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Molecular dynamics study of self-diffusion in bcc Fe
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A semiempirical interatomic potential for Fe was used to calculate the diffusivity in bcc Fe assuming the
vacancy and interstitial mechanisms of self-diffusion. Point-defect concentrations and diffusivities were ob-
tained directly from molecular dynamics (MD) simulations. It was found that self-diffusion in bec Fe is
controlled by the vacancy mechanism at all temperatures. This result is due to the fact that the equilibrium
vacancy concentration is always much larger than the equilibrium interstitial concentration. The predominance
of the equilibrium vacancy concentration over the interstitial concentration is explained by the lower vacancy-
formation energy at low temperatures and high vacancy-formation entropy at high temperatures. The calculated
diffusivity is in good agreement with experimental data. The MD simulations were also used to test the
quasiharmonic (QH) approximation for point-defect calculations. It was found that the QH approximation can
considerably underestimate variations in point-defect characteristics with temperature.
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I. INTRODUCTION

Diffusion plays an important role in the kinetics of many
materials processes.! Experimental measurements of diffu-
sion coefficients are expensive, difficult and in some cases
nearly impossible. A complimentary approach is to deter-
mine diffusivities in materials by atomistic computer
simulations.? In addition to predicting diffusion coefficients,
computer simulations can provide insights into atomic
mechanisms of diffusion processes, creating a fundamental
framework for materials design strategies through control of
diffusion rates. In this paper we focus on the simplest case of
self-diffusion in metals with the goal of testing different
methods of diffusion calculations.

It is well established that self-diffusion in metals is medi-
ated by migration of point defects. Under point-defect
mechanisms, the diffusion coefficient D can be expressed by
(Ref. 3)

d
D = a?fywxle Ol (1)

where a is the jump length of atoms, y is a geometrical
factor, f is the jump correlation factor, v is the attempt fre-
quency which is on the order of typical frequencies of atomic
vibrations, Gi is the free energy associated with the barrier
of point-defect migration, k7 is the thermal factor, and xg is
the equilibrium point-defect concentration. The latter is re-
lated to the point-defect formation free energy, G?, by

xd= ¢~GHT. (2)
The free energy is divided into the energy and entropy parts
by G=E-TS.

There is ample evidence that self-diffusion in face-
centered cubic (fcc) metals is controlled by the vacancy
mechanism. The self-interstitial formation energy in fcc met-
als is much larger than the vacancy-formation energy, mak-
ing the interstitial contribution to diffusion negligibly small.
The case of body-centered cubic (bcc) metals is more com-
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plex since the interstitial-formation energy can be only
slightly higher than the vacancy-formation energy. Since the
interstitial migration energy is usually very small, the activa-
tion energy of diffusion by the interstitial mechanism can be
lower than that for the vacancy mechanism. For example,
this conclusion was reached based on first-principles calcu-
lations for V.# Thus, in the case of bcc metals both mecha-
nisms should be considered.

The most common approach to diffusion calculations is
to compute all point-defect characteristics at 7=0 K and
then apply Egs. (1) and (2) to obtain D. Because such calcu-
lations do not require large simulation cells, first-principles
methods can be used to predict the diffusivity without any
fitting parameters.” However, this approach relies on the as-
sumption that all parameters in Egs. (1) and (2) are tempera-
ture independent. Molecular dynamics (MD) simulations
with semiempirical interatomic potentials indicate that this
assumption is not realistic (see, e.g., Refs. 6-9): the defect-
formation energies and other parameters do depend on tem-
perature. This temperature dependence reflects the anharmo-
nicity of atomic vibrations and other physical effects. Since it
is not presently possible to compute diffusivities in solids
directly from ab initio MD simulations, some temperature
corrections must be introduced into the static methods. One
possible way introduce such corrections is to use the quasi-
harmonic (QH) approximation to atomic vibrations, which
will be discussed in Sec. III. However, the only way to test
the accuracy of the QH approximation is to compare its pre-
dictions with either experiments (which are difficult and can
be subject to the impurity effect and other sources of error)
or more accurate and direct calculations.

