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We calculate numerically the sizes S of jumps �avalanches� between successively pinned configurations of
an elastic line �d=1� or interface �d=2�, pulled by a spring of �small� strength m2 in a random-field landscape.
We obtain strong evidence that the size distribution, away from the small-scale cutoff, takes the form P�S�
= �S�

Sm
2 p�S /Sm� where Smª

�S2�
2�S� �m−d−� is the scale of avalanches, and � the roughness exponent at the depinning

transition. Measurement of the scaling function f�s�ªs�p�s� is compared with the predictions from a recent
Functional RG �FRG� calculation, both at mean-field and one-loop level. The avalanche-size exponent � is
found in good agreement with the conjecture �=2−2 / �d+��, recently confirmed to one loop via the FRG. The
function f�s� exhibits a shoulder and a stretched exponential decay at large s, ln f�s��−s�, with ��7 /6 in
d=1. The function f�s�, universal ratios of moments, and the generating function �e�s� are found in excellent
agreement with the one-loop FRG predictions. The distribution of local avalanche sizes S�, i.e., of the jumps
of a subspace of the manifold of dimension d�, is also computed and compared to our FRG predictions, and to
the conjecture ��=2−2 / �d�+��.
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I. INTRODUCTION

Elastic objects pinned by a random substrate are ubiqui-
tous in nature. The competition between elastic restoring
forces and quenched disorder results in multiple metastable
states. Upon applying an external force one observes col-
lective jerky motion which proceeds by sudden jumps,
called avalanches. Examples are the Barkhausen noise in
magnets,1–7 jumps in the creep motion of magnetic domain
walls,8–11 avalanches in the depinning of a contact-line of a
fluid,12–15 or in dislocation and crack propagation,16–19 and
stick-slip motion of, e.g., tectonic plates, responsible for
earthquakes.20–23 Avalanches have also been studied in mod-
els without quenched substrate disorder, such as in sandpile
models and in granular matter.24–27 An important character-
istics of avalanche motion is its scale invariance, self-
organized criticality, and a broad distribution P�S��S−� of
the sizes S of avalanches, for sizes S between a small- and
large-scale cutoff Smin�S�Sm. Pinned elastic manifolds are
an important prototype of a much wider class of phenomena,
reaching far outside physics, e.g., into economy and finance,
where extreme �and sometimes catastrophic� events are suf-
ficiently frequent and large to dominate most observables. In
this context, it is clearly of importance to understand how the
avalanche-size probability is cut off at the large scales, for
S�Sm.

Although avalanche motion of pinned manifolds has been
studied for a while in numerics,28–30 most work focused on
measuring the avalanche-size exponent �, with minimal
guidance from the theory. This is mainly because no analytic
approach was available besides mean-field and scaling argu-
ments. The most notable one was proposed by Narayan and
Fisher �NF� �Ref. 31� on the basis of the unproved assump-
tion that the avalanche density remains finite at the depinning
threshold, resulting into

� = 2 −
2

d + �
. �1�

Here � is the roughness exponent at the depinning transition.
Progress both in constructing the field theory of the depin-
ning transition32–35 following the pioneering work on the
Functional RG �FRG� �Refs. 31, 36, and 37� and in develop-
ing new powerful algorithms15,38–43 had focused mostly on
structural properties of the pinned manifold, such as the pre-
cise determination of �. Even an appropriate definition of
static and dynamic avalanches, allowing contact with the
field theory, had remained unclear. It was given in the
statics44–46 and at depinning47,48 using a confining quadratic
potential; it led to the measurement, with great accuracy, of
the renormalized disorder correlator ��u�, i.e., the fixed point
of the FRG. Only very recently we succeeded in computing
the distribution of avalanche sizes within the FRG.49–51 The
calculation at tree level gave mean-field predictions �some of
them new and nontrivial�, valid above the upper critical di-
mension duc=4, i.e., for d�4. The one-loop calculation gave
an expansion to order O�	�, with 	=4−d. Remarkably, the
conjecture �1� was confirmed to O�	� accuracy. It is thus of
great interest to test these predictions in numerics.

