coupling strength that depends on both the small polaron
binding energy and the temperature. By contrast, the second
function &(B) involves the adiabaticity B, only.

When, B=0, £0)=-1 so that 7()=-2S. In the weak-
coupling limit, the effective hopping constant reduces to

1
E(B)=E{1

d=~d(1-5) so that we recover the results given by the
small polaron theory, i.e., b= exp(—=S)=®(1-S). Note
that, at room temperature, S=2F BkBT/Qg so that @ de-
creases with both the coupling strength and the temperature,
as observed in Fig. 8. As B increases, &B) decreases and
7(0) scales as 7() ~—-25(1+9B2/4). The effective hopping
constant decreases as the adiabaticity increases. It behaves as

é/@:(l —S§)—2.255B2, as observed in Fig. 8. Note that b is
not proportional to the invert of the effective mass of the
exciton otherwise we would obtain a linear dependence with
respect to the adiabaticity.*’*? In fact, it accounts on the
modification of the exciton bandwidth that originates in the
coupling with the phonons. We thus recover the results given
by the standard perturbation theory in which the exciton
bandwidth scales as B? in the nonadiabatic weak-coupling
limit.*! Finally, when B reaches B, &B) exhibits a logarith-
mic divergence.’! This divergence occurs when the phonon
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frequency belongs to the spectrum of the transfer function.
Since decoherence takes place, D(¢) does no longer increase
linearly with time so that it is impossible to define an effec-
tive hopping constant.

VI. CONCLUSION

In this paper, a TCL-GME has been established for study-
ing the dynamics of a narrow-band exciton coupled with
optical phonons. Within the nonadiabatic weak-coupling
limit, the numerical results have revealed that the diagonal
hypothesis works quite well. An accurate description of the
exciton-phonon dynamics was thus obtained from the knowl-
edge of the so-called time-dependent dephasing function. We
have shown that the dephasing function tends to zero in the
long time limit by exhibiting damped oscillations that char-
acterize a series of dephasing- rephasing mechanisms. In-
deed, within the Holstein model, the correlation time of the
exciton-phonon interaction is an intrinsic property of the ex-
citon. It is defined as the time needs to the exciton to cover a
few lattice sites. Therefore, in the nonadiabatic limit, this
correlation time is sufficiently long so that the exciton-
phonon dynamics remains sensitive to the coherent nature of
the optical phonons. Because the phonon memory recurs pe-
riodically, the exciton experiences a series of dephasing-
rephasing processes. Although each rephasing does not ex-
actly compensate the previous dephasing, the coherence
survives because the phase difference accumulated during
the correlation time remains smaller than 27. Consequently,
the exciton propagates freely along the lattice as if it was
insensitive to the phonon bath. Keeping its wavelike nature,
it yields a coherent energy transport according to an effective
hopping constant that remains smaller than the bare hopping
constant. This coherent motion is characterized by a diffu-
sion coefficient that increases linearly with time.

This scenario provides a time resolved picture in real
space of the influence of the exciton-phonon interaction in
momentum space. It reveals that the series of dephasing-
rephasing processes corresponds to the virtual emission ab-
sorption of a single phonon. These virtual exchanges prevent
the exciton scattering between Bloch states and they favor a
coherent energy transfer. Moreover, our time resolved ap-
proach yields an analytical expression for the effective hop-
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ping constant that governs this coherent motion. However,
this scenario applies in the weak-coupling limit, only. In-
deed, if the exciton-phonon coupling strength increases, mul-
tiphonon exchanges are no longer negligible. Scattering be-
tween Bloch states takes place so that the exciton is
characterized by a finite lifetime in momentum space. In real
space, the coherence disappears and diffusion occurs. In that
case, instead of working with the bare exciton basis, it is
more efficient to investigate the transport properties within
the small polaron formalism.?’?

To conclude, let us mention that a special attention will be
paid in forthcoming works to address fundamental questions.
First, in the present study, we have restricted our attention to
the nonadiabatic limit for which the diagonal hypothesis
works quite well. However, when (), <4®, this hypothesis
breaks down and the understanding of the transport proper-
ties does not reduce to the knowledge of the dephasing func-
tion. Therefore, the present approach must be generalized to
accurately describe the exciton-phonon dynamics in the vi-
cinity of the transition, i.e., when B=~B,, as well as in the
adiabatic limit B> B,. for which the Holstein model tends to
the Anderson model with weak disorder. Then, we have
shown in Ref. 43 that the exciton diffuses incoherently when
the anharmonic nature of the acoustic phonons is taken into
account. Indeed, anharmonic phonons carry spatial correla-
tions over a finite length scale, only. Therefore, in the
dephasing-rephasing mechanism that characterizes the
Frohlich model, the rephasing does not exactly compensate
the dephasing so that dephasing-limited coherent motion oc-
curs. In that context, the fundamental question arises whether
this scenario is modified when the exciton is coupled with
optical phonons which do not propagate whether they are
harmonic or not. Finally, additional ingredients must be in-
cluded to simulate the dynamics of more realistic systems.
For instance, to characterize the vibrational energy flow in
a-helices and in lattices of H bonded peptide units, disorder
and size effect must be taken into account. Indeed, since the
amino acid vary in mass, shape, charge, hydrogen-bonding
capacity and chemical activities, a biopolymer is clearly an
inhomogeneous lattice.’ Moreover, most proteins have com-
pact and globular shapes due to frequent reversals of the
direction of their polypeptide chains indicating that most
proteins involve rather small a-helices.>
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