Classical molecular dynamics simulations offer the most
direct approach to diffusion calculations.! MD automatically
captures the anharmonicity of atomic vibrations and all other
sources of temperature effects. Unfortunately, lattice diffu-
sion in solids is presently beyond the time scale accessible
by MD simulations even with semiempirical potentials. The
difficulties arise from at least three sources. One is that the
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jump rates of point defects in crystals are very slow in com-
parison with typical jump rates in grain boundaries or at
open surfaces. Second, in order to create and accurately com-
pute the equilibrium point-defect concentration, the simula-
tion block must contain sinks and sources of defects and thus
have a large size. Third, after the simulation block reaches
point-defect equilibrium, it contains a very small number of
point defects, and producing statistically meaningful atomic
displacements induced by those defects would require unre-
alistically long MD times. In this paper we demonstrate that
some of these difficulties can be overcome by introducing
several point defects in the simulation block, computing the
diffusivity, and then making appropriate corrections for the
equilibrium defect concentration.

Indeed, if several point defects are simultaneously present
in the simulation block, the diffusion process is fast enough
that the effective diffusivity D" per defect can be reliably
computed from

Deff = Dsim/xd . (3)

Here, x¢ is the actual point-defect concentration created in
the simulation block,

(ar)
6t

Dsim — (4)

is the diffusivity obtained by the simulations, and (Ar?) is the
mean-squared displacement of atoms during the simulation
time . The true diffusivity can be then calculated by

D =x!Deft (5)
knowing the equilibrium point-defect concentration xJ.

In order to calculate xg, a separate simulation block con-
taining some defect source (e.g., a grain boundary or free
surface) must be used.>!” Reaching the equilibrium defect
concentration requires long MD runs but can be
implemented®'? as long as the temperature is high enough.
At low temperatures this direct method becomes impractical,
but then another approach can be used. The point-defect-
formation energy can be readily computed by MD simula-
tions as a function of temperature. The free energy of defect
formation G? can be recovered by thermodynamic integra-
tion of this function and used to calculate the equilibrium
defect concentration from Eq. (2).

The MD simulations give us the opportunity to test the
QH approximation. Foiles® has extensively tested this ap-
proximation for calculations of free energies of crystalline
defects, including a vacancy in Cu. However, because it was
impossible at that time to compute the actual vacancy con-
centrations by direct MD simulations, Foiles tested his QH
predictions against results of thermodynamic integration of
the vacancy-formation energy.

In this paper we report on MD calculations of point-defect
concentrations and self-diffusion coefficients in bcc Fe over
a wide temperature range. We find that the simulation results
are in good agreement with experimental data. We then com-
pare the MD results for point-defect concentrations with QH
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FIG. 1. (Color online) Equilibrium atomic volume of bcc Fe as
a function of temperature obtained by MD simulations and in the
QH approximation. The experimental thermal expansion (Ref. 12)
is shown for comparison.

calculations and conclude the QH approximation can give
the correct order of magnitude but is far less accurate than
MD.

II. MOLECULAR DYNAMICS SIMULATION OF POINT
DEFECTS AND SELF-DIFFUSION IN Fe

A. Atomic interactions and thermal expansion

The interatomic interactions in bcc Fe were modeled us-
ing the semiempirical interatomic potential developed in Ref.
11. This potential was fitted to zero-temperature ab initio
data and the liquid density at the melting temperature 7.
Although the melting temperature was not included in the
fitting procedure, the potential gives 7,,=1795 K in reason-
able agreement with the experimental melting temperature of
Fe (1812 K).

We started our study by calculating the equilibrium lattice
parameter as a function of temperature. Simulation cells with
2,000 atoms and periodic boundary conditions were used. At
a given temperature, NVT (constant number of atoms, vol-
ume, and temperature) MD simulations were run at several
densities. After equilibration of the system by 20 000 MD
steps (1 MD step=2 fs), statistics of pressure was collected
during additional 20 000 steps. From an extrapolation of the
pressure-volume relation to zero, the equilibrium atomic vol-
ume V vs temperature was found. The results are shown in
Fig. 1 and can be described by the following interpolation
formula:

V(nm®) = 11.64012 + 9.37798 X 107 T + 3.643134
X 107772 - 1.851593 X 107197% + 5.669148
X 10714717, (6)
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Figure 1 also shows experimental data.'> The employed in-
teratomic potential slightly underestimates the lattice param-
eter by 0.26% but provides correct thermal expansion coef-
ficient.