The aim of the present paper is to compute numerically
the jumps �avalanches� between successively pinned con-
figurations of an elastic line �d=1� and interface �d=2�. The
convenient setting to compare with the recent predictions
from the FRG is to submit the manifold to an external qua-
dratic well, i.e., a spring. We will study mostly random-field
disorder, but we also check that the results are the same for
random-bond disorder, as is predicted at depinning and was
checked in our previous work48 for the renormalized disorder
correlator ��u�. Most of the numerical method is similar to
our previous work.48

The outline of this paper is as follows: we define in Sec. II
the model and numerical procedure; and in Sec. III an ava-
lanche, its size, the characteristic scales and the scaling func-
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tions. In Sec. IV the reader will find our numerical results for
the avalanche-size distribution, and their comparison to our
analytical results in d=1 and d=2. In Sec. V we compare our
numerical and analytical results for the universal ratios of
algebraic moments, the rn. In Sec. VI we do the same for the
generating function of exponential moments, i.e., the charac-

teristic function of the size distribution, denoted Z̃���, in d
=1 and d=2. Finally, in Sec. VII, we compute the distribu-
tion of local avalanches in d=1 and compare with the pre-
dictions.

II. NUMERICAL PROCEDURE: PARABOLA AND
METASTABLE STATES

Let us now describe the model and algorithm, in d=1 for
simplicity. The procedure is very similar to our previous
work.48 The interface is discretized as u�x��ui, i=1, . . . ,L,
and periodic boundary conditions are taken: u0=uL, uL+1
=u1. We start from a flat interface �ui=0� embedded in a
parabolic potential. The equation of motion is

�tui = m2�w − ui� + ui+1 + ui−1 − 2ui + F�i,ui� �2�

F�i ,ui� is the disorder force. We distinguish two different
microscopic disorders:

�i� random force (RF): for each integer value of ui we take
a random number extracted from a normal distribution. The
value of the random force for noninteger values of ui is given
by the linear interpolation of the forces at the two closest
integers ui. Forces for different i are independent.

�ii� random bond (RB): the random force is derived from
a random potential: F�i ,ui�=−�ui

V�i ,ui�. For each integer
value of ui, the potential is a random number normally dis-
tributed. The interpolation of V is done by means of a cubic
spline connecting M random numbers. Two extra conditions
are needed in order to define a spline: we have taken
F�i ,0�=0 and F�i ,M�=0. In our simulations M =100. When
the line advances beyond ui=M, a new spline, with M new
random numbers is generated. Potentials for different i are
independent.

The value w is the center of mass of a confining potential
for each point i, of the form m2

2 �w−ui�2. In the simulation, w
is increased from 0. For each value of w a metastable state is
computed. Increasing w, a stationary sequence of metastable
states �independent of the initial configuration� is reached, as
observed in Ref. 48. This is the steady state on which we
focus. Our main results concern an elastic string in d=1 of
size L with RF disorder, but we have also studied RB disor-
der, see Fig. 1, and a two-dimensional elastic interface of
size L2 with periodic boundary conditions. As expected, for
the depinning transition, the RB case falls in the same uni-
versality class as the RF case and results are very similar.

III. DEFINITIONS AND OBSERVABLES

For given w=w0 the manifold moves to a metastable state
uw0

�x�, i.e., a state dynamically stable to infinitesimally small
deformations. Following the notation of,49,50 we define the
center of mass of the metastable configuration

u�w0� ª
1

Ld� dxuw0
�x� �3�

with L the linear size of the system �number of points�, and d
the dimension. One then increases w and a smooth forward
deformation of uw�x� results �for smooth short-scale disor-
der� while the state remains stable. At some w=w1 the state
becomes unstable and the manifold, for w=w1

+ moves until it
is blocked again in a new metastable state uw1

�x� �also lo-
cally stable�. This process is called an avalanche. In numeri-
cal simulations we have used the increment m2�w
=0.000 04, which was found to be small enough to separate
distinct avalanches. The size S of an avalanche is defined as
the area swept by the line as it jumps between the two con-
secutive metastable states,

S ª Ld	u�w1� − u�w0�
 . �4�

The distribution of avalanche sizes is expected to exhibit
universality, i.e., independence of short scales, for sizes S
�Smin. The short-scale cutoff Smin corresponds to the area
spanned by a single monomer on the scale of the discretiza-
tion of the disorder �in our units Smin�1�. In the limit m
=0 a critical point is reached, resulting in a power-law dis-
tribution of avalanche sizes. To properly define the problem,
including the stationary measure, it is essential to consider a
small m�0. Then, the internal correlation length Lm is finite:
it can e.g., be measured from the structure factor leading to48

