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Due to the importance of NiTi as a shape-memory material and the uncertainty regarding its atomisitic
martensitic transformation path, a thorough investigation to understand the structural stability governing this
displacive phase transformation is warranted. We investigate elastic and shear stabilities of NiTi using first-
principles calculations with the highly precise full-potential linearized augmented plane-wave method. Ambi-
guities of the B2, R, B19, B19�, and proposed B33 structures are resolved, and we establish that the P3
symmetry is preferred for the R phase of equiatomic NiTi, and the phase stability of each structure is estab-
lished by examining calculated formation energies, which show agreement with direct reaction calorimetry
experiments. Additionally, all single-crystal elastic constants, Young’s, bulk and shear moduli, Poisson’s ratio,
and the Zener anisotropy of the B2, R, B19, B19�, and B33 phases are calculated and presented yielding
agreement with experiment that exceeds that of previous calculations. To investigate the susceptibility to
shearing, generalized stacking-fault energetics are calculated for the �001�, �011�, and �111� slip planes of the
B2 phase. Burgers vectors and shear resistance are established while examining atomic shuffling throughout
the imposed shear; the �001� and �111� stacking faults possess high-energy barriers. By investigating various
deformation mechanisms related to these stacking faults, we find an instability to �100��011� slip in the B2
phase. Using this and reviewing previously proposed atomistic transformation paths, the mechanisms govern-
ing the direct martensitic transformation of NiTi between the austenite and the martensite are identified.
Barrierless transformation paths from the B2 phase to the B19� phase and from the B2 phase to the B33 phase
are proposed.
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I. INTRODUCTION

Equiatomic NiTi has generated significant interest for its
exhibition of a reversible martensitic transformation near
room temperature and is being utilized in applications which
include medical devices such as surgical tools, orthodontic
appliances, coronary probes, and stints, as well as materials
for aerospace, industrial, and commercial use. Despite ample
research on this material beginning in 1938 �Ref. 1� and a
recent expansion of the literature devoted to NiTi,2–6 much
about this material is still not fully understood. Specifically,
structures of the martensite and intermediate R phase have
not been unambiguously established;2,3 energy barriers be-
tween the phases are still unknown; recent independent
elastic-constant calculations4 have not been confirmed and
calculated macroscopic moduli vary from experimental mea-
surements; and, finally, there are several competing theories
regarding the transformation path from the austenite to the
martensite.5–8 This paper will address these questions.

The complexity of this material is apparent in the multi-
tude of its phases. In total, there are four different phases that
were observed throughout the martensitic transformation of
NiTi: �i� a B2 body-centered-cubic structure is its high-
temperature austenitic phase. This phase was identified early
in the study of NiTi �Refs. 8 and 9� and is now well estab-
lished as the high-temperature austenite structure.10 Interme-
diate phases of the martensitic transformation are also of
particular interest as they occur at or near room temperature
and give insight into NiTi’s transition path. �ii� The R struc-
ture is an intermediate phase observed during the martensitic
transformation for both equiatomic NiTi and NiTi alloyed

with additions such as iron. The space group of this structure
remains ambiguous despite electron and powder x-ray
diffraction11 and dynamic electron-diffraction12 measure-
ments, and theoretical pseudopotential calculations3 since
each of them suggests different space-group representations

of the structure, namely, P3, P3̄, and P31m, respectively.
�iii� Another intermediate phase, the B19 structure, is
observed13,14 when NiTi is alloyed with at least 7.5% copper
or certain percentages of other elements, such as Pd and
Pt.15,16 Varying the percentage of copper additions, Nam et
al.13 also discovered that B19 becomes the martensitic phase
when NiTi is alloyed with at least 20% copper. The full
characterization of these intermediate phases is incomplete
and questions remain concerning their connection to the aus-
tenitic and martensitic phases. �iv� It has been generally
agreed by experimentalists and theorists8,9,17–19 that the
monoclinic B19� structure is the low-temperature martensite
of NiTi. In recent experiments, Prokoshkin et al.17 showed
that the B19� structure was stable from −20 °C to 80 °C. By
studying different compositions of NiTi over this tempera-
ture range with different methods of aging and quenching,
they determined the lattice constants and monoclinic angle in
equiatomic and near-equiatomic NiTi. In all cases they found
a P21 /m structure with a monoclinic angle between 96° and
98°.

However, recent first-principles calculations have raised
doubts about the martensitic phase of NiTi. Huang et al.2

proposed that a base-centered orthorhombic �BCO� structure
of space group Cmcm is the martensitic phase and claimed
that the experimentally reported B19� structure is stabilized
by internal stresses. Recently, Morris et al.6 proposed a trans-
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formation that involves bilayer �100��011� shear along with a
“shuffling” of the atomic positions for B2 ordered interme-
tallics. They suggest that this shuffle leads to the Cmcm
space-group structure postulated by Huang et al.; this struc-
ture was identified as B33 and they reported that the trans-
formation path to the B33 phase has no energy barrier. Sub-
sequently, Wagner and Windl4 confirmed the existence and
stability of this phase near T=0 in extensive calculations of
its elastic properties and calculated the stresses needed to
stabilize the B19� structure. The present authors confirmed
many of these results5 and we report additional findings here.

In this paper, we investigate the B2, R, B19, B19�, and
B33 structures of NiTi in order to identify the governing
processes of the transformation using fully first-principles
calculations. First, computational details are explained in
Sec. II including an explanation of the full structural optimi-
zation employed with each phase. Phase energetics and
structural stabilities, including calculated total-energy differ-
ences and formation energies, are reported in Sec. III A. Also
included there are our results on several proposed space
groups of the R phase3,11,20,21 and on calculations of the B33
structure. For each phase of the martensitic transformation,
all independent elastic moduli have been calculated in Sec.
III B. To investigate shear instabilities, generalized stacking-
fault calculations were performed and these results are
shown in Sec. III C for the �001�, �011�, and �111� slip planes
of the B2 structure.

In Sec. III D, we report details of the transformation
mechanism between the austenitic B2 and martensitic B19�
phases, which we previously described.5 This transformation
may be accomplished by an atomic bilayer shear distortion
along the �011� slip plane while simultaneously allowing full
relaxation of the lattice constants and atomic positions. Com-
paring total energies of the optimized structures along the
path, we find a barrierless transformation path from B2 to an
intermediate point that is marked by a relative displacement
along the slip plane of one half a lattice constant,
109°-B19�. Further calculations using this structure show an
instability to monoclinic angle relaxation. Thus, a subsequent
monoclinic angle relaxation causes a barrierless transforma-
tion path from this intermediate point to B19�. We present
and compare this bilayer mechanism to other proposed and
calculated mechanisms in Sec. III D. This includes calcula-
tions in which we explore the possibility of mechanisms in-
volving a monolayer shear, shears of various thicknesses,
and different martensite phases including B33. Final conclu-
sions and acknowledgments are given in Secs. IV.

II. COMPUTATIONAL DETAILS

Density-functional electronic-structure calculations were
performed using the highly precise full-potential linearized
augmented plane-wave �FLAPW� method.22 This method
uses no shape approximations for the potential and charge
density. The exchange-correlation contribution to the poten-
tial was included using the generalized gradient approxima-
tion within the Perdew-Burke-Ernzerhof functional23 for all
calculations. The plane-wave cutoff was set to 275 eV and
the cutoff of the potential representation was set to 1,360 eV.

A k-point mesh of 13�13�13 was employed for all calcu-
lations which satisfied total-energy convergence to within 1.5
meV/atom for the B2 structure and 0.4 meV/atom in each of
the other structures. The muffin-tin radii of Ti and Ni atoms
were taken to be 2.35 and 2.10 a.u., respectively.

For a more accurate treatment of extended core electrons
�i.e., Ti 3p electrons� that are not entirely contained within
muffin-tin spheres �also known as semicore states�, and
which break the orthogonality between core and valence
states, the method of explicit orthogonalization �XO� was
used.24 The XO approach modifies the basis of the valence
states to enforce their orthogonality with the core states and
so prevents the calculated valence states from having spuri-
ous core-state contributions, which could alter the character
of the valence band and create so-called “ghost states,” and
hence have adverse effects on the accuracy of the calculated
total energies. This is especially important for the correct
treatment of early transition metals such as Ti, with their
so-called semicore 3p electrons.

Structural optimization was performed for each structure
for all lattice constants, angles, and internal atomic coordi-
nates. The internal atomic coordinates were relaxed using
atomic forces in geometry optimization loops prior to and
following an optimization of each lattice constant and unit-
cell angle which were simultaneously relaxed independently.
Upon finishing the optimization of lattice constants and
angles, the final atomic-coordinate relaxation caused only
slight variations in the atomic coordinates with respect to
their initial positions.