B. Point-defect-formation energies

In order to determine the point-defect-formation energy
we introduced a single point defect (vacancy or interstitial)
in the simulation block and performed a 20 000-step MD run
to equilibrate the model followed by additional 2 900 000
MD steps to compute its average energy E,4. A similar calcu-
lation was performed to compute the energy E, of the same
simulation block without any defects. The point-defect-
formation energy E; was determined as follows:

Er=E4— ENy/N, (7)

where N is the number of lattice sites in the simulation block
(N=2000 in this simulation series), Nyg=N—1 for a vacancy
and Ny=N+1 for an interstitial. Since the simulation block
had periodic boundary conditions in all directions and con-
tained no point-defect sources, new defects could only form
during the simulations by the formation of vacancy-
interstitial pairs.

In order to estimate the statistical error of the determina-
tion of the point-defect-formation energies we performed
eight independent MD simulations for the perfect lattice
simulation cells containing a single point defect at 7=700
and 1500 K. The simulation time was always 5.9 ns. The
statistical error of the determination of the point-defect ener-
gies was estimated to be 0.5% at 7=700 K and 1% at T
=1500 K using 95% confidence intervals. In order to check
if the MD step was small enough and did not affect the
results, we also obtained the vacancy-formation energy at
T=1500 K using the MD step of 1 fs and averaging over
eight independent MD runs. This series of runs yielded
2.16+0.02 eV while the series where MD step was 2 fs
yielded 2.18 =0.03 eV. Therefore, we concluded that the
MD step of 2 fs was small enough and used it in all subse-
quent simulations.

The obtained point-defect-formation energies are shown
in Fig. 2. This figure reveals a very strong dependence of the
defect-formation energy on temperature. In the temperature
interval from 0 to ~1700 K, the vacancy-formation energy
increases with temperature while the interstitial-formation
energy decreases. At higher temperatures the vacancy-
formation energy turns over and begins to decrease with tem-
perature. This decrease was related in Ref. 9 to spontaneous
formation of vacancy-interstitial pairs.

C. Effective diffusion coefficients

The same series of MD simulations was used to determine
the effective diffusivities D° mediated by each of the two
types of point defects. The effective diffusivities were com-
puted from Eq. (3) and are shown in Fig. 3 in the Arrhenius
coordinates. In order to determine the statistical error we
used the same eight independent MD runs discussed in the
previous section. The 95% confidence intervals are shown in
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FIG. 2. (Color online) Point-defect-formation energies obtained
by MD simulations and in the QH approximation as functions of
temperature. The green curves show fits of the MD data by the
interpolation formula (11).

Fig. 3. The data fall on straight lines up to ~1500 K. The
linear fits give the defect migration energy E,, and the pre-
exponential factor Dgff for each defect. The Arrhenius param-
eters obtained are given in Table I. At higher temperatures
positive deviations from the straight lines are observed.
These deviations are related to the spontaneous formation of
vacancy-interstitial pairs, which increase the point-defect
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FIG. 3. (Color online) Arrhenius plot of the effective diffusivi-
ties by vacancies and interstitials obtained by MD simulations in
bee Fe. The lines show Arrhenius fits. The small symbols represent
the data points which were not included in the Arrhenius fits for
reasons explained in the text.
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TABLE 1. Arrhenius parameters of the effective diffusivity in
bee Fe obtained by MD simulations.

Dt Ep
Defect (cm?/s) (eV)
Vacancy 7.87%1073 0.60
Interstitial 5.34x107* 0.15

concentration in the simulation block and thus enhance D™,
The high-temperature points affected by the vacancy-
interstitial pairs were excluded from the Arrhenius fits.

As expected, the migration energy by the interstitial
mechanism is much smaller than that for the vacancy mecha-
nism. It should be noted that at temperatures higher than
1500 K, the sum of the interstitial-formation and -migration
energies (which gives the activation energy of diffusion by
the interstitial mechanism) becomes smaller than a similar
sum for the vacancy mechanism. Based on this observation,
one might conclude that the diffusion process at high tem-
peratures is dominated by the interstitial mechanism. How-
ever, we will see later that this is actually not the case.

