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We present a theoretical analysis of the phonon transport and guiding of acoustic waves in a phononic crystal
made up of a square array of cylindrical dots, which is deposited on a thin homogeneous plate. With appro-
priate choice of the geometrical parameters, this structure can display several gaps, one of them being well
below the Bragg gap. With the help of the finite difference time domain method, we calculate the transmission
coefficient vs the frequency and demonstrate a good agreement with the dispersion curves. We show the
possibility of guided modes inside an extended linear defect created either by removing one row of cylinders
or by changing the height or the materials constituting the dots in a row. The wavelengths of the waves
transmitted in the low-frequency gap are about ten times larger than the width of the waveguide. We discuss the
transmittivity of each confined mode appearing in the band gap as well as the conversion in the polarization of
the transmitted waves which can occur more or less significantly.
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I. INTRODUCTION

Phononic crystals are heterogeneous materials constituted
by a periodical repetition of inclusions in a matrix
background.1 Associated with the possibility of absolute
band gaps in their band structure,2–5 these materials have
found several potential applications, especially in the field of
confinement, waveguiding, and filtering6–10 as well as in the
field of sound isolation.11–16 In addition to bulk phononic
crystals, recent works dealt with the study of surface modes
of semi-infinite two-dimensional �2D� phononic crystals.17–21

During the last few years, a great attention has been devoted
to investigation of the dispersion curves of acoustic waves in
a free or supported plate for one-dimensional22–24 or 2D
�Refs. 25–31� phononic crystals. They can operate at the
wireless telecommunications frequencies �around 1 GHz�
when the lattice parameter is in the micron range.32–34 Re-
cently, we proposed a new type of finite-thickness phononic
crystals constituted by a periodic array of cylinders, which
are deposited on a free standing homogeneous plate.35 We
investigated the acoustic-wave dispersion in this structure
and unraveled the conditions for existence of absolute band
gaps. We highlighted the possibility of a so-called “low-
frequency gap,” for frequencies well below the Bragg gap
�where the wavelengths in all the constituent materials are
much smaller than the phononic crystal period�, if the geo-
metrical parameters of the structure are chosen appropriately.
At higher frequencies, one or more absolute band gaps ap-
pear whose number depends on the height of the cylinders.
This structure was also studied independently by Wu et
al.36,37 However, the calculation of the transmission coeffi-
cient with the finite difference time domain �FDTD� method
remained to be done.

From the calculation of both transmission coefficients and
dispersion relations, the purpose of this paper is to study the
waveguiding effects through different types of linear defects
in this phononic crystal. Such waveguides are obtained either

by removing a row of dots or by replacing in a row the
materials or geometrical parameters of the dots. In each case,
we present a detailed study of the confined modes, the trans-
mitting and nontransmitting characters of the corresponding
bands, and the possibility of polarization conversion, which
could frequently occur. The flexibility of tailoring the acous-
tic properties of phononic crystals, especially those utilized
for waveguide design, makes them particularly suitable for a
wide range of applications from transducer technology to
filtering and guidance of acoustic waves. Moreover, it should
be also pointed out that knowledge and engineering of
phononic band structures is also a necessary step to investi-
gate heat transport in heterogeneous nanostructured
materials38,39 since the existence of gaps and/or flat bands
prohibits the propagation of phonons in certain frequency
ranges.

The paper is organized as follows. In Sec. II, we present
the model of the perfect phononic crystal plate and FDTD
method used for calculation of both dispersion curves and
transmission spectra. In Sec. III, we investigate the transmis-
sion of an incident longitudinal mode S0 through three kinds
of geometrical waveguides obtained, respectively, by remov-
ing one row of cylinders �Sec. III A�, changing the height of
the cylinders �Sec. III B�, and changing the nature of the dots
in the guide �Sec. III C�. The conclusions are given in Sec.
IV.

II. MODEL AND METHOD OF CALCULATION

Figure 1�a� is a scheme of the phononic crystal which is
studied in this paper, namely, a heterostructure made up of a
square array of steel cylindrical dots of radius r and height h,
deposited on a thin homogeneous plate of silicon. The z axis
is assumed to be perpendicular to the plate and parallel to the
cylinders. We define the lattice parameter a of the periodic
array as equal to 1 �m and the filling factor �, given by
�=�r2 /a2, equal to 56.4%. The thickness of the plate is
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denoted by e and takes the value e=0.2 �m. The materials
composing the dots and plate are assumed to be of cubic
symmetry with their crystallographic axes oriented along the
coordinate axes x, y, and z. The elastic constants and mass
densities of the materials involved in the calculations are
given in Table I.