III. RESULTS AND DISCUSSION

A. Phase energetics and structural stability

The calculated total energies and equilibrium lattice con-
stants of each structure of NiTi are compared in Table I and
shown in Fig. 1. Shown first is the cubic B2 structure �pro-
totype CsCl�, which is the high-temperature austenitic
phase.8–10 The lattice constant for B2 was calculated to be
3.019 Å by fitting the calculated total energies versus lattice
constant to the Birch-Murnaghan equation of state;25 it is in
excellent agreement with the value, 3.013 Å, obtained by
Sittner et al.10 with x-ray diffraction measurements. Since B2
is the high-temperature phase, we would expect it to have the
highest total energy among the considered phases. This ex-
pectation is confirmed.

The next phase, R, was first identified by Goo and

Sinclair26 as having space group P3̄1m using convergent
beam electron diffraction and transmission electron micros-
copy with iron-alloyed �Ti50Ni47Fe3� samples. Hara et al.11

published revisions to this structure after their electron and
powder x-ray diffraction measurements indicated that the
space group was P3 for a Ti50.75Ni47.75Fe1.5 alloy. Schryvers
et al.12 followed these measurements using high-precision
dynamic electron-diffraction experiments with the same
samples and found a more symmetric structure with space

group P3̄. They attributed this to the 1a layer shifting up
with respect to the 1c layer due to a combination of displace-
ment waves in the B2→R transition. To determine the struc-
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ture of the R phase, electronic-structure calculations were
performed using the more approximate linear muffin-tin or-
bital �LMTO� method by Ishida et al.21 with Fe additions in
the unit cell to simulate the iron-alloyed structure, and found
R to be of space group P3. Using norm-conserving pseudo-
potential calculations, Gong et al.3 investigated several dif-
ferent initial configurations taken from experiment to calcu-

late optimized lattice constants and atomic positions for
equiatomic NiTi. They found the structure to be space group
P31m.

In these iron-alloyed systems, the R phase is the marten-
site product phase. However, the R structure is also an inter-
mediate phase in equiatomic and near-equiatomic NiTi; thus,
to reconcile these ambiguities, we performed FLAPW calcu-

TABLE I. Structural parameters and total energies relative to the B2 structure among the different
optimized structures of NiTi. Lattice constant lengths a, b, and c are given in Å. Nonright angles are stated.
Volume is given in Å3 /Z where Z is the number of atoms per unit cell.

Structure Space group Z a b c
Angle
�deg� Volume

E−EB2

�meV/atom�

Results of this work

B2 Pm3̄m 1 3.019 27.516 0.00

R1 P3 9 7.301 5.353 �=120 27.452 −33.94

R2 P3 a 9 7.299 5.359 �=120 27.468 −33.89

R3 P3̄ 9 7.311 5.320 �=120 27.358 −30.78

B19 Pcmm 2 4.633 4.180 2.863 27.737 −40.53

B19�-109° P21 /m 2 4.707 4.159 2.933 �=108.98 27.281 −25.25

B19� P21 /m 2 4.677 4.077 2.917 �=98.00 27.541 −55.42

B33b Cmcm 2 4.928 4.025 2.933 �=107.00 27.819 −60.07

Experiments/previous calculations

B2c Pm3̄m 1 3.013 27.339

Rd P3 9 7.358 5.286 �=120 27.533

Re P31m 9 7.384 5.461 �=120 28.647 −23.00

Rf P3̄ 9 7.380 5.320 �=120 27.877

B19g Pcmm 2 4.510 4.224 2.899 27.614

B19� h P21 /m 2 4.646 4.108 2.898 �=97.78 27.400

B19� i P21 /m 2 4.66 4.11 2.91 �=98 27.596

B33j Cmcm 2 5.072 4.076 3.300 �=108 32.442

B33k P21 /m 2 4.951 3.993 2.953 �=108.52 32.442

aThis structure changed to a different space group when optimized. R2 was taken from Gong et al. �Ref. 3�,
initially P31m.
bInitial structure taken from Huang et al. �Ref. 2�.
cExperimental results by Sittner et al. �Ref. 10�.
dExperimental results by Hara et al. �Ref. 11�.
eCalculated results by Gong et al. �Ref. 3�.
fExperimental results by Schryvers et al. �Ref. 12�.
gExperimental results by Nam et al. �Ref. 13�.
hExperimental results by Kudoh et al. �Ref. 18�.
iExperimental results by Prokoshkin et al. �Ref. 17�.
jCalculated results by Morris et al. �Ref. 6�.
kCalculated results by Wagner and Windl �Ref. 4�.

(b)(a) (c) (d)

FIG. 1. �Color online� The observed experimental structures of NiTi: �a� B2, �b� B19, �c� R, and �d� B19�.
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lations to determine the symmetry and atomic configuration
of the equiatomic NiTi R phase. This phase is more difficult
to measure experimentally in equiatomic NiTi since it exists
as an intermediary between the austenite and martensite
phases and, depending on conditions of the sample, does not
necessarily form at all. Thus, we structurally optimized each
input configuration, namely, the experimental structures from

Schryvers et al.,12 with space group P3̄, from Hara et al.,11

with space group P3, and a theoretical structure proposed by
Gong et al.,3 with space group P31m, to determine the cor-
rect symmetry of the R structure. After performing geometry
and unit-cell optimization cycles, we compared total energies
and atomic structures. Detailed results of atomic position
changes are shown in Table II.

Our optimization of Hara’s experimental configuration re-
sulted in a slight reordering of the z components of the
atomic positions, an expansion of the c lattice constant by
1.3% �from 5.286 to 5.353 Å� and a contraction of the a

lattice constant by 0.8% �from 7.358 to 7.301 Å�. The final
calculated structure was space group P3. Our optimization of
Gong’s calculated structure, however, lowered the symmetry
of the P31m structure and again P3 resulted; during this
optimization, the input symmetry is broken as atoms at Wy-
ckoff position 2b move to occupy positions 1b and 1c with
small shifts in the z components of the atomic positions. In
addition, the lattice constants a and c contracted by 1.2% and
1.9%, respectively. As a result of these optimizations, the
two final P3 structures have identical lattice constants
�within 0.1%�, total energies that differ by only 0.05 meV/
atom, and atomic coordinates which are nearly identical but
differ by at most 0.3 Å which is likely due to small compu-
tational round-off errors.

The P3̄ structure measured by Schryvers et al. did not
change symmetry during our optimization; there were lateral
shifts of the 6g Wyckoff positions and slight shifts in the z
coordinate of each atom. While this structure is more sym-

TABLE II. Internal coordinates of initial and final R structures. The multiplicity and Wyckoff letters are
given under “Site.”

Initial Final

Atom Site x y z Site x y z

Space group P3 P3

Ti 1a 0 0 0 1a 0 0 0

Ti 1b 1/3 −1 /3 0.151 1b 1/3 −1 /3 0.100

Ti 1c −1 /3 1/3 0 1c −1 /3 1/3 −0.002

Ti 3c 0.333 −0.019 0.416 3c 0.333 −0.010 0.390

Ti 3c 0.692 0.025 0.708 3c 0.672 0.006 0.691

Ni 1a 0 0 0.507 1a 0 0 0.466

Ni 1b 1/3 −1 /3 0.65 1b 1/3 −1 /3 0.637

Ni 1c −1 /3 1/3 0.506 1c −1 /3 1/3 0.464

Ni 3c 0.333 −0.022 0.913 3c 0.333 −0.023 0.909

Ni 3c 0.667 0.014 0.211 3c 0.692 0.026 0.183

Space group P31m P3

Ti 1a 0 0 0 1a 0 0 0

Ti 2b 1/3 −1 /3 −0.09 1b 1/3 −1 /3 0.102

Ti −1 /3 1/3 0.09 1c −1 /3 1/3 −0.005

Ti 3d 0.342 0 0.397 3c 0.333 −0.010 0.391

Ti 3d 0.678 0 0.701 3c 0.678 0.006 0.690

Ni 1a 0 0 0.507 1a 0 0 0.462

Ni 2b 1/3 −1 /3 −0.377 1b 1/3 −1 /3 0.641

Ni −1 /3 1/3 0.377 1c −1 /3 1/3 0.459

Ni 3d 0.362 0 0.905 3c 0.333 −0.023 0.911

Ni 3d 0.684 0 0.182 3c 0.688 0.026 0.181

Space group P3̄ P3̄

Ti 1a 0 0 0 1a 0 0 0

Ti 2d 1/3 −1 /3 −0.09 2d 1/3 −1 /3 −0.043

Ti 6g 0.322 0 0.299 6g 0.341 0.331 0.345

Ni 1b 0 0 0.507 1b 0 0 1/2

Ni 2d 1/3 −1 /3 0.377 2d 1/3 −1 /3 0.419

Ni 6g 0.316 0 0.818 6g 0.340 0.315 0.859
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metric, the calculated total energy was 3 meV/atom higher
than the total energy of the R structures with space group P3.
While very small, these total-energy differences still imply
that the P3̄ structure is less stable than the P3 one. Each of
the R phases are around 30–34 meV/atom lower than B2,
showing both that the R phase would be formed at slightly
higher temperatures than the B19 phase and that it is less
stable than B19� or B33. Thus, our findings that show the R
structure of equiatomic NiTi to be space group P3 agree with
calculations by Ishida and the first major revisions to the
structure by Hara. Since the total-energy differences between

the P3 and the P3̄ structures are small, it is reasonable to
conclude that slight Fe additions such as in samples used by
Schryvers et al. with 1.5% iron, could change the symmetry

of the structure to P3̄.
Now, the B19 phase is an intermediate orthorhombic

phase in the B2→B19� transformation when NiTi is alloyed
with Cu. Additionally, in several binary and ternary shape-
memory alloys such as TiPd, TiNiPd, TiNiPt, and
TiAu,15,16,27 B19 is the martensitic phase of the shape-
memory transformation. A striking difference between these
materials is the martensitic transformation temperature. Ti-
NiPt thin films and bulk TiAu exhibit a martensitic transfor-
mation to B19 at 627 K �Ref. 16� and 875 K,27 respectively,
whereas the transformation temperature for NiTi to B19 is
343 K, i.e., much closer to room temperature. We seek to
understand why these differences occur among shape-
memory alloys.