D. Point-defect concentrations

Our MD data for the point-defect-formation energies (Fig.
2) are reliable only up to 1500 K. To compute point-defect
concentrations at higher temperatures, more direct ap-
proaches must be applied. The MD simulations presented in
Secs. I A-II C utilized simulation blocks with periodic
boundary conditions in all directions. Such blocks are not
suitable for direct calculations of equilibrium point-defect
concentrations because new vacancies and interstitials can
form in them only by pairs and their concentrations are
bound to be equal. In real materials, vacancies and intersti-
tials can be generated and eliminated by extended defects
and their concentrations need not be equal.

This problem was solved by performing a new series of
MD simulations, in which the simulation block had periodic
boundary conditions only in the x and y directions and free
surfaces in the z direction. The distance between the two free
surfaces was ~185 A. The surfaces served as sinks and
sources of point defects. This simulation block contained
27 900 atoms and the MD time was ~41 ns (20 000 000
MD steps). This time was sufficient for the creation of equi-
librium point-defect concentrations inside the block. The
point defects were counted by identifying the lattice sites
which either contained no atoms (vacancies) or contained
two atoms (interstitials). Details of this procedure can be
found elsewhere.’

In order to verify that the simulation time was sufficient
for reaching the point-defect equilibrium, we performed an
additional series of simulations in which 20 vacancies were
introduced in the beginning of the simulation. After the
equilibration, the same vacancy concentrations were found
as in the simulations starting without any pre-existing vacan-
cies, demonstrating that the equilibration time was long
enough.
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FIG. 4. (Color online) Arrhenius diagram of point-defect con-
centrations in bcc Fe obtained by MD simulations.

The obtained point-defect concentrations are shown in
Fig. 4. The vacancy concentration is rather high reaching
~8X10™* at 1775 K, but the interstitial concentration is
more than two orders of magnitude smaller. As a result, the
simulation block contained only one or no interstitials at any
given time, making the statistics of their concentration rather
poor.

To determine the interstitial concentration more accu-
rately, another series of simulations was performed using an
all-periodic cell with 27 648 atoms. As mentioned earlier,
vacancies and interstitials can now appear only by pairs and
have the same concentration x%. This concentration is related
to the equilibrium vacancy and interstitial concentrations by

—
B = Ve, (8)

which permits a calculation of x} from x? and x}. Because the
concentration of pairs is much higher than x}, much better
statistics could be obtained than in the simulations with open
surfaces. Therefore, in the following calculations we will use
the interstitial concentrations obtained from Eq. (8). Note
that they are in good agreement with the open-surface calcu-
lation at 1775 K (Fig. 4).

E. Interpolation formulas for the point-defect properties

Summarizing the results of Secs. II B and II D we con-
clude that MD simulations give reliable data for point-
defect-formation energies at relatively low temperatures until
vacancy-interstitial pairs begin to form spontaneously during
the simulations. On the other hand, reliable point-defect con-
centrations have been obtained at high temperatures where
reasonable statistics of the defects can be collected. For dif-
fusion calculations, we need to know the equilibrium point-
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TABLE II. Coefficients in the interpolation expression for the
free energy of point-defect formation [Eq. (9)].

80 81 82 83
Defect (eV) (eV/K) (eV/K?) (eV/K?3)
Vacancy 1724  -120Xx10"* -2.79%x 10 -593x 107!
Interstitial  3.530 —1.57X1073 +4.94x1077 -4.51x1071

defect concentrations at all temperatures. We will obtain such
concentrations by interpolation through all MD simulation
data that we have so far.

To this end, we will assume that the free energy of point-
defect formation can be represented by the following tem-
perature dependence:

Gr=go+ 81 T+8T +gT° (9)

with unknown coefficients g,. It should be noted that the
absolute free energy of a crystal contains a term 7 In 7 aris-
ing from the classical expression for the vibrational free en-
ergy (Sec. IIT). However, G; is a difference between free
energies of the defected and perfect crystals having the same
number of degrees of freedom. During the subtraction, the
TIn T terms cancels out and we end up with a nonsingular
expression. The point-defect-formation energy and free en-
ergy are related by the Gibbs-Helmholtz equation

Gy T E
M - _ _;, (10)
aT T
which yields
Er=go— 81" - 2g;T". (11)

Finally, the formation entropy can be obtained from the stan-
dard relation S;=-dG¢/dT, giving

St‘=—gl—2g2T—383T2~ (12)

Note that g, and —g; have the meaning of the defect-
formation energy and entropy, respectively, at 0 K.