The FDTD method has been proven12,40 to be an efficient
method to obtain the dispersion curves and transmission
spectra of phononic crystals. This method solves the elastic
wave equations by discretizing time and space and replacing
derivatives by finite differences. The space is discretized in
x, y, and z directions using a mesh interval equal to
�x=�y=�z=a /30. The equations of elasticity are solved
with a time integration step �t=�x / �4cl�, where cl is the
highest velocity involving in the structure and number of
time step usually equal to 2,19 which is the necessary tested
time for good convergence of the numerical calculations.

The dispersion curves were calculated using �i� a three-
dimensional �3D� unit cell �a .a .b�, which is repeated in the
three spatial directions and �ii� the Bloch theorem, which
introduces the wave vector k. In the z direction, the length of
the unit cell b is chosen so that the plate and cylinder as well
as a thin layer of vacuum on both sides are embedded in
order to decouple the interaction between neighboring cells.
For each component of the wave vector �kx and ky� parallel to
the plate, an initial random displacement is applied inside the
unit cell at the origin of time. Then, the displacement field is
recorded at many positions in the unit cell as a function of
time and finally, Fourier transformed to obtain the eigenfre-
quencies of the structure for the chosen wave vector. There-
fore, the band structures are computed in terms of frequency
as a function of the wave vector and plotted along the prin-
cipal directions of the 2D irreducible Brillouin zone ��XM�.

The transmission spectra through perfect or defect-
containing phononic structures were computed using a 3D
FDTD code. Our calculation is performed in a 3D box with
the propagation along the y axis. The box is finite along y
and composed of a phononic crystal containing seven or ten
cylinders, sandwiched between an ingoing and a outgoing
media, which are two homogeneous plates of thickness e.
Perfect matching layer �PML� conditions are applied at the
boundaries of the box along the y direction. Along the x
direction, the structure is periodic, which means that it con-
tains one unit cell when dealing with a perfect phononic
crystal. However, the waveguide is studied with a supercell
of five periods to avoid the interaction between neighboring
guides. Along z, a thin layer of vacuum is added on both
sides of the phononic structure in order to decouple the in-
teraction between repeating periodical cells. A broadband
wave packet is initiated from the homogeneous plate in front
of the phononic crystal. This wave is a longitudinal pulse,
with a polarization and Gaussian profile along the y axis but
uniform in the x and z directions. The transmitted signal is
recorded as a function of time at the end of the perfect
phononic crystal and integrated in the �x and z� plane for
each component Ux, Uy, and Uz of the displacement field.
For the waveguide structures, the throughput signal is inte-
grated at the exit only over the cross section of the wave-
guide instead of the whole period in the x direction as it was
the case for the perfect phononic crystals. We note that, with
this procedure, the maximum value of the transmission can
exceed the unity. Finally, the signals are Fourier transformed
and normalized by an equivalent signal propagating through
a single homogeneous silicon slab to yield the transmission
coefficient. In practice, the Ux component vanishes so that

TABLE I. Physical characteristics of the used materials: � is the
density and C11, C12, and C44 are the three independent elastic
moduli of cubic structure.

Constant Silicon Steel Aluminum

��kg /m3� 2331 7780 2730

C11�N /m2� 16.57	1010 26.4	1010 10.82	1010

C12�N /m2� 6.39	1010 10.2	1010 5.12	1010

C44�N /m2� 7.962	1010 8.10	1010 2.85	1010
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FIG. 1. �Color online� �a� Phononic crystal made of a square
lattice of steel finite cylinders deposited on a homogeneous silicon
plate. In our calculations, the length of the phononic crystal is ten
periods. The geometrical parameters are a=1 �m, h=0.6 �m, and
e=0.2 �m. The red arrow symbolizes the incident longitudinal
pulse. �b� Middle: band structure calculated along the high-
symmetry axes �X and �M of the Brillouin zone. From each side of
the band diagram: transmitted curves of the longitudinal incident
wave for the polarization Uy �black solid line� and for the polariza-
tion Uz �red dashed lines�. The red �blue� area corresponds to the
position of the low �high� absolute band gap. �c� Eigenmode calcu-
lation at the point A, defined by the coordinates �ka /�=0.474 and
f =2.312 GHz�. The blue �red� color corresponds to the lower
�higher� value of the displacement field modulus while the white
color corresponds to a displacement equal to zero but does not
appears in the color bar.
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the transmission spectra will be obtained only for the Uy and
Uz components.