Lm � 5/m . �5�

Lm is large in the small-m regime considered here. As a re-
sult, the distribution of avalanche sizes is cut off by the large
scale Sm
Smin. Although there is some arbitrariness in de-
fining this scale, a common method is to first measure the
avalanche-size distribution, and from it, extract its large size
cutoff.29,52,53 Here we proceed somewhat differently, since
we want to compare with the FRG field theory predictions,
and that the latter provides64 a natural, easy to measure, and
in some cases calculable, definition of Sm. This definition
reads
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FIG. 1. �Color online� Random field and random bond �RB�
�d=1�. A fit with a power law gives the exponent �=1.08�0.02.
The agreement with Eq. �12� is discussed in the text.
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Sm ª

�S2�
2�S�

. �6�

It is expected to scale as Sm�Lm
d+��m−d−� at small m. Here

and below we define the �normalized� distribution of ava-
lanche sizes P�S�, as well as its moments

�Sn� ª
1

N
�
i=1

N

Si
n = �

0

�

dSSnP�S� �7�

from the sequence of measured avalanches Si, i=1, . . . ,N.
The scale Sm is important as it allows to define universal

functions. In the variable sªS /Sm the avalanche-size distri-
bution should become universal. Indeed, one of the predic-
tions of the FRG theory is that if the exponent � satisfies 2
���1 which is the case here, then the distribution of ava-
lanche sizes for S
Smin takes the form as m→0, i.e., Sm

Smin,

P�S�dS ª

�S�
Sm

p
 S

Sm
�dS

Sm
. �8�

The function p�s� is universal and depends only on the space
dimension d. Note that the normalized probability P�S� de-
pends on the cutoff Smin via the first moment �S� which can-
not be predicted by the theory, hence is an input from the
numerics. It is important to stress that while the function p�s�
is universal and convenient for data analysis, it is not a prob-
ability distribution and is not normalized to unity. Rather, it
satisfies from its definition �8� and using Eq. �6� the two
normalization conditions

�s�p =� dssp�s� = 1, �9�

�s2�p =� dss2p�s� = 2. �10�

Here and below we use the notation �s�p to denote an inte-
gration over p�s� and distinguish it from a true expectation
value over P�S�, denoted � . . . �.

IV. AVALANCHE-SIZE DISTRIBUTION

The rescaled avalanche-size distribution can be written as

p�s� = s−�f�s� , �11�

where � is the avalanche-size exponent, and f�s� the univer-
sal cutoff function,65 which tends to a constant for s→0. For
the present model, the only analytical prediction prior to our
work49,50 concerns the exponent �, via the above mentioned
NF �Refs. 31 and 54� conjecture

� = �conj = 2 −
2

d + �
, �12�

where � is the roughness exponent at the depinning transi-
tion. Exact solution21 of a mean-field toy model of ava-
lanches, which turns out to be related to the famous Galton
process55 in genealogy, gives an exponent �MF=3 /2. This
exponent is also the one expected if we replace d=duc=4 in

the NF conjecture. This does however not constitutes a first-
principle calculation starting from the model of the pinned
interface. The latter was only possible using the FRG.49,50

The summation of all tree diagrams within the FRG is shown
to be asymptotically exact for d�4 and leads to the mean-
field prediction49,50 for � and for the full rescaled avalanche-
size distribution �see below�.

We now discuss our numerical results starting with the
avalanche-size exponent �. Note that the data in Fig. 1 con-
tain both random-field and random-bond disorder and that, as
expected from the universality of the depinning fixed point,
the results are indistinguishable. Hence in the following we
focus on RF disorder. For d=1, a direct power-law fit of our
numerical data �see Fig. 1� gives

�num
d=1 = 1.08 � 0.02. �13�

This value has to be compared with the conjecture of Eq.
�12�. The roughness exponent is known numerically with a
good accuracy from system sizes �L�103� and m=0, as �
=1.26�0.01.40 This value for � gives �conj=1.115�0.005.
Hence the estimate �13� is slightly smaller than the value of
� obtained from the conjecture. There are several possible
explanations for this.