The coefficients g, have been determined by fitting to the
MD data for the defect-formation energy at low temperatures
and the defect concentrations xg at high temperatures (recall
that Gy=—kT In x%). The coefficients obtained are listed in
Table II. Figures 2 and 5 demonstrate that this interpolation
provides a good agreement with the MD data for the forma-
tion energies of both defects at relatively low temperatures,
and for the vacancy concentration at high temperatures. For
interstitials, the interpolation gives the correct order of mag-
nitude for the concentration at high temperatures (see Fig. 6).

The point-defect-formation entropy calculated from Eq.
(12) is shown in Fig. 7. The vacancy-formation entropy in-
creases with temperature while the interstitial-formation en-
tropy decreases, which is consistent with the temperature de-
pendences of the corresponding formation energies (cf. Fig.
2). The low-temperature value for the vacancy-formation en-
tropy appears to be reasonable in comparison with other
calculations.>'3-15 The interstitial-formation entropy at low
temperatures may look too high, but similarly high values
were found in fcc Cu using the QH approximation'? and MD
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FIG. 5. (Color online) Arrhenius plot of the vacancy concentra-
tion in bee Fe.

simulation technique'® similar to the method used in the
present study. We also note that we did not examine the
structural forms of the interstitials present in the simulated
models at different temperatures. It is possible that the inter-
stitials spontaneously switch between different dumbbell ori-
entations or other structural forms, contributing to the en-

tropy.
F. Self-diffusion coefficients

Finally, we can combine the effective diffusion coeffi-
cients with point-defect concentrations to determine the true
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FIG. 6. (Color online) Arrhenius plot of the interstitial concen-
tration in bec Fe.
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FIG. 7. (Color online) Calculated point-defect-formation en-
tropy in bce Fe as a function of temperature.

diffusion coefficients from Eq. (5). The results are presented
in Fig. 8, which shows that self-diffusion in bcc Fe is domi-
nated by the vacancy mechanism at all temperatures. At low
temperatures this is due to the fact that the vacancy-
formation energy is smaller than the interstitial-formation en-
ergy. At high temperatures the two formation energies be-
come nearly equal, but the rapidly increasing vacancy-
formation entropy combined with the rapidly decreasing
interstitial-formation entropy keep the predominance of the
vacancy mechanism.
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FIG. 8. (Color online) Arrhenius plot of calculated self-diffusion
coefficients in beec Fe by the vacancy and interstitial mechanisms in
comparison with experimental data (Ref. 16).
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Figure 8 also demonstrates that the simulation results are
in reasonable agreement with experimental data.'® This
agreement confirms that the interatomic potential employed
in this work is quite realistic and suitable for simulations of
self-diffusion in bec Fe.

III. HARMONIC AND QUASIHARMONIC CALCULATIONS

In the harmonic approximation, the potential energy of the
equilibrium configuration is expanded into a Taylor series in
atomic displacements and truncated at quadratic terms. The
dynamical matrix is constructed and diagonalized to deter-
mine the normal vibrational frequencies of atomic
vibrations.®!*!7 If the boundary conditions are periodic in all
directions, the dynamical matrix has three zero eigenvalues
arising from the three translational degrees of freedom.
These zeros are excluded from the harmonic calculation. Al-
ternatively, one can fix the coordinates of one of the atoms
and construct the dynamical matrix for all other atoms.

Knowing the normal frequencies v;, the vibrational part of
the free energy can be calculated from the standard expres-
sion

3(N-1)

Fypy=kT > 1n[2 sinh(ﬂ”, (13)

i=1 kT

where N—1 is the number of dynamic atoms in the system.
For small periodic cells, a summation over k points in the
Brillouin zone must also be performed, but for large models
such as those used in this work the direct summation in Eq.
(13) already provides sufficient accuracy (I'-point approxi-
mation). Using Eq. (13), the vibrational energy and entropy
can be also calculated.