For more efficiency, the code has been parallelized using
message passing interface computation. The calculations
were performed on an ALTIX XE 240 cluster from silicon
graphics with 16 CPUs.

The band structure is presented in Fig. 1�b� in the fre-
quency range �0 and 2.5 GHz� along the high-symmetry axes
�X and �M of the first Brillouin zone. The choice of the
geometrical parameters ensures the existence of two absolute
band gaps extending, respectively, from 0.613 to 0.668 GHz
and from 1.615 to 2.139 GHz. It should be noticed that at the
frequency of the lowest band gap the wavelengths of the
longitudinal and transverse waves in the silicon membrane
are 13 and 9 times larger than the period of the phononic
crystal. The higher gap appears in the Bragg frequency re-
gime, where these wavelengths are about three or four times
the lattice parameter. The origin and behavior of these gaps
as a function of the geometrical and physical parameters of
the whole structure have been already studied in a preceding
paper.35 Our first results, shown in the diagrams of Fig. 1�b�,
are the computing transmission spectra in the directions �X
and �M of the Brillouin zone, which are displayed on each
side of the central band diagram. In the transmission spectra,
we differentiate the polarization Uy �black solid lines� and Uz
�red dashed lines� of the detected signal. We can notice a
good agreement between the transmission and dispersion
curves and, in particular, the positions of the gaps. The num-
ber of Fabry-Perot oscillations appearing in the transmission
spectra below 1.5 GHz is in accordance with the number of
unit cells in the phononic crystal along the y direction. At
frequencies above 2.1 GHz, we can observe an isolated
branch with a negative slope which contributes to a
transmission only for the polarization Uz normal to the plate
while the detected signal for the component Uy is negligible.
We made the calculation of one eigenmode along this
branch, at the point A defined by the reduced wave number
ka /�=0.474 and frequency f =2.312 GHz. This eigenmode,
sketched in Fig. 1�c�, presents a localization of the acoustic
energy in the corners of the unit cell for the normal compo-
nent Uz. In accordance with the polarization of this branch,
the incident longitudinal mode has been partially converted
into a normal polarized signal. This effect shows that an
incident longitudinal symmetric pulse which is initiated in-
side the plate of thickness e can be partially converted into a
transmitted signal perpendicular to the plate. Such property
can be useful for the observation of the transmitted field with
a laser interferometric technique, which is sensitive to the
component of the displacement field normal to the plate.

III. LINEAR WAVEGUIDES

A. Conventional line-defect waveguide

The traditional way of creating a linear defect is to re-
move a row of dots. In our calculation, the length of the
waveguide is assumed to be ten periods of the phononic
crystal and the width of the waveguide, wg, has been consid-
ered as a variable �Fig. 2�a��. Figure 2�b� gives the transmis-
sion spectra for both components Uy and Uz of the displace-

ment field through the waveguide with wg=1.2 �m. As a
comparison, we also give the transmission coefficient
through the perfect crystal in red dashed lines. The shaded
red and blue areas, respectively, represent the two band gaps.
Increasing wg from 0 to 1.2 �m leads to the emergence of
transmitted signals in the gaps, the case of wg=1.2 �m be-
ing presented in Fig. 2�b�. Beyond this value, the number of
confined modes in the band gaps increases too much, which
is not most suitable for filtering or demultiplexing applica-
tions. Looking at Fig. 2�b�, we observe a full transmission of
the acoustic waves within the higher gap �1.615 and 2.139
GHz� for the Uy component while the Uz component remains
weak. For the low-frequency gap �0.613 and 0.668 GHz�, the
opposite situation occurs, i.e., the transmitted signal has
mainly an Uz component. The transmission coefficients in
the pass band between the two gaps are also strongly per-
turbed by the presence of the waveguide.

To highlight the waveguiding properties through the gaps,
the FDTD computation was used to simulate a monochro-
matic source, first at the frequency f =1.751 GHz in the
higher gap and then at the frequency f =0.6284 GHz in the
lower gap �Fig. 2�c��. We display the computed displace-
ments in the �x and y� plane for a section in the middle of the
plate �z=e /2�. It is clearly seen that in both cases the inci-
dent wave propagates without attenuation and with a strong
confinement inside the waveguide. Only a slight amount of
energy leaks out of the waveguide.