The B19 phase is experimentally observed13,14 as an in-
termediate phase in NiTi alloyed with 7.5–20 % of copper.
For alloys with more than 20% copper, B19 is the martensitic
phase.13 We determined the energetics, stability, and crystal
structure of B19 using equiatomic NiTi. Calculations of the
unit-cell deformations yielded results that are close to
experiment,13 overestimating a by 2.7% and underestimating
b and c by 1.1% and 1.2%, respectively, and changes to the
internal coordinates were negligible with geometry optimiza-
tion. Elastic properties displaying the stability of this struc-
ture will be examined in Sec. III B; its total energy is 41
meV/atom below B2, indicating that this structure is likely
formed at higher temperatures than the B19� or B33 struc-
tures and is less stable than these structures in the equiatomic
case. This is reflected in NiTi ternary alloys for which B19 is
the martensite; they often have higher martensitic transfor-
mation temperatures.

The B19� structure, first proposed by Hehemann and
Sandrock,28 has been heavily studied both experimentally
and theoretically.8,9,18,19 Recently, Prokoshkin et al.17 per-
formed x-ray diffraction measurements at a range of tem-
peratures with different Ti compositions, ranging from 47%
to 50.7%. Our calculations agree with their experimental lat-
tice constants and atomic positions to within 1% for equi-
atomic NiTi. As found previously for density-functional-
theory calculations �simulating T=0 behavior�, which
simultaneously optimize all structural and internal
coordinates,2,4,5 this structure has an instability to monoclinic
angle relaxation. Thus, the monoclinic angle was fixed to
98°. The differences in our calculations with respect to the
equiatomic results of Prokoshkin et al. are as follows; we

overestimated the a and c lattice constants by around 0.3%,
and we underestimated b by 0.8%.

The B19� phase had been well established as the low-
temperature martensitic phase by experiment and theory until
the paper by Huang et al.,2 who proposed a BCO structure as
a martensitic phase and suggested that the observed B19� is
stabilized by internal stresses. Morris et al.6 subsequently
calculated a transformation from B2 to this phase, which
they identified as B33. Later, Wagner and Windl4 calculated
elastic properties of this phase and verified its stability. They
also examined the stresses required to stabilize the B19�
structure from B33 and determined that the pressures
amounted to only around 1 GPa.

Given these findings and the lack of experimental verifi-
cation of this phase, it is increasingly important to check the
predictions of ab initio calculations. Here, we examine the
problem using the FLAPW method as opposed to
pseudopotential2,4 or projector-augmented wave methods4

used previously. Using the structure found in Ref. 2, we op-
timized all lattice constants, angles, and internal coordinates,
and calculated a total energy that was indeed lower than the
B19� structure by 4.65 meV/atom. All lattice constants were
within 1% of those previously reported. In previous
calculations,2,4 the B33 phase was calculated to have a lower
energy than B19�. We confirm this result. In addition, there
are many similarities between the B19� phase and the calcu-
lated B33 phase; the lengths of the lattice constants of B33
and B19� are nearly identical �with the exception of the a
lattice constant which is elongated by 5% for the B33 phase�
so the primary difference is the monoclinic angle which is
107° and 98°, respectively. As for energetics, these phases
have definitively lower energies than every other identified
phase. Thus, these phases’ attributes are exceedingly similar.

The symmetry of this structure has also been a matter of
dispute. As noted in Ref. 2, the higher-order symmetry space
group Cmcm, must meet two criteria reported in the above
form cos �=a /2b and 4xm−1=2ym, where xm and ym are the
internal x and y coordinates of Ni or Ti, and � is the mono-
clinic angle. Our optimized internal coordinates of
�0.357,0.212,1/4� and �0.084,0.331,1/4� and reported struc-
tural parameters, the monoclinic angle of 107° and lattice
lengths in Table I, satisfy these criteria. A slightly larger
monoclinic angle of around 108° was found in other previ-
ous calculations,4,6 which we believe is due to differences in
computational parameters such as the density of the k-point
mesh. The stability of B33 will be further examined in Sec.
III B.

Measured changes in enthalpy near the arrest temperature
of NiTi have been attributed to features of the shape-memory
effect.29 Thus, a clear picture of formation energy differences
among the phases can clarify shape-memory behavior, and
while formation energies are often difficult to measure ex-
perimentally, they are very important in understanding trans-
formation mechanisms and barriers. In Table III, we present
calculated austenitic, martensitic, and intermediate phase for-
mation energies of NiTi and compare them with previous
experiments and theoretical calculations. The formation en-
ergy is calculated from the total energy of B2 NiTi and the
total energies of elemental Ni and Ti in their corresponding
lowest-energy phases, namely, fcc Ni and hcp Ti, as �Eform
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=ENiTi
B2 − �ENi

fcc+ETi
hcp�. Lattice constants for each structure and

the a /c ratio for hcp Ti were optimized. Fcc Ni was treated
in a spin-polarized regime and the calculated magnetic mo-
ment for Ni is 0.63�B. Using these structures, we obtained a
formation energy of −34.1 kJ /mol atom. Experimental di-
rect reaction calorimetry measurements made by Gachon et
al.30 and Kubaschewski31 recorded values of
−33.9 kJ /mol atom and −34.0 kJ /mol atom, respectively,
each of which have a standard deviation of 2 kJ /mol atom.

Our results agree with experiment within 0.2 kJ /mol atom
to these values and are in much better agreement than previ-
ous calculations. Additionally, we have provided formation
energies for other phases; R, B19, B19�, and B33 which are
formed 3.3, 3.9, 5.4, and 5.8 kJ /mol atom below B2, respec-
tively.

B. Elastic constants

Indications of brittle versus ductile behavior, plastic re-
sponse to deformation, and precursor phenomena in the mar-
tensitic transformation may be garnered from a detailed in-
vestigation of NiTi’s elastic constants. Despite having a
complex polycrystalline structure, both bulk and single-
crystal properties may be examined by means of precise
first-principles calculations. To date, the elastic constants of
NiTi have been studied both experimentally and theoretically
but not all elastic constants have been reported for all
phases.4,5,7,33,34 In fact, until recently,4 individual experimen-
tal and theoretical elastic constants had only been reported
for the B2 phase of NiTi. Thus, we have calculated the elas-
tic constants for each of the intermediate, martensitic, and
austenitic structures since their experimental determination
can be difficult with a material that goes through a structural
change with applied pressures. These results are presented in
Table IV.

The experimental measurements of elastic constants of
the B2 phase of NiTi were performed by Mercier et al.34 at
298 K, the lowest temperature at which the B2 phase is
stable. Brill et al.33 measured the B2 elastic constants at 400
K. The comparison between these two experiments shows

TABLE III. The formation energies �of the B2 phase except
where noted otherwise� for NiTi.

Reference
Formation energy

�kJ /mol atom�

Experimenta −33.9

Experimentb −34.0

FP-LMTO calculationc −38.0

FP-LMTO calculationd −36.0

This work �FLAPW�
B2 −34.1

R −37.4

B19 −38.0

B19� −39.5

B33 −39.9

aReference 30.
bReference 31.
cReference 19.
dReference 32.

TABLE IV. Calculated and experimental independent elastic constants for NiTi structures �in GPa; except A, dimensionless�.