Equation (13) is based on the full quantum-mechanical
treatment of atomic vibrations. In the context of comparison
with classical MD simulations, we will use the classical limit
of Eq. (13) at all temperatures, even though the classical
approximation is physically inadequate at low temperatures.
The classical expressions for vibrational free energy, energy,
and entropy are

3(N-1)

hVi
Fyp=kT % ln(ﬁ>, (14)
E.i,=3(N - 1)kT, (15)
3(N-1) v
Si=—k >, 1n(—‘)+3(1v—1)k. (16)

For point-defect calculations, vibrational properties of
simulation blocks with a single point defect and without any
defects are compared for the same number of lattice sites N.
This gives
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3(N-2)

H Vi
i=1

S ==k In 3~ v (17)
i=1
for the vacancy-formation entropy and
3N
H Y
- i=1
St=—kIn (18)

3N-1) \ NI(N-1)
6( 11 V{’)

i=1

for the interstitial-formation entropy. Here, » are normal fre-
quencies in the perfect-lattice block with N—1 dynamic at-
oms. Factor 6 in the denominator accounts for six energeti-
cally equivalent orientations of the interstitial dumbbell.

Equation (15) shows that in the classical approximation,
atomic vibrations do not contribute to the point-defect-
formation energy explicitly [the 3(N—1)kT terms cancel out].
However, the anharmonicity of vibrations leads to thermal
expansion of the lattice, which in turn can affect E?. Like-
wise, temperature does not appear explicitly in the defect-
formation entropy [Egs. (17) and (18)]. Nevertheless, ther-
mal expansion modifies the normal frequencies and affects
S?. In the harmonic approximation, the effect of thermal ex-
pansion is neglected and the point-defect free energy is taken
in the form

GY=E!-Ts¢, (19)

using E‘fj and S? computed at 0 K.

In the QH approximation,®!3!7 the thermal expansion fac-
tor is computed by minimizing the total free energy of the
perfect crystal, E,(V)+F\;,(T, V), with respect to atomic vol-
ume V at a given temperature 7. The defect-formation ener-
gies and entropies are then computed as above, except that
the perfect and defected simulation blocks equilibrated at O
K are uniformly expanded by the QH thermal expansion fac-
tor prior to computing the normal frequencies. This gives E‘fj,
S¢ and thus G{ from Eq. (19) as functions of temperature. It
should be emphasized that this calculation neglects the fact
that lattice regions in the vicinity of the defect may have
local thermal expansion factors somewhat different from the
expansion factor of the perfect lattice. As a result, the atoms
in the expanded configuration do not necessarily occupy the
exact positions that would minimize the total free energy.

Both the harmonic and QH methods are applicable only at
relatively low temperatures. At high temperatures, the ampli-
tudes of atomic vibrations become so large that the quadratic
expansion of energy adopted in both methods is no longer
adequate. Furthermore, some atomic configurations can give
negative eigenvalues of the dynamical matrix, indicating that
the QH approximation is completely inadequate.

In this work, we used a 1024-atom periodic cell with a
vacancy or interstitial created in its center with a fixed atom
in one of the corners. Finite-size effects were estimated by
testing larger cells and were found to be insignificant for the
purposes of this work. Considering the limitations of the har-
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monic and QH methods mentioned above, they were applied
only at temperatures from 0 to 1000 K.

Figure 1 demonstrates that the QH approximation signifi-
cantly underestimates thermal expansion factors of bce Fe in
comparison with both MD simulations and experiments. This
is already a sign that the temperature dependencies of point-
defect characteristics will be underestimated.

Indeed, Figs. 2 and 7 show that the QH defect-formation
energies and entropies vary with temperature much less rap-
idly than predicted by the MD simulations. The QH vacancy-
formation entropy is in reasonable agreement with the MD
calculations based on the interpolation formula. The har-
monic and QH vacancy concentrations also compare reason-
ably well with the MD results at all temperatures. It should
be noted that in the QH calculations of the vacancy concen-
tration, there is apparently some compensation of errors at
high temperatures, in which the underestimated formation
energy is partially compensated by the underestimated en-
tropy. The QH interstitial-formation entropy is drastically un-
derestimated in comparison with the MD results. As a con-
sequence, the interstitial concentration is a few orders of
magnitude below the MD predictions.