First one notes that although Eq. �13� is extracted from
pieces of p�s� which have already well converged in terms of
m and L, the resulting window of sizes is limited. Although
we took this into account in estimating Eq. �13�, we cannot
exclude a further small upward shift in the central value as
the window size increases. Discussion of the finite-size ef-
fects in the numerical determination of � was given previ-
ously both for one and two dimensions.56–59

Second, we have also measured the effective � exponent
for the sizes and masses used here. From measurements of
Sm we extract �=1.19�0.01 as can be seen on Fig. 2. We
have checked that comparable estimates can be extracted
from the structure factor S�q�, as measured also in Ref. 48
using fits taking into account the mass. Inserting this value
for an effective � into Eq. �12�, this results in an effective
value for �conj=1.086�0.004, which is in much better agree-
ment with our measured value 	Eq. �13�
.

Finally, deviations from the conjecture for the asymptotic
value of � are, strictly speaking, still possible, but if they
exist they must be around or below the error of 0.02 in Eq.
�13�. This does not rule them out since, as discussed in Ref.
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FIG. 2. �Color online� Numerical extrapolation of the exponent
� to mass m=0. We find �=1.19�0.01. Here log means the nepe-
rian logarithm.
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50, if present they are expected to be small.66

Within the FRG �Refs. 49 and 50� it is possible to com-
pute the universal scaling function. For d�4 summation of
all tree diagrams gives

fMF�s� =
1

2�

e−s/4. �14�

The one-loop FRG calculation gives

f�s� =
A

2�

exp
C�s −

B

4
s�� , �15�

with exponents

� =
3

2
+

3

8
� =

3

2
−

1

8
�1 − �1�	 , �16�

� = 1 −
�

4
= 1 +

1

12
�1 − �1�	 , �17�

where �=− 1
3 �1−�1�	 and �1=1 /3 for the RF class, relevant

to the present study. The constants A, B, and C depend on 	,
and must satisfy the normalization conditions �9� and �10�.
At first order in 	 they are C=− 1

2
�
�, B=1−��1+

�E

4 �, A
=1+ 1

8 �2–3�E��, �E=0.577216. As usual, the one-loop re-
sults for the exponents �, � and for the parameters A, B, and
C are exact up to O�	2�.

To analyze our numerical data for the avalanche-size dis-
tribution, we have first computed �S2� and �S� from the data,
which allowed to determine numerically the universal �and
parameter-free� function p�s� using Eqs. �6� and �8�. Hence
by construction the numerical data satisfy conditions �9� and
�10�. They are plotted in Figs. 3 and 4, with emphasis either
on the power-law region or on the tail. Note that for the
different values of m and L used here, the data have con-
verged, with the exception of the last point for very large
avalanches oversuppressed by the finite size of the interface
in the smallest samples, and of the region of very small ava-
lanches, which are cut off at s�1 /Sm.

To compare the numerical data with the mean-field and
one-loop predictions, we use two procedures:

In the first procedure we compare directly the cutoff func-
tions f�s�, see Figs. 3 and 4. They are defined as f�s�

ªs�p�s� where � is, respectively, �num=1.08 for the numeri-
cal data, �MF=3 /2 for the mean-field prediction, and �Pade
=5 /4 for the simplest Padé approximant of the one-loop re-
sult, i.e., setting 	=3 in Eq. �16�. For d=1, due to the large
value of 	=3, the function p1-loop�s� with �=5 /4, �=7 /6, A
=5 /6−�E /4, B=5 /3+�E /6, and C=�
 /3 does not have the
correct normalization. We chose to introduce two rescaling
factors

p�s� = c1p1-loop�c2s� �18�

in order to enforce the conditions �9� and �10�. This proce-
dure only changes the values of A, B, and C in a consistent
manner, see Figs. 3 and 4. Note that even though only f�s� is
plotted, the chosen value of � changes the values of A ,B ,C
via the normalization conditions, hence must be discussed
accordingly.