B2 B2a B2b B2c B2d B19 B19c R �P3� R �P3̄� R �P31 /m� B33 B33c B19� B19� c

C11 183 137 162 138 204 192 212 245 245 248 249 226 249 223

C12 146 120 129 169 134 105 129 111 109 113 133 137 129 129

C13 150 92 117 121 124 99 113 107 99

C15 27 33 15 27

C22 254 238 232 231 245 241

C23 118 127 131 134 125 125

C25 −15 1 −3 −9

C33 240 203 221 214 215 189 179 212 200

C35 −11 −18 −1 4

C44 46 34 34 40 53 66 65 51 51 51 99 84 87 76

C46 4 2 −4 −4

C55 73 −32 44 23 66 21

C66 53 49 96 90 86 77

B 159 126 142 159 157 156 150 155 155 159 156 156 159 152

C� e 19 9 17 −16 35 33 47 58 54 54 40 36 52 48

A 2.49 4.00 2.06 −2.58 1.51 1.60 −0.68 0.87 0.94 0.95 1.11 0.65 1.27 0.44

aExperiment at 400 K �Ref. 33�.
bExperiment at 298 K �Ref. 34�.
cCalculated results by Wagner and Windl �Ref. 4�.
dCalculated results by Hu et al. �Ref. 35�.
eC� is calculated differently depending on the symmetry of the structure �see Appendix�.
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that the values of C11, C12, C�, and B decrease with respect to
increasing temperature. We therefore use Mercier’s data to
compare with our results. In comparison, our calculated val-
ues of C11, C12, and C44 are overestimated by 14%, 14%, and
35%, respectively. The bulk modulus �B�, the Zener aniso-
tropy �A�, and C� are overestimated by 10%, 19%, and 12%.
Since DFT calculations simulate ground-state properties of a
material at 0 K, no temperature effects or lattice vibrations
are taken into account. Considering that elastic constants
usually decrease with temperature, the discrepancies with ex-
periment are likely due to omissions of temperature effects.

Although there is abundant need for single-crystal elastic
constants for all phases of NiTi, no reliable experimental
data exists and only recently have theoretical calculations
begun to appear for any intermediate and martensitic phases.
An extensive study of the elastic properties of NiTi was re-
cently completed by Wagner and Windl,4 in which they cal-
culated the elastic constants of B19, B19�, and B33 using
pseudopotential methods. Our FLAPW method calculations
are compared with their reported values in Table IV, and the
R-phase elastic constants are reported. While there is consid-
erable agreement between these calculations and a similar
formalism was used to obtain these results �see Appendix
and Ref. 4 for details�, we note two primary methodological
differences. First, we did not allow internal coordinate or
stress-tensor optimization at each lattice distortion. Since lat-
tice distortions were small �up to 2%�, this constraint may
preserve metastable states, mimicking the entropically stabi-
lized high-temperature effects. Second, because each state
was metastable, no stress controls were imposed for any of
the elastic-constant calculations.

Due to these differences, there are three large discrepan-
cies between these sets of results. First, we find C12 to be
lower than C11 for the B2 phase of NiTi, yielding a positive
C� value which gives a metastable B2 structure versus Wag-
ner and Windl who calculated a negative B2 C� of −16 GPa.
Second, the C55 elastic constant of the B19 phase is positive
whereas they reported a negative C55 value. Third, our B19�
C55 elastic constant is three times their obtained result. While
the results of Wagner and Windl would explain the suscepti-
bility of the B2 phase to tetragonal distortion and the B19
and B19� phases to monoclinic distortions, by not relaxing
the internal coordinates we can learn more about the proper-
ties of the entropically stabilized metastable states. Indeed,
their C� is quantitatively lower than the present results and
other calculated values, such as those of Hu et al.35 in which
a screened Korringa-Kohn-Rostoker method was employed.
Additionally, their C� is fully unstable which qualitatively
contradicts experiment. Thus, we find that our FLAPW re-
sults have a higher accuracy in calculating both of these con-
stants. The consistency of our results leads us to conclude
that our calculations and methodology accurately predict ex-
perimental measurements, capturing both major qualitative
features and accurate quantitative results.

Given the agreement with experiment, we now calculate
and compare single-crystal and macroscopic moduli for each
structure of NiTi. The most pronounced effect is the increase
in rigidity of C� �see Table IV� and C44 from the B2 phase to
each other phase. Between B2 and B19�, the increase in C44
is almost twofold and takes two large steps; first, increasing

by 50% to B19 then again by the same amount to B19�.
While the utility of C� as an indicator of stability is not clear,
our calculations indicate that it increases by a factor of 3,
when compared to the R phase, and to a factor of 2–3, when
compared to B19, B33, and B19�. Thus, given that C44 and
C� are much lower for B2 than for the other phases, this
would suggest that the softening of these values in B2 allows
the high-temperature state to deform into more complex
phases as the temperature is decreased. Indeed, soft C44 and
C� have previously been linked to instabilities in the B2
phase and its transformation to martensite.36 However, the
Zener anisotropy, A, decreased from B2 to each other phase.
This supports the experimental findings of Brill et al.,33

which show a sharp decrease in the anisotropy factor at the
martensitic transition temperature.

As with C� and the Zener anisotropy, single-crystal elastic
constants yield insights into the ductility, stability, and phase
formation of polycrystalline martensitic materials. So while
first-principles calculations are limited to periodic single-
crystal behavior and bulk NiTi does not form single crystals,
instead forming complex structures which include aniso-
tropic precipitates and polycrystalline domains with intricate
grain and twin boundaries, we may still extrapolate useful
theoretical macroscopic elastic properties that find good
agreement with experiment.

Thus, we examine the polycrystalline bulk �B�, shear �G�,
and Young’s �E� moduli, and Poisson’s ratio ��� using the
Voigt and Reuss moduli �denoted with subscripts V and R�
with Hill averaging �no subscripts� and present these results
in Table V along with experimental and theoretical compari-
sons �refer to the Appendix for details�. As with the reported
B2 elastic constants, there is strong agreement between the
current calculated results and the elastic properties calculated
from experimental elastic constants for the B2 phase, and our
results compare favorably with previously reported theoreti-
cal results. We note that Wagner and Windl applied an
elastic-constant method that yielded a fully unstable B2
phase. Thus, B2 macroscopic elastic parameters calculated
from their elastic constants are not applicable to a stable B2
phase. Our calculations will be compared with their reported
results for B19� and B33 as those phases either metastable or
stable. We also note that our differences between the Voigt
and Reuss methods are much smaller than found by Wagner
and Windl, and yield more precise elastic properties.

By comparing the elastic properties of these phases, sev-
eral trends appear. First while the bulk modulus remains
fairly constant among phases, the shear modulus increases
greatly from B2 to other phases. B19� exhibits the highest
shear modulus, resisting further shear as B2 is transformed.
Notably, B19� has a higher shear modulus than every other
phase, including B33.

Second, Pugh’s empirical rule has been used to link plas-
tic behavior to low G /B ratios for both pure metals and
intermetallics.35,37 Materials exhibiting a G /B ratio less than
0.57 are more likely to be ductile. All of the NiTi structures
satisfy this highly empirical criterion showing intrinsic duc-
tility; yet given its low shear modulus, this rule may be ex-
aggerated for B2 due to high anisotropy and plane-dependent
differences in shearing behavior. This will be examined in
Sec. III C and the origin of this discrepancy will be identi-
fied.
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Third, another empirical criterion for plastic response to
deformation requires the Poisson’s ratio and the anisotropy
factor to satisfy certain conditions. From examining brittle
and ductile behavior in intermetallic, elemental, and ionic
compounds, Gschneidner et al.38 proposed that B2 interme-
tallics achieve ductility when having an anisotropy factor
greater than 0.8 and a Poisson’s ratio less than 0.35. In pre-
vious calculations, Hu et al.35 proposed that NiTi was near
this range and thus would exhibit some amount of ductility.
However, our calculated values for B2 NiTi are clearly out-
side of this range with a Poisson’s ratio of 0.41 and an an-
isotropy factor of 0.63. Furthermore, when compared with
B2, � is higher and A−1/2 is lower for each other phase such
that � and A−1/2 are within the range for ductile behavior for
the B19�, R, and the proposed B33 phases. Thus, B2 NiTi is
not intrinsically ductile despite meeting Pugh’s empirical
rule. Instead, B2 relies on polycrystalline effects and marten-
sitic behavior to allow macroscopic ductility.

Lastly, the Muller-Achenbach-Seelecke model,39 which
requires the Young’s modulus of the austenite, EA, be smaller
than that of the martensite, EM, was upheld by previous
calculations.4 Here, we too find that this model is confirmed
with EA�90 GPa� substantially smaller than EM�180 GPa�.
Note also that B19� again marks an extremum for yet an-
other elastic parameter while the Young’s modulus of the
B19 and R phases lie in between these values. Additionally,
these Young’s moduli may be directly compared with experi-
ment. Rajagoplan et al.40 measured macroscopic Young’s
moduli of NiTi to be between 101 and 162 GPa using inden-
tation experiments. This agrees with our ab initio elastic con-
stants of the B2 and B19� phases to within 12% and 11%,
respectively.

Since calculated R-phase elastic properties have not been
reported elsewhere, we comment briefly on some of their
features. First, the elastic constants do not vary greatly
among the different symmetries as one would expect given
the previously discussed structural similarities. These phases

have the highest C� elastic moduli of the phases, nearly the
same but slightly greater than B19� and high anisotropy fac-
tors, and so they appear resistant to crystal strains. However,
the shear modulus, the G /B ratio, and the Young’s modulus
lie squarely between B2 and B19� extremums, yielding ex-
pected properties for an intermediate phase of the transfor-
mation path.