The dispersion of the waveguide structure with
wg=1.2 �m is shown in Fig. 3�a�. In this diagram, the red
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FIG. 2. �Color online� �a� Schematic view of a conventional
line-defect waveguide; wg corresponds to the adjustable waveguide
width. The length of the phononic crystal is ten periods. �b� Black
solid lines: transmission coefficient recorded at the exit of the wave-
guide for the polarizations Uy and Uz. Red dashed lines: transmis-
sion through the perfect phononic crystal structure. �c� Left: planar
sections at the thickness z=e /2 of the displacement field distribu-
tion for the Uy polarization at the monochromatic frequency
f =1.751 GHz. Right: same as previously for the polarization Uz

and the monochromatic frequency f =0.6284 GHz. The red �blue�
color represents the positive �negative� contribution of the wave.
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dots represent the band structure of the perfect phononic
crystal for a supercell of five periods and the black dots the
band structure with the linear waveguide. In this latter case,
we can observe several modes inside both the low- and high-
frequency gaps, which correspond to the existence of defect
modes confined in the waveguide. Nevertheless, when com-
paring with the transmission spectrum, it seems that many of
these branches do not contribute to the transmission of the
incident longitudinal waves. We made a complete analysis of
the eigenmodes for different branches and found that, in the
higher gap, only one branch has the appropriate longitudinal
polarization in order to efficiently contribute to the transmis-
sion. The displacement field of this mode was calculated for
a reduced wave number ka /�=0.26 and frequency f
=1.778 GHz �point B in Fig. 3�a�� and is presented in Fig.
3�b�. The wave is well localized within the waveguide and
essentially exhibits a longitudinal displacement Uy whereas
the normal component Uz is almost equal to zero. For the
low-frequency gap, there are two localized branches existing
at low and high wave vectors, respectively. For the branch at
low wave vector, the polarization is mainly Ux and does not
contribute to the transmission. Figure 3�c� displays the dis-
placement field in the second branch associated with the
mode at the point C �ka /�=0.737 and f =0.6426 GHz�. We
can see that the mode is mainly polarized along z with a
weak longitudinal contribution along Uy. From this analysis,
we can understand that the branch at higher wave vectors
contributes to a transmission perpendicular to the plate.
These conclusions are in accordance with the transmission
spectra shown in Fig. 2.

As a summary, the transmission of a longitudinal incident
pulse through a conventional waveguide gives rise to a
mainly longitudinal wave in the range of the high-frequency
gap while a conversion to a wave with a normal component
to the plate occurs in the low-frequency gap.

B. Linear waveguide made up of dots of different height

In this section, we study a waveguide structure obtained
by changing the height of the dots along one row. We show,
more especially, the case where the height hg �Fig. 4�a�� is
smaller than that in the perfect crystal and is in a scale rang-
ing from 0.6 to 0.1 �m. The band-structure analysis reveals
that, when hg
0.4 �m, new localized modes appear inside
the gaps. Those defect branches shift toward the higher fre-
quencies as far as the height of the dots decreases.

Figure 4�b� displays the dispersion curves magnified in
the frequency range �1.2 and 2.5 GHz�. In this figure, the
black dots represent the band structure of the linear wave-
guide �h=0.2 �m� compared with the band structure of the
perfect phononic crystal �h=0.6 �m� represented by the red
dots. We can observe three guided modes inside the high-
frequency gap, among them we especially focus on the
branch, which crosses the whole frequency range of the gap.
Figure 4�c� presents the eigenmode corresponding to the
point D �ka /�=0.58 and f =1.885 GHz� on this branch. We
can observe that both components Uy and Uz of the displace-
ment field are represented and strongly localized within the
dot constituting the waveguide. In Fig. 5�a�, we present, for
the incident longitudinal pulse, the transmission coefficients
for the components Uy and Uz of the displacement field and
observe a similar magnitude of both components in the trans-
mitted waves. In this figure, the length of the waveguide is
assumed to be seven periods which is sufficient to have a
sharp drop of the transmission coefficient at the edges of the
gap. To complete the study, the propagation and confinement
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of the acoustic waves are represented using a displacement
field representation for the components Uy and Uz at the
incident monochromatic frequency f =1.698 GHz �Fig.
5�b��.