A second approach, shown in Figs. 5 and 6, consists in
fitting the same numerical curves as in Figs. 3 and 4, with
either �i� an exponential function �“exponential fit”� or �ii�
the one-loop function �“fit one loop”�, but using the numeri-
cally obtained exponent �=�num=1.08. The exponential fit
reads

p�s�s� =

1 −

�

2
�2−�

��2 − ��
exp�
− 1 +

�

2
�s� . �19�

All coefficients are determined as a function of � by the
normalization conditions �9� and �10�. Note that this expo-

1

0.1

0.01

0.001

10
-4

10
-5

1010.10.010.00110
-4

10
-5

f(
s
)

s

L=1000 m=0.01
L=2000 m=0.005

L=4000 m=0.0025
mean field

one loop

FIG. 3. �Color online� Random Field �d=1�. Blow up of the
power-law region. The red solid curve is given by Eq. �14�, the
black dashed line by Eq. �15�, with A=0.852, B=1.56, and C
=0.56.
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FIG. 4. �Color online� Random field �d=1�. Blow up of the tail
region. The red solid curve is given by Eq. �14�, the black dashed
line by Eq. �15�, with A=0.852, B=1.56, and C=0.56.
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FIG. 5. �Color online� Random field �d=1�. Blow up of the
power-law region. The red solid curve is given by Eq. �19�, the
black dashed line by Eq. �15�, with A=0.947, B=1.871, and C
=0.606.
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nential fit is mostly a guide to emphasize the subexponential
tail apparent in the data. Similarly, for the one-loop fit we
adopt the procedure described in the previous paragraph,
with �=�num everywhere instead of the one-loop Padé value
�=5 /4. We expect this fit to be less sensitive to the lack of
precision in the one-loop estimate of � for the large value of
	=3 relevant here, and to better capture the tail region. This
is indeed what is found, see Fig. 6. It confirms the subexpo-
nential tail exponent ��7 /6 to a rather good precision. We
stress that our procedure is not a fit using A ,B ,C as fit pa-
rameters, but that all parameters are specified by the one-
loop prediction.

We now turn to a two-dimensional interface. The univer-
sal function p�s� for d=2 and RF disorder is plotted on Fig.
7. From a direct power-law fit, we find

�num
d=2 = 1.3 � 0.02. �20�

This value has to be compared with the conjecture of Eq.
�12�. The roughness exponent at the depinning transition is
known numerically as �num

d=2 =0.753�0.002,40 which gives
�conj

d=2 =1.2735�0.0005. Although our value 	Eq. �20�
 of � is
compatible with the conjecture, the precision is insufficient
to conclude on possible small deviations from the latter. The
mean-field and one-loop predictions discussed above are

plotted for comparison, using the simplest one-loop Padé ap-
proximant, i.e., �=−4 /9, �=4 /3, �=10 /9. After the above
described procedure �18� using the normalization conditions
�9� and �10� this led to the values A=0.92, B=1.416, and
C=0.383.

V. UNIVERSAL MOMENT RATIOS rn

Important universal quantities characterizing the ava-
lanche statistics are the following universal ratios of
avalanche-size moments,

rn ª
�Sn+1��Sn−1�

�Sn�2 =
�sn+1�p�sn−1�p

�sn�p
2 . �21�

Here n can be noninteger. As shown in Ref. 50 all nonuni-
versal scales disappear in the ratios rn. Our numerical find-
ings are summarized in Fig. 8. The pole expected at n=�
�1.08 in the limit of infinite Sm /Smin manifests itself in a
nonconvergence of the numerical data upon lowering m. This
is an independent method for calculating �.

We now compare to the FRG calculation.50 The function
rn can be evaluated in an 	=4−d expansion. At the mean-
field level �	=0�

rn
0 =

2n − 1

2n − 3
, �22�

and a pole is found for n=�MF=3 /2.
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FIG. 9. �Color online� Random Field �d=1, L=2000�. Moment
ratios rn: comparison between numerics and analytic predictions.
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FIG. 6. �Color online� Random field �d=1�. Blow up of the tail
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The one-loop 	 expansion leads to the following
expression:50

rn
1-loop = rn

MF −
	

3
�1 − �1�

n�
n −
3

2
� + �
��n − 1�

�2n − 3�2�
n −
3

2
� , �23�

where �1=1 /3 for RF. This expression corresponds to the
Padé �1,0� in the 	-expansion; we also use the Padé �0,1�.
The comparison with the data is shown on Fig. 9. For the
large-moment region, a blowup is shown on Fig. 10. The
agreement of the data with the two one-loop Padé approxi-
mants, as compared to mean field, is quite striking.