To conclude, we have calculated accurate elastic proper-
ties and obtained both individual elastic constants and mac-
roscopic elastic parameters. Since the two empirical ductility
criteria give opposing results for the B2 phase, we conclude
that it is not intrinsically ductile. Instead, ductility in NiTi is
created through its polycrystalline composition and marten-
sitic behavior. Namely, the B19� phase is more intrinsically
ductile than B2; thus, it acts as a barrier to creep and crack
formation. Additionally, due to its higher shear modulus,
B19� is stabilized by internal stresses whereas the B33 phase
is unstable in a stressed environment.

C. Generalized stacking-fault energetics

Generalized stacking-fault �GSF� energetics,41 also re-
ferred to as � surfaces, give insight into the ductility, dislo-
cation mobility, and crack blunting in materials. First-
principles shear energetics have been well studied in such B2
binary alloys as NiAl and FeAl.42 GSF energy, EGSF�u�, is
defined as the energy associated with a rigid shift of one half
of an ideal infinite crystal with respect to another half of an
arbitrary fault vector, u, on a certain slip plane. In practical
calculations, the infinite crystal is approximated with a su-
percell of a sufficient thickness to eliminate interactions be-
tween slip-plane images.

We performed �-surface calculations on B2 NiTi by simi-
larly distorting a supercell of NiTi with a rigid shift along the
�001�, �011�, and �111� slip planes. We calculated the total
energies at intervals of 0.1a in the two dimensions parallel to
the slip plane, where a is the B2 lattice constant. Initially, the

TABLE V. Calculated macroscopic elastic properties for NiTi structures �GPa; except A, G /B, and �, dimensionless�.

B2 B2a B2b B2c B19 R �P3� R �P3̄� R �P31 /m� B33 B33b B19� B19� b

A 2.49 2.06 −2.58 1.51 1.6 0.87 0.94 0.95 1.11 0.65 1.27 0.44

A−1/2 0.63 0.70 N/A 0.81 0.79 1.07 1.03 1.02 0.95 1.24 0.89 1.51

BV 158 140 159 157 159 156 156 159 155 156 159 152

BR 159 140 −17 158 156 155 155 158 151 151 157 142

GV 35 27 18 46 59 58 58 58 68 56 71 56

GR 29 24 −453 44 54 57 56 56 53 22 67 34

B 159 140 71 158 157 156 156 159 153 154 158 147

G 32 25 −218 45 57 58 57 57 60 39 69 45

� 0.41 0.41 1.77 0.37 0.34 0.34 0.34 0.34 0.33 0.38 0.31 0.37

G /B 0.20 0.18 −1.37 0.29 0.36 0.37 0.37 0.36 0.39 0.25 0.43 0.30

EV 98 76 51 125 158 155 154 154 179 151 184 149

ER 82 68 −139 121 145 153 151 150 141 63 176 95

E 90 72 −44 123 151 154 152 152 160 107 180 122

aFrom experimental elastic constants �Ref. 34�.
bFrom calculated results by Wagner and Windl �Ref. 4�.
cCalculated results by Hu et al. �Ref. 35�.
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maximum thickness of the supercell was chosen to ensure
that periodic effects due to the shearing at the slip plane
disappeared within the layers. To examine possible atomistic
mechanisms to martensitic transformation, this was slowly
reduced to thinner slabs in order to find a minimum-energy
barrier. For the �001� slip plane, the unit cell was chosen with
axes a, b=a, and c=2a ,3a ,4a, or 6a. Thus, the supercell is
two to six atomic layers thick between each slip plane. For
�011� slip, the unit cell was chosen with axes a, b=�2a, and
c=�2a ,3 /2�2,2�2a ,3�2a, with thicknesses of two to six
atomic layers. For �111�-planar stacking-fault calculations,
the unit cell is set as hcp with a111=�2a and c
=�6a111 /6,�6a111 /4,�6a111 /3,�6a111 /2. Thicknesses are
two to six atomic layers and packing is much tighter �see
Table VI�. For approaching Ni and Ti atoms, muffin-tin radii
were reduced to the maximum value without an overlap.

First, total energies were calculated for a set of shear vec-
tors. Then, the full � surface for an arbitrary fault vector was
constructed using a Fourier expansion over Kn vectors recip-
rocal to the slip vectors such that

EGSF�u� = �
n=1

Cn	1 − cos�Knu�
 , �1�

where Knu=n1k1+n2k2, k1= �2� /a�, and k2= �2� /b� for each
slip plane, n1 and n2 are integers, and the Cn are determined
with a mean least-squares fit to the calculated energies. Next,
we relaxed each structure in order to determine the preferred
atomic locations along the slip plane, relaxing the atomic
coordinates throughout the stacking fault. This resulted in
significant movement of the atomic coordinates and greatly
affected the total energies throughout the � surface.

Calculations of the �001� � surface showed a high-energy
barrier to shear in all directions �see Fig. 2 and Table VI�. In
addition, to complete the rigid shift to half of a lattice con-
stant in the �110� direction, the muffin-tin radii for overlap-
ping atoms had to be reduced so drastically that the high

electron loss from the core electrons within the muffin tins
made it impossible to obtain meaningful total energies. In the
�100� direction, sizable unstable stacking-fault barriers of
over 2 J /m2 were recorded. This is comparable with the
unrelaxed value of 3.3 J /m2 in NiAl.42 These barriers were
reduced to nearly half their original size by employing
atomic relaxation, yet barriers remained large and greater
than 1 J /m2. These results were essentially identical for dif-
ferent slab thicknesses showing that the topology and the
barrier heights are not heavily affected by changes in the
number of layers but B2 NiTi is highly resistant to �001�
shear. Thus, this slip is unlikely to be a primary mechanism
to diffusionless shear and does not accommodate creep.

Rigid shifts in the �011� planes were successful through-
out the � surface. Figure 3 shows the energy versus shear
along the �011� slip plane. For all thicknesses examined, the
lowest-energy barrier of the nonrelaxed � surface is in the
�111� direction and the barrier height is less than 1.4 J /m2

and varies depending on the slab thickness. These unrelaxed
unstable stacking-fault barriers are around 2/3 to 2/5 of those
in the �001� plane and are even lower than relaxed �001�
energy barriers. Next, we employ geometry optimization for
the �011� � surface which greatly affects its topology. This
atomic relaxation significantly reduces the energy surface
along the �100� direction, revealing a minimum-energy shear
path. Additionally, stable stacking-fault barriers emerge for
thicknesses of two, three, and four layers, and while all en-
ergy barriers are very small, unstable stacking-fault barriers
are slightly higher for the four-layer case and nearly three
times higher for the two-layer case. Yet at the edge of the �
surface, the energy barriers are approximately 0.1 J /m2 for
the two-, four-, and six-layer cases �the three-layer case has a
barrier of 0.38 J /m2 here�. Thus, for these thicknesses, B2
NiTi is susceptible to stacking faults along the �011� plane,
which is facilitated by atomic relaxation, revealing low-
energy barriers in the �100� direction.

TABLE VI. Energy barriers and unstable stacking-fault energies.

Plane
Layers �thickness�

�Å�

Unrelaxed barrier Relaxed barrier

Direction
Height
�J /m2� Direction

Height
�J /m2�

�001� 2�3.0� �100� 2.08 �100� 1.22

3�4.5� �100� 2.10 �100� 1.28

4�6.0� �100� 2.14 �100� 1.09

6�9.1� �100� 2.09 �100� 1.10

�011� 2�4.3� �111� 1.39 �100� 0.31�0.12�a

3�6.4� �111� 1.26 �100� 0.47�0.38�
4�8.5� �111� 0.89 �100� 0.13�0.11�
6�12.8� �111� 1.06 �100� 0.11

�111� 3�2.6� �2̄11� 0.76b �2̄11� 0.53b

4�3.5� �2̄11� 1.34 �2̄11� 1.09

6�5.2� �2̄11� 0.88 �2̄11� 0.62

aStable stacking fault.
bAll unrelaxed and relaxed �111� barriers are taken at 1

6
u
a in the �2̄11� direction.

ROLE OF ELASTIC AND SHEAR STABILITIES IN THE… PHYSICAL REVIEW B 80, 144203 �2009�

144203-9



The slab thickness of �011� planes more clearly affects the
topology of the surfaces than for �001� shear. The two- and
three-layer slabs have greater resistance to �011� shear for
both unrelaxed and relaxed calculations. After relaxation,
small unstable energy barriers remain at around 0.3u

a �100�
for these thicknesses. The three-layer case is clearly not pre-
ferred given that the stable stacking-fault barrier is more than
three times higher than at other thicknesses. However, the
two-layers case is unique in that it exhibits a stable stacking
fault that is approximately 1/3 the size of its unstable
stacking-fault barrier, and nearly the same height at the edge
of the � surface as for the thicker layers. Additionally, relax-

ation reduces its energy barriers by the greatest margin as
small atomic movements sharply affect total energies. There-
fore, while there is a sizable unstable stacking-fault barrier to
two-layer shear, some other slight deformation of the lattice
such as Bain-strain distorting lattice constants, may further
accommodate this shear, enabling bilayer faults to occur with
negligible energy barriers. This will be further examined in
Sec. III D with respect to the transformation path.