Figure 6�a� displays the dispersion curves and the corre-
sponding transmission spectra in the low-frequency range
�0.3 and 0.8 GHz� for hg=0.3 �m. The value of hg is chosen

in a way so that we obtain guided modes in the low-
frequency gap extending from 0.4147 to 0.668 GHz along
the �X direction. Nevertheless, we notice that this gap is
much wider than the absolute band gap because the lower
limit of the band gap along �M direction is 0.613 GHz. This
effect explains the existence of several peaks of transmission
inside the �X partial band gap �0.4147 and 0.613 GHz�,
which correspond to acoustic waves leaking out of the wave-
guide toward the �M direction. Therefore, this frequency
region is not very useful for guiding of confined modes. In
the frequency range of the absolute band gap �red shaded
area�, there is a transmitted signal around the frequency
0.6277 GHz for both Uy and Uz, with a higher transmission
coefficient for the longitudinal polarization. The correspond-
ing band diagram shows two confined branches. The branch,
which crosses the whole gap, has an Ux polarization and does
not contribute to the transmission. For the other branch, the
eigenmode at point E �ka /�=0.16 and f =0.6277 GHz� is
sketched in Fig. 6�b�. This mode is mainly polarized along y
but is again with a non-negligible component along z. The
first of these components is strongly localized inside the
guiding dots while the latter is less confined and penetrates
over the dots in the neighborhood of the waveguide. There-
fore, a good correspondence between the band diagram and
transmitted curve is obtained.

To summarize this section, the waveguide created by de-
creasing the height of the cylinders can transmit confined
modes inside both the high- and low-frequency band gaps. In
the former case, the incident longitudinal wave gives rise to
transmitted waves with components both parallel and per-
pendicular to the plates. In the latter case, the transmitted
wave has a main longitudinal component but also a smaller
normal component with a weaker confinement inside the
waveguide. A similar study can be performed if the height of
the cylinders is increased with respect to the one in the per-
fect crystal.

C. Linear waveguide made up of dots of different material

In this section, we assume that the waveguide is formed
from a row of dots made up of a different material than those
in the perfect crystal �Fig. 7�a��. We chose cylinders made up
of Si and Al in the waveguide to obtain propagation in the
higher and lower gaps, respectively.

In Fig. 7�b�, we show, in the frequency range �1.4 and 2.5
GHz�, both dispersion curves and transmission of Uy and Uz
components of the displacement field when the dots in the
guide are made up of Si. We can observe that the transmitted
waves contain both components. Among the three dispersion
curves existing in the band gaps, two have an Ux polarization
and should not contribute to the transmission. Only in one
branch the displacement field has Uy and Uz components as
illustrated for the point F situated at the wave number
ka /�=0.37 and frequency f =1.777 GHz. This is the only
branch contributing to the transmission.

Similarly, we report, in Fig. 8, the case of a waveguide
made up of aluminum dots, which is well adapted for the
propagating signal in the low-frequency gap. Here, the inter-
esting point is to have only one localized mode appearing in
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the gap �Fig. 8�a�� giving rise to a monomode waveguide.
The transmitted waves contain Uy and Uz components of the
displacement field. This conclusion is supported by the map
of the propagating confined field in the waveguide �Fig. 8�b��
at the frequency f =0.6311 GHz. It is worthy to remind that,
here, the wavelength of the wave transmitted through the
guide is more than ten times larger than the lattice parameter
of the phononic crystal. As a result, a waveguide whose
length is ten unit cells of the phononic crystal contains less
than one period of the confined mode.

IV. CONCLUSIONS

We developed a FDTD method to analyze phonon trans-
port and waveguiding though a phononic crystal made up of
cylindrical dots deposited on a thin homogeneous plate. With
an appropriate choice of the physical and geometrical param-
eters, existence of two absolute band gaps is ensured. The
first is in a frequency range where all wavelengths in the
silicon membrane are about ten times larger than the period
of the phononic crystal. The second falls in the Bragg fre-
quency regime. We showed that there is a good correspon-
dence between the transmission spectrum and dispersion
curves. Using both transmission and dispersion phonon cal-
culations, we studied propagation of the symmetric longitu-

dinal Lamb wave S0 through linear waveguides obtained ei-
ther by removing a row of dots or changing the nature or the
geometrical parameters of the dots in a row. In the first case,
the polarization of the transmitted wave remains mainly lon-
gitudinal in the higher band gap while a conversion to the
normal polarization occurs in the lower band gaps. When the
waveguide is obtained by changing the height of the dots in
a row, the transmitted wave contains both components of the
displacement field in the frequency range of the higher as
well as the lower gap. However, in the second, confinement
is better ensured for the longitudinal component. Finally, the
transmission can also be achieved through a waveguide
where the material constituting the dots is different from the
one in the perfect phononic crystal. The transmitted waves
travel with a good confinement in the guide and contain both
component of the displacement field. The advantage of this
case is to limit the number of defect modes inside each band
gap, which could be more suitable for filtering applications.
Results presented in this paper could be applied to the inno-
vative design of acoustic-wave devices for wireless applica-
tions.
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