However, both Padés break down close to n=�. We give
another useful form for comparison to numerics. The idea is
to isolate the simple pole which occurs in any dimension, as

rn =
Ad

n − �
+ Bn,d. �24�

Up to O�	2� corrections50

Ad = 1 −
1 + 


12
�1 − �1�	 , �25�

Bn,d = 1 +


�
n −
1

2
� − �
��n − 1�

6�2n − 3��
n −
1

2
� �1 − �1�	 . �26�

In Fig. 11 this formula is plotted setting 	=3. It shows that it
works quite well, even close to the pole at n=�.

VI. CHARACTERISTIC FUNCTION Z̃(�)

It is useful to define a generating function of exponential
moments, i.e., the characteristic function of the avalanche-
size probability. Using the definitions �6� and �7�, we define
the normalized generating function Z̃���

Z̃��� ª
Sm

�S�
1

N
�
i=1

N

	e�Si/Sm − 1
 . �27�

By construction, Z̃���=�+�2+¯. Since large negative �
probe small avalanches, it is expected to be universal for �

−1 /Smin. In the universal range, its relation to p�s� is

Z̃��� = �
0

�

dsp�s��e�s − 1� . �28�

It has been calculated in49,50 at the mean-field level,

Z̃MF��� =
1

2
�1 − �1 − 4�� . �29�

At 1-loop order, it reads49,50

Z̃1-loop��� =
1

2
�1 − �1 − 4�� +

	�3� + �1 − 4� − 1�log�1 − 4�� − 2�2� + �1 − 4� − 1�
�

4�1 − 4�
+ O��2� . �30�

where, as above, �=−
1−�1

3 	=− 2
9	. The comparison between

theory and numerical data is presented on Fig. 12, both
for d=1, and d=2. In these figures we have plotted
Eq. �30�, discarding the term O��2� and setting 	=3
and 	=2, respectively. The plots show that the simplest
extrapolation of the 1-loop correction is extremely good

in calculating the behavior even for large negative �, as
was already observed in the static case in Ref. 49. It
would be interesting to compare Z̃��� for both cases
numerically.

For large �, Z̃��� is dominated by the largest avalanche
Smax. If Smax /Sm
1, then the tail-exponent � can in principle
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r n
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m=0.02

Pade (1,0)
Pade (0,1)
mean field

FIG. 10. �Color online� Random Field �d=1, L=2000�. Mo-
ment ratios rn: blow up of the tail behavior. The mean-field behav-
ior is given by Eq. �22�. The Padé �1,0� by Eq. �23� and the Padé
�0,1� is also plotted.
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FIG. 11. �Color online� Random Field �d=1, L=2000�. Mo-
ment ratios rn: blow up around the pole and comparison with
Eq. �24�.
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be extracted from the derivative of ln Z̃���, i.e., �� ln Z̃���
��1/��−1� in some window of � before it eventually saturates
to a constant �Smax at larger �. Our data, which are plotted
on Fig. 12, are not yet converged in terms of the ratio
Smax /Sm, but are sufficient to give the bound 1���

3
2 . One

finally notes that although mean field works better for d=2
than for d=1, the 1-loop corrections are necessary to account
for the numerical data.

VII. LOCAL AVALANCHE-SIZE DISTRIBUTION

In Ref. 50, we have considered the following definition of
the size of a local avalanche S�:

S� =� ddx��x�	uw1
�x� − uw0

�x�
 . �31�

Here we also define

Sm
�
ª

�S�
2 �

2�S��
. �32�

Of particular interest is the cross section with a codimension
one hyperplane i.e., ��x�=m−1��x1�, or more generally, with

a codimension d� subspace. This cross section has dimension
d�=d−d�. We have chosen the factor of m in the definition
of � such that Sm and Sm

� both scale as m−d−�. For d=1 we
consider a point, i.e., d�=1, d�=0. Note that we always
chose the factor of m in the definition of � �see above� such
that Sm and Sm

� both scale as m−d−�.
For a more convenient comparison with numerics, we

adopt a slightly different normalization as in Ref. 50, and
chose to normalize using Sm

� rather than Sm. We estimate
below the ratio a�=Sm

� /Sm which allows to go from one set
of definitions to the other. Hence the �normalized� local