Many alloys of NiTi transform to an R phase before trans-
forming to the martensitic structure. For NiTi, this phase is
based on an hcp symmetry, as shown in Table I. The shearing
mechanism which most likely leads to this phase’s formation

(b)(a)

(c) (d)

(f)(e)

FIG. 2. �Color online� The � surfaces in the �001� slip plane for B2 NiTi for two layers ��a� and �b��, three layers ��c� and �d��, and four
layers ��e� and �f�� �a cutoff of 2 J /m2 is imposed�. For �a�, �c�, and �e� no relaxation was employed. For �b�, �d�, and �f�, atomic coordinates
were relaxed.
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is due to �111� shear, which we calculate and show in Figs. 4
and 5. These stacking faults have very high barriers, beyond
0.2a in all directions, with the unstable stacking fault occur-
ring at � 1

3a ,0�, �0, 1
3a�, and � 1

3a , 1
3a�. Near this unstable

stacking fault, as in the �110��001� fault, it was impossible to
calculate meaningful total energies. This gap occurs in the

�1̄10� and �2̄11� directions between 0.2u
a and 0.8u

a for all slab
thicknesses.

As in the �011� � surface, there are major topological
differences in each surface depending on the number of lay-
ers that are used. As stated above, given the impossibility of
shearing toward the unstable stacking fault due to atomic
overlap, we could not obtain meaningful values for the en-
ergy barriers. So, we used a constant reference point of
� 1

6a , 1
6a� to compare shear energies �see Table VI�. Layers

divisible by 3 �three and six layers� have lower barriers, un-

(b)(a)

(c) (d)

(f)(e)

(g) (h)

FIG. 3. �Color online� The � surface in the �011� slip plane for B2 NiTi for two layers ��a� and �b��, three layers ��c� and �d��, four layers
��e� and �f��, and six layers ��g� and �h�� �a cutoff of 2 J /m2 is imposed�. For �a�, �c�, �e�, and �g� no relaxation was employed. For �b�, �d�,
�f�, and �h�, atomic coordinates were relaxed.
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relaxed barriers are 0.76 and 0.88 J /m2 and relaxed barriers
are 0.53 and 0.62 J /m2, respectively. The four-layer barrier
is nearly twice as high as these �1.34 J /m2 unrelaxed and
1.09 J /m2 relaxed�, and two-layer shear was unsuccessful to
this point due to atomic overlap. Overall, �111� stacking
faults are highly resistant to shear but with relaxation, small
fault displacements for three and six layers may facilitate the
transformation from B2 to the R phase.

We extrapolate the energy surface and map the Burger’s
vectors for the relaxed three-layer �111� shear 	see Fig. 5�b�
,
and find that the dislocation process may be split into three

primary steps. First, there is a �2̄11� shear to � 1
6a , 1

6a�. The

second step proceeds in the �1̄10� direction from � 1
6a , 1

6a� to
� 5

6a , 1
6a� along a low-energy valley between two unstable su-

perlattice intrinsic stacking faults at � 1
3a ,0� and at � 1

3a , 1
3a�.

The final partial Burger’s vector returns to the original state

by means of a �011̄� shear. Given the large barriers shown
here, this transformation clearly cannot occur without other
simultaneous mechanisms �e.g., a lattice distortion via Bain
strain, a coordinated shearing process involving multiple
nonparallel shears, etc.�. However, by mapping the disloca-
tion behavior of the system, we expose atomistic transforma-
tion properties of the B2 to R martensitic transformation.

(b)(a)

(c) (d)

(f)(e)

(g) (h)

FIG. 4. �Color online� The � surface in the �111� slip plane for B2 NiTi for two layers ��a� and �b��, three layers ��c� and �d��, four layers
��e� and �f��, and six layers ��g� and �h�� �a cutoff of 2 J /m2 is imposed�. For �a�, �c�, �e�, and �g� no relaxation was employed. For �b�, �d�,
�f�, and �h�, atomic coordinates were relaxed.
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These calculated � surfaces can be further used for under-
standing dislocation and deformation properties of B2 NiTi
within atomistic-continuum modeling approaches such as the
Peierls-Nabarro �PN� model �see, e.g., Ref. 42�. However,
even without performing detailed PN modeling, one can pre-
dict that due to extremely low shear resistance, �100��011�
dislocations will have very low Peierls stress and high mo-
bility while high stress and low mobility occurs in the �001�
and �111� fault planes. By mapping the Burger’s vectors of
the �111� shear plane, quantifying stable and unstable
stacking-fault barriers for all major shear planes, and identi-
fying the interplay between shear-layer thickness and barrier
height, this data provides both direct guidance into the phase
boundary formation and propagation, and indirect inputs for
microstructural and continuum modeling that cannot be di-
rectly obtained by experiment.

D. Transformation path mechanisms

For many years, researchers have sought a more complete
understanding of the atomistic mechanisms in martensite for-
mation primarily for theoretical purposes. Today, the estab-
lishment of a more complete theory of martensitic transfor-
mation not only has academic importance, it is also
instrumental for applied research as it provides theoretical
inputs for multiscale modeling approaches to structural be-
havior. Thus, researchers may model and predict material
behavior from the nanoscale to the macroscale. Here we ex-
amine the transformation paths of NiTi between its austenitic
and martensitic structures.

Since the initial characterization of the phases of marten-
sitic NiTi, researchers have assumed that there is a direct
transformation path between the B2 and the B19� phases that
may be inferred from precursor phenomena in the B2 phase.
Otsuka and Ren36 tied the soft C�, C44, and TA2 phonon

modes to �11̄0��011� basal shear/shuffle and to �11̄0��001�
nonbasal shear instabilities. In turn, these structural instabili-
ties would yield coordinated atomic movements that would
transform the B2 to the B19� phase.

Later, Ye et al.7 modeled a B2 to B19� transformation by
displacing alternating �011� planes while simultaneously im-
posing an orthorhombic distortion of the unit cell and a dis-
tortion of the monoclinic angle to arrive at B19�. However,
their ab initio pseudopotential calculations showed small en-
ergy barriers around the B2 phase. Later, a barrierless path

from B2 to B33 was found by Morris et al.6 for several B2
intermetallics by shuffling pairs of �011� planes via stacking
faults in a B2 supercell. Wang,43 using the nudged elastic-
band method, found a mostly barrierless transformation from
B2 to B19� through a “twinned” structure. However, a small
barrier exists between the twinned structure and B19�. Most
recently, the present authors found a direct barrierless two-
step transformation path from B2 to B19� through an un-
stable state, labeled 109°-B19�.5 Here, we present more de-
tails of this path which is composed of a bilayer shear
followed by a monoclinic angle relaxation, and we discuss
the B2 to B33 transformation path.

The total energies of several transformation paths at-
tempted by us are plotted in Fig. 6. In response to Otsuka
and Ren’s early suggestion, we performed calculations in-

volving a basal �11̄0��011� shear/shuffle and discovered that
there is excessive Ti-Ti repulsion associated with this mecha-
nism. Interatomic repulsion cannot be accommodated by
atomic relaxation, prohibiting the calculation of a full trans-
formation path and prompting the conclusion that this trans-
formation cannot be made without impractical energy barri-
ers. We further performed calculations for an alternative path
involving a single-layer �100��011� basal shear. Calculations
of this path were successful �see path I in Fig. 6� to the
unstable stacking fault. However, at this point we found sig-
nificantly high-energy barriers of around 37 meV/atom
above the B2 phase due to Ti-Ni repulsive forces. Thus, these
findings show that monolayer shears applied to the B2 phase
are improbable as an initial component of the transformation
path.

Considering that low unstable stacking-fault energy barri-
ers were obtained in our �011� �-surface calculations, we
explore mechanisms which use this shear. The lowest barri-
ers were obtained using �100��011� shear, and of the thinner
slabs, two layers had the lowest-energy barriers �see Table
VI�. Thus, we calculate a bilayer �100��011� basal shear/
shuffle from the B2 phase to a shuffle of 0.5u

a �see path II in
Fig. 6�. While all the atomic coordinates were relaxed
throughout this process, we fixed the dimensions of the unit

(b)(a)

FIG. 5. �Color online� The � surface for B2 NiTi for �a� full
unrelaxed and �b� relaxed three layer �111� slip plane �a cutoff of
2 J /m2 is imposed�.