�10 �8 �6 �4 �2
Λ

�3

�2

�1

1
Z
�

�10 �8 �6 �4 �2
Λ

�3

�2

�1

1
Z
�

(b)

(a)

FIG. 12. �Color online� The characteristic function Z̃��� for d
=1 �left� and d=2 �right�. Mean field �solid red/gray� from Eq. �29�;
one-loop from Eq. �30� �dashed black�; and numerical results for
L=4000, m=0.0005 �solid orange/green dots�. The singularity in
Eqs. �29� and �30� for �=1 /2 �indicated by a vertical dotted line� is
smoothed out in the numerics, see Fig. 13 for details.
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FIG. 13. �Color online� Left: log-log plot of �� ln Z̃��� versus �.
For large �, we expect from Eq. �15� that the analytic result �black,
thick, dashed� obtained by integrating Eq. �28� numerically, has
slope 1 / ��−1� �blue dotted line is this asymptotics�. The numerical
results are for L=4000 and m=0.02 �thick red� and m=0.00125

�thin red�. For large �, Z̃num����
Sm

�S�
1
Nexp��Smax�, where Smax is the

largest avalanche encountered in the simulation, and the curve satu-
rates �dotted red lines�. The larger Smax /Sm, the better the data. For
m=0.02 �thick red� this ratio is 16, whereas for m=0.00125 �thin
red� it is 10. The vertical dashed green line indicates the location

�=1 /4 of the singularity in Z̃��� at the mean-field level. Right:
slope of the function left, i.e., the effective exponent 1 / ��−1�. One
sees that the effective exponent increases with increasing Smax /Sm.
Our data, which clearly have not converged in terms of Smax /Sm,
allow to estimate 1���

3
2 from the maximum slope.
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avalanche-size distribution P��S�� is expected to take the
form

P��S�� =
�S��
�Sm

��2 p�
 S�

Sm
�� . �33�

where the universal function p��x�=a�
2 Sm

�S�� p��a�x� in terms
of the one defined in Ref. 50 and called p� there. By con-
struction p��x� satisfies the normalizations �9� and �10�.
Similarly we define the generating function as

Ẑ��� ª
Sm

�

�S��
1

N
�
i=1

N

	e�Si
�/Sm

�
− 1
 , �34�

which reads Ẑ���=a�Z̃��� /a�� in terms of the one defined in
Ref. 50.

At present time we have only three analytical results
available to compare the numerical data on local avalanche-
size distributions. First the conjecture put forward in Ref. 50
and which generalizes Eq. �12� reads

�� = 2 −
2

d� + �
, �35�

where we recall that d�=d−d�. Our numerical data for the
point on a d=1 string �i.e., one monomer� are shown on Fig.
14 and we find ��=0.39�0.01. If we use the best present
estimate �=1.26�0.01 we find ��

conj=0.413�0.01. If we use
the value of �=1.19�0.01 extracted from the scaling of Sm,
we find ��

conj=0.32�0.02. While the values are roughly con-
sistent, the precision on � is crucial for a precise comparison.
Inverting the conjecture �35�, the measurement of ��

=0.39�0.01 leads to a conjectured �=1.24�0.01. For a de-
tailed discussion of the possible artifacts we refer to the dis-
cussion in Sec. IV.

The second result is the exact expression of Ẑ��� and
p��s� in mean field, i.e., for d�4 and d�=1. This involves a
nontrivial summation of momentum-dependent tree diagrams

using instanton calculus. It yields50 that Ẑ��� is given by the
solution of

�Ẑ − 3�Ẑ�2Ẑ − 3� = 9� , �36�

which vanishes at �=0. This yields the series expansion

Ẑ���=�+�2+ 16
9 �3+ 35

9 �4+ 256
27 �5+O��6�. We have compared

this mean-field prediction and the numerical results in d=1,
d�=0 on Fig. 15. It is clear that loop corrections, yet to be
computed, will play an important role, as was the case for
bulk avalanches, see Fig. 12. The function p��s�, as defined
here, is found to be50 in mean field �i.e., at tree level�

p�
MF�s� =

K1/3
 s

2�3
�

2
s
. �37�

It satisfies the normalizations �9� and �10�, and is related to

Ẑ��� via Ẑ���=�0
�dsp��s��e�s−1�.

Finally, the mean-field calculation50 also gives

a� ª

Sm
�

Sm
=

1

4
. �38�

Corrections at 1-loop order slightly decrease this ratio. The 	
expansion predicts61

a� =
1

4
+ �
1 +

7


6�3
− 
� + O�	2� �39�

with �=− 	
3 �1−�1� and �=−2 /3 here. Using the two Padé

approximants gives the estimate 1 /a�=3.74�0.01 which is
consistent with the numerically observed value of 1 /a�

num

=3.7�0.05 for L=4000, m=0.00125 �Fig. 16�.

VIII. CONCLUSION

In this paper, we have compared the numerically obtained
avalanche-size statistics at the depinning transition with the
recent predictions from the functional RG based on an 	=4
−d expansion. The critical point of the depinning transition
for an interface of internal dimensions d=1 and d=2, driven
quasistatically in a random landscape in presence of an ex-
ternal quadratic well of curvature m2, is reached in the limit
of m→0. We have shown that the avalanche-size distribution
P�S� takes the expected scaling form with the upper cutoff
scale Sm�m−d−2�, involving a universal function p�s� in the
rescaled variable s=S /Sm. As we confirmed, it does not de-
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FIG. 14. �Color online� Random field �d=1, d�=0, L=4000�.
From the fit we get ��=0.39�0.01.
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FIG. 15. �Color online� Ẑ��� both at the tree-level �solid/red�,
and numerically �green/orange dots�, for RF disorder, m=0.00125,
d=1, d�=0.
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pend on whether the microscopic disorder is of random-field
or random-bond type. We have computed numerically the
function p�s�, its moments and its characteristic function and
found in all cases good to excellent agreement with the pre-
dictions of the 1-loop FRG based on the extrapolation to d
=1 and d=2. We have also studied, for d=1, the local ava-
lanches, and there too, we found a rather satisfactory agree-
ment with available analytical predictions. However, it re-
mains an outstanding challenge to compute the local
avalanche-size distribution within the FRG beyond mean
field.

Some fine points deserve discussion and further study.
First we have not found any clear-cut signature that the con-
jecture for the avalanche exponent � be violated at depin-
ning. However, we cannot rule out such a violation below a
0.02 precision in �. A better numerical determination of �,
comparable in precision to the one which exists for the
roughness � at m=0 would be crucial to confirm or invalidate
the conjectured relation between � and �. We have used, both
in the field theory calculation and in the present numerics, a
mass, i.e., the quadratic well, to provide a proper definition
of the steady state. Although it has the advantages of �i�
allowing to work at a fixed distance from criticality �which is
not the case if one, e.g., increases the force� �ii� reducing the

role of the size L of the system, it also hampers the attempts
at a more precise determination of �. At present, other meth-
ods to produce steady states, such as using a system of finite
size,57,58 or perturbing slightly the interface at constant
force,28,60 have been found to be more difficult to implement
within the FRG field theory. We thus lack analytical predic-
tions which can be tested numerically.

Second, there has been a recent proposal, in the case of
the random-field Ising model,62 that avalanche-size distribu-
tions for statics and depinning are described by the same
universal functions. Although the physics underlying this hy-
pothesis is not clear to us, one may still ask the question for
the present model.67 One may for instance compare our
present results to the one in the statics in Ref. 49. Currently,
our precision is not sufficient to conclude. For instance, in
d=2 and for RF disorder, the conjecture 	Eq. �1�
 for � gives
�=1.25 for the statics and �=1.2735�0.0005 for depinning,
which are difficult to distinguish numerically. We simply
note that both statics and depinning data are in good agree-
ment with extrapolations from the 1-loop FRG,50,51 but it
remains to be analyzed at two loops. As noted previously,
since the roughness exponents are different, if the conjecture
holds both in the statics and driven dynamics, then the
avalanche-size exponents, and presumably the associated
distributions, cannot be the same. We leave these subtle
questions for the future.

To conclude, it is highly satisfactory that the
functional-RG field theory for the avalanche statistics passes
all numerical tests. Other interesting observables can now be
computed numerically, and studied on a more solid footing,
such as the distribution of lateral sizes, or correlations be-
tween avalanches. These provide a motivation to further de-
velop the theory. Finally we hope that our present work will
motivate similar studies in experiments.
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