FIG. 6. �Color online� Total energies of the transition mecha-
nisms from B2 to B19� and the proposed B33 martensitic struc-
tures. The B33 and 109°-B19� structures occur at a relative shear of
1
2

u
a . Lines represent a spline fit to the data points.
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cells and an energy barrier of 0.22 eV/atom was found. How-
ever, when all lattice constants and full atomic coordinate
relaxation were employed, the transformation path become
barrierless to 0.5u

a �see path III in Fig. 6�.
For this path, two different shearing mechanisms were

used and are compared here. These mechanisms are illus-
trated in Fig. 7 �without relaxation� such that the �011� plane
is perpendicular to the vertical axis at each displacement step
and the stacking fault between each pair of planes is induced
in the �100� direction. For the first mechanism, the initial B2

phase, Pm3̄m space group, is distorted by applying a bilayer
�100��011� basal shear/shuffle to a four-atom supercell. This
breaks its cubic symmetry and the system becomes ortho-
rhombic �space group Pcam�. By allowing atomic relaxation
	see Figs. 8�a�–8�c�
, when the shuffle reaches 0.5u

a displace-
ment, the primitive unit cell becomes equivalent to the
monoclinic type B19� �space group P2 /1m�. This metastable
phase is equivalent to the martensite phase, except for the
monoclinic angle, �, which is 109°, and we name this phase
109°-B19�. The second mechanism is also modeled with a
four-atom supercell but instead of shuffling the atoms in a
fixed orthorhombic supercell, we apply a monoclinic shear to

the unit cell. By doing this, the long-range order is mono-
clinic, although at 0.5u /a displacement, the exact same crys-
tal structure is obtained, including the long-range order of
the system. Thus, in the first method bilayers are sheared in
opposite directions while in the second method bilayers are
sheared in the same direction. Despite the differences in
long-range order throughout the transformation, these shear-
ing mechanisms yielded identical results within numerical
error. Thus, the transformation path is continuous and barri-
erless to 109°-B19� and the final total energy is 25.2 meV/
atom lower than B2 �see path III in Fig. 6�.

At this point, we note that B19� has a lower total energy
than this devised intermediate phase, 109°-B19�. Thus, the
transformation must proceed to the more stable structure. It
is easily determined that the primary difference between
these two structures was their respective monoclinic angles,
�. For path IV 	see Fig. 6 and Fig. 8�c�–8�e�
 we relax the �
angle of 109°-B19� to �=98°, which effectively induces a
�100��011� basal shear and the structure becomes B19�. As
shown in Fig. 6, this angle relaxation is barrierless and com-
pletes the transformation to B19�. By combining paths III
and IV, we have established a direct continuous barrierless
transformation path from the B2 phase to the B19�. The
transformation between these phases consists of a �100��011�
bilayer basal shear/shuffle followed by another basal shear
which relaxes the structure’s monoclinic angle. The resultant
phase is the experimentally observed B19� phase which has
a total energy that is 55.4 meV/atom below B2.

This barrierless path was calculated with the omission of
temperature effects. If temperature effects were included, the
B2 phase would become stabilized entropically, and at tem-
peratures above the martensitic transformation temperature,
the free energy of the martensite would be higher than that of
the austentite. Our calculations simulate the cooling process
whereby the entropic stabilization of the austenite reduces
and vanishes, revealing the barrierless transformation path
that we have described. Since total-energy DFT calculations
by definition describe ground-state �T=0 K� properties of
materials, these calculations cannot address the free-energy
stabilization of the B2 phase directly. However, several com-
bined techniques which integrate DFT calculations with
atomic dynamics to investigate thermal excitations, e.g.,
high-temperature phonon calculations based on self-
consistent ab initio lattice dynamics44 or ab initio molecular-
dynamics simulations,45,46 may obtain temperature-
dependent free energies which quantify this effect. The
application of temperature effects, however, lies beyond the
scope of the present study, in which we focus on intrinsic
structural and mechanical properties of the NiTi phases that
enable the transformation path as the austenite transforms to
martensite.

The primary reordering during relaxation is exemplified
by comparing Ni-Ti interatomic distances. Without relax-
ation, the interatomic distance for Ni-Ti across the slip plane
and within the bilayers is 2.13 and 2.61 Å, respectively, at
u
a �100��011� shear 	see Fig. 7�c�
. After optimization at this
point, the distances change to 2.44 Å across the plane and
2.50 and 2.60 Å within the bilayer 	see Fig. 8�c�
. As the
angle � in NiTi becomes 98°, and NiTi becomes B19�, the
Ni-Ti distance equivalent to those across the slip plane for

FIG. 7. �Color online� The NiTi B2 phase viewed along the
�011� plane for the bilayer transformation path to 1

2a�011� shear. No
relaxation is employed. The initial structure of B2 NiTi is shown as
0 displacement, and imposed shears of 0.3 and 0.5 times the lattice
constant are shown next for an orthorhombic and monoclinic unit
cell. The structures are equivalent at the 0.5 point. Solid lines out-
line the unit cell and dotted lines outline the bilayers.

FIG. 8. �Color online� The transformation path from B2 to
B19�. The path proceeds with a bilayer shear of 0.3 and 0.5 times
the lattice constant. At 1

2a�011� shear, the structure is monoclinic
with an angle � of 109°. The monoclinic angle is relaxed and brings
this structure to B19� at 98°.
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B19�-109° �which was formerly 2.44 Å� becomes 2.59 Å,
and the two Ni-Ti distances �formerly 2.50 and 2.60 Å� that
were within the bilayer become 2.53 and 2.60 Å �see Fig. 8�.
Thus, through this process, the bond distances equalize after
departing from the highly symmetric B2 cubic structure at
which Ni-Ti distances were 2.61 Å. The final Ni-Ti dis-
tances for B19� are 2.53, 2.59, and 2.60 Å.

As noted above and in Sec. I, Huang et al.2 asserted that
the true low-energy structure was B33, and that the angle �
of B19� was susceptible to elongation and was stabilized by
internal stresses. This has been subsequently verified by
other calculations.4,6,47 Our calculations agree: by optimizing
all lattice constants and atomic coordinates, the monoclinic
angle of B19� may be increased to form B33. Using the
structural parameters provided by Huang et al., we deter-
mined that the total energy of the B33 phase is 4.6 meV/atom
lower than the B19� phase. While lower, this energy differ-
ence is very small ��50 K�, and further study concerning its
relation to the B2 structure is warranted. Additionally, while
the primitive unit cell is similar to the B19� structure, it has
a larger monoclinic angle and the volume of the B33 unit cell
is greater than that of B19� due to a large elongation of the a
lattice constant.

Since the B33 phase has been established as the low-
energy phase, why is it not found in experimental measure-
ments? To answer this question, we calculated a transforma-
tion path from the B2 to the B33 phase �see path V in Fig. 6�.
The B33 phase was reached at bilayer 1

2
u
a �100��011� shear

but relaxation caused an impractical 10.1% elongation of the
a lattice constant when the final structure was reached. This
expansion of a occurred immediately whereas for path III,
0.1u

a shear had caused an a lattice expansion of 1%; for path
V, a was nearly 4% longer. Given this elongation, it is im-
probable that such a transformation would occur within a
bulk system. Instead, the system is likely to stabilize the
B19� phase with internal stresses �as has been proposed2 and
quantified4�, and the B2→B19� transformation will follow
our calculated path �III+IV� in which no lattice constant is
distorted by more than 3%.

Thus, B33 may form in certain environments with mini-
mized internal stresses. It prefers a greater lattice elongation
throughout the martensitic transformation. While we have
predicted that the direct path from B2 to the B33 phase is
energetically favorable, the direct transformation path from
the B2 phase to the B19� phase is still preferred in the bulk
system because it does not require large lattice distortions.

IV. SUMMARY AND CONCLUSION

We have calculated the structure of equiatomic NiTi for
each of the experimentally and theoretically suggested crys-
tal structures. Using structural optimization, we find total
energies and lattice constants to be in agreement with previ-
ous calculations and experimental findings. We confirm the
existence of the B33 phase and obtain similar results in com-
parison with previous calculations. The formation energy has
been calculated and is in closer agreement with experiment
than previous calculations and we present formation energies
for intermediate and martensitic structures.

For the R phase of NiTi, our total-energy results indicate
that the most favorable space group is P3, first experimen-
tally observed by Hara et al.; Schryvers et al., measured a P3̄
space group for the R phase alloyed with iron. We found that
space group P3̄ is a metastable state. However, the structure
with this symmetry was less stable than the P3 space-group
structure as its total energy was higher by 3 meV/atom. Since
alloying can change the structure of a material, these results
are not necessarily contradictory; instead, small amounts of
iron may change the symmetry of the R phase to P3̄.

We compared all the elastic constants calculated for the
B2, R, B19, B19�, and B33 structures. We asserted that re-
stricting geometry optimization gives insights into entropi-
cally stabilized metastable states—as is shown for the B2,
B19, and B19� phases via the stability of the C� and C55
elastic constants. The C� value, which must be positive for
stable structures, is 19 GPa for the B2 phase, which agrees
with experiment within 11%. For B19, B19�, and B33 sta-
bility against monoclinic deformation is linked to the C55
elastic constant, which is positive for each of these struc-
tures. Additionally, the calculated elastic constants of R are
reported. The B2 phase has lower C44 and C� values than
other phases, suggesting that these soft elastic constants are a
precursor to the martensitic transformation. Supporting ex-
perimental findings of Brill et al., we find a sharp decrease in
the anisotropy factor from the B2 structure to other struc-
tures.

Macroscopic elastic moduli which describe polycrystal-
line samples may also be obtained through an analysis of the
single-crystal elastic constants, and the bulk, shear, and
Young’s moduli and Poisson’s ratio have been calculated and
presented. Our calculated Young’s modulus of the B2 and
B19� phases agrees well with experiment, and we have ana-
lyzed these elastic properties to learn about the macroscopic
behavior of NiTi. Unlike the B2 phase, the B19� phase ex-
hibits a higher stiffness and a high shear modulus, which
stabilizes it with respect to other phases including B33. Ad-
ditionally, we have identified indicators which suggested that
B19� is ductile and less susceptible to crack formation. Due
to the good stability and high ductility of this martensitic
phase, desirable mechanical properties for shape-memory al-
loys are achieved in the NiTi system. Additionally, these the-
oretical single-crystal and polycrystalline elastic constants
provide inputs for larger scale modelling approaches and as
such may be used to predict macroscopic behavior.

Generalized stacking-fault ��-surface� calculations were
performed for the �001�, �011�, and �111� slip planes of B2.
We clearly illustrated stacking-fault instabilities, energy bar-
riers, and their relation to stacking-fault layer thicknesses.
We found a sharp resistance to �001� and �111� shear which
is lowered by relaxation but remains strong; �001� faults are
unlikely to occur. For the �111� slip plane, slip likely occurs

with three- or six-atom layer thicknesses in the �2̄11� direc-
tion but shears of more than 0.2u

a are unlikely. Nevertheless,
the Burger’s vectors for this system have been mapped with
the expectation that coordinated shear/strain behavior may
allow dislocations and transform B2 to R.

Resistance to �011� shear is significantly lower. After fully
relaxing the atomic coordinates in the perpendicular direc-
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tion, we found very low-energy barriers to stacking faults in
the �100� direction of this plane. Stable stacking faults oc-
curred at 1

2
u
a �100��011�, and this barrier height was lowest

for the two-, four-, and six-layer cases. Thus, for these thick-
nesses, an instability was likely if lattice constants or addi-
tional parameters were relaxed, and these results prompted a
search for transformation paths using similar mechanisms.

Finally, after reviewing and attempting previously pro-
posed transformation paths, we establish the direct mecha-
nisms of martensitic transformation. We predicted a two-step
transformation for NiTi between the B2 austenitic and B19�
martensitic phases and a one-step transformation between the
B2 and B33 phases. The B2 to B33 transformation is accom-
plished by a bilayer in the �100��011� direction and is facili-
tated by an elongation of the a lattice constant, which is not
likely to be allowed in a bulk system. The B2 to B19� trans-
formation occurs through bilayer �100��011� shear followed
by a relaxation of the angle �. Throughout the bilayer shear-
ing process, there is a sizeable rearrangement of the atomic
positions in the c direction, which allows the transformation
to occur without overlap between atoms and minimizes
changes to the interatomic distances. The relaxation of �
continues to equalize these distances and the transformation
is completed when this angle reaches 98°. The final marten-
sitic phase is the B19� structure which is 55 meV/atom lower
in energy than the B2 phase.
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APPENDIX: DETAILS OF ELASTIC CONSTANT
CALCULATIONS

The single-crystal elastic constants presented here were
calculated using the formalism proposed by Wallace.48 These
are calculated by first creating a symmetric distortion matrix
ê,

ê = �1 + axx axy axz

ayx 1 + ayy ayz

azx azy 1 + azz
 , �2�

where aij =aji. Exploiting this symmetry, we may replace aij
with �k, where k=1 to 6. Thus, axx=�1, ayy =�2, azz=�3,
axy =ayx=�4, ayz=azy =�5, and azx=axz=�6. A distortion ma-
trix, with certain �i values chosen as nonzero, is multiplied
by the Bravais lattice matrix,

L̂ = �L1x L1y L1z

L2x L2y L2z

L3x L3y L3z
 , �3�

to obtain a distorted unit cell. To calculate the elastic con-
stants, we expand the total energy in a Taylor series with

respect to this distorted unit cell. The total energy to second
order is

E�V,�� = E�Vo,0� + Vo��
i

	i�i +
1

2�
i,j

Cij�i
i� j
 j� . �4�

The expansion coefficients, 	 and Cij, are the stress-tensor
components and elastic constants. If a stable structure has
been obtained, the stress-tensor components will be negli-
gible, as we found in our calculations. As for �, the indices
of the elastic constants, i and j, run from 1 to 6. There are up
to 21 independent elastic constants given in Voigt notation
which have been tabulated by Wallace48 for each crystal
symmetry. The variable 
 is used to take into account con-
stants which need to be double counted for i=4,5 ,6; 
=2,
and for i=1,2 ,3; 
=1. The elastic constants are determined
by finding d2E�V,��

d�2 . This is accomplished by creating a distor-
tion matrix for each independent elastic constant. In our cal-
culations, � ranged from −2.5% to 2.5% in steps of 0.5%.

As an example, for the orthorhombic B19 structure, space
group Pcmm, there are nine independent elastic constants:
C11, C12, C13, C22, C23, C33, C44, C55, and C66. To calculate
C66 we compose the distortion matrix,

ê = �1 0 0

0 1 �

0 � 1
 . �5�

For this distortion matrix, the total energy is

E�V,�� = E�Vo,0� + Vo�	6� + 2C66�
2� . �6�

The total energies are fit to this equation with a second-order
polynomial fit. However, for each elastic constant, there are
several different combinations of distortions that may be
used to obtain data points and an equation of fit. To calculate
C12, we choose the distortion matrix,

ê = �1 + � 0 0

0 1 + � 0

0 0 1
 . �7�

The total energy becomes

E�V,�� = E�Vo,0� + Vo��	1 + 	2�� +
1

2
�C11 + 2C12 + C22��2� .

�8�

Since C12 is dependent on C11 and C22, we must create two
additional distortion matrices to calculate those constants in
order to solve C12. A total of nine independent distortion
matrices are needed to obtain each of the independent elastic
constants for the orthorhombic structure. This procedure was
carried out for each structure. There are three independent
elastic constants for the B2 cubic structure, 13 for mono-
clinic B19�, and six for each R structure given its hexagonal
symmetry. These values are shown in Table IV. Additionally,
for each of these structures, we have tabulated C�, the Zener
anisotropy �A�, and the bulk moduli �B�, which were calcu-
lated by fitting volume distortions to the Birch-Murnaghan
equation of state.25
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C� is typically defined for cubic structures as C�
=

�C11−C12�
2 but this stability may be generalized to orthorhom-

bic structures4 as the minimum value of several possible dis-
tortions, namely,

4C� = �
C11 + C22 − 2C12

C11 + C33 − 2C13

C22 + C33 − 2C23

C11 + C22 + C33 + 2C12 + 2C13 + 2C23

� , �9�

where instability occurs for C��0. We note that the efficacy
of C� for monoclinic structures has not been established but
we include them for comparison.

A is defined for cubic structures as C44 /C�. However, in
more complex phases, this may be generalized to the mini-
mum value of three separate equations,

A = �C44/C�

C55/C�

C66/C�
� . �10�

For the polycrystalline elastic moduli, we refer to Hill,49

who examined two competing elastic-constant calculation
techniques, that of Voigt,50 who built a formalism based on
an assumption of uniform strain throughout a sample, and of
Reuss,51 who assumed uniform stress. Hill proved that these
two values constituted bounds of the actual elastic moduli,
which could be accurately estimated as the midpoint between
these two values �the Hill averages�.

The Voigt and Reuss bulk and shear moduli are

9BV = �C11 + C22 + C33� + 2�C12 + C23 + C31� , �11�

15GV = �C11 + C22 + C33� − �C12 + C23 + C31�

+ 3�C44 + C55 + C66� , �12�

1

BR
= �S11 + S22 + S33� + 2�S12 + S23 + S31� , �13�

15

GR
= 4�S11 + S22 + S33� − 4�S12 + S23 + S31�

+ 3�S44 + S55 + S66� , �14�

where Cij are the single-crystal elastic constants, Sij are com-
ponents of the compliance matrix, c−1=s, the inverse of the
elastic constant matrix, and K and G are the bulk and shear
moduli using the Voigt and Reuss formalism. The Hill aver-
age is therefore, B= 1

2 �BV+BR� and G= 1
2 �GV+GR�.

Poisson’s ratio ��� and Young’s modulus are calculated as
follows:

� =
1

2
�1 −

3G

3B + G
� , �15�

1

E
=

1

3G
+

1

9B
. �16�

Young’s modulus may be calculated by using Hill averaged
values, Reuss moduli, or Voigt moduli. All three have been
presented. The Poisson’s ratio was calculated using Hill av-
eraged values for the shear and bulk moduli.
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