IV. DISCUSSION AND CONCLUSIONS

In the present work we used the semiempirical potential
for Fe (Ref. 11) to calculate the diffusivity in bee Fe assum-
ing two different mechanisms of self-diffusion: one mediated
by migration of vacancies and the other mediated by migra-
tion of self-interstitials. No approximations besides the semi-
empirical potential were made in our calculations. We found
that self-diffusion in bcc Fe is controlled by the vacancy
mechanism at all temperatures. This result is due to the fact
that the equilibrium vacancy concentration is always much
larger than the equilibrium interstitial concentration, even
though the vacancy-migration energy is much larger than the
interstitial migration energy. It is interesting to note that the
predominance of the equilibrium vacancy concentration over
the interstitial concentration can be explained by the lower
vacancy-formation energy only at low temperatures. At high
temperatures, the interstitial- and vacancy-formation energies
are about the same. However, the vacancy-formation entropy
increases with temperature while the interstitial-formation
entropy decreases. Thus, it is the high vacancy-formation
entropy that is responsible for the larger vacancy concentra-
tion at high temperatures. The relationships between the
point-defect properties at different temperatures established
by our MD simulations are summarized in Table III.

The diffusivity of bcc Fe calculated for the vacancy
mechanism is in good agreement with experimental data
(note that under experimental conditions, the measured dif-
fusivity can be enhanced by diffusion along grain boundaries
and dislocations). This agreement confirms that the semi-
empirical potential employed in this work provides realistic
predictions of vacancy properties of Fe. We are not aware of
experimental data that could be compared with the MD re-
sults for interstitial properties. The potential well reproduces
the interstitial-formation energy at 7=0 obtained from ab
initio calculations,!® but this does not necessarily mean that it
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TABLE III. Summary of point-defect properties and diffusion mechanisms in bcc Fe obtained by the MD simulations.

Temperature Point-defect-formation Point-defect-formation Point-defect Point-defect-migration Diffusion
energy entropy concentration energy mechanism

Low E{< E; Si< S; o >x;~ E} > E;n vacancy

High E{=E; Sy>S; Xp > X E,>E, vacancy

can make reliable predictions at high temperatures. It would
be interesting to perform similar simulations with another
semiempirical potential for Fe to assess the sensitivity of the
results to the interatomic potential.

Our finding, that self-diffusion in bec Fe is mediated by
vacancy migration, cannot be immediately generalized to all
other bce metals. In bee Fe, the interstitial-formation energy
at 7=0 is much higher than the vacancy-formation energy,
which need not be the case in all bcc metals. For example, ab
initio calculations predict much closer vacancy- and
interstitial-formation energies in bec V.* It is possible that
self-diffusion in some bcc metals can be dominated by inter-
stitial migration. On the other hand, the results of the present
study demonstrate that the activation energy calculated as the
sum of the point-defect-formation and -migration energies
(even if their temperature dependences are taken into ac-
count) is not sufficient for predicting the dominant diffusion
mechanism. The entropy contribution can play a decisive
role as has been demonstrated in this work.

The commonly used approximation is to neglect the tem-
perature dependence of the point-defect-formation energy.
Our MD simulations as well as previous studies** indicate
that the temperature effect on defect-formation energies is
rather significant. This effect is due to thermal expansion of
the lattice and can be understood from the following simple
considerations. The vacancy creates tensile stresses in sur-
rounding crystal regions. The associated elastic strain energy
constitutes a significant part of the vacancy-formation en-
ergy. Increasing the lattice parameter due to thermal expan-
sion will increase the elastic strain energy and thus Ej. By
the same reasoning, interstitials create a state of compression
of the lattice and their energy could be expected to decrease
with temperature. Figure 2 demonstrates these predictions
hold for bce Fe.

In reality, the situation with interstitials can be more com-
plex. Their formation energy can also increase with tempera-
ture as was observed in MD simulations of V,* or can have a
rather complicated temperature dependence as was found in
bee Zr.? This can be explained by the existence of multiple
interstitial configurations with nearby energies. At low tem-
peratures only the configuration with the lowest energy is
implemented, but as temperature increases, other configura-
tions are activated, changing the temperature dependence of
the formation energy.

Molecular dynamics simulations of diffusion are compu-
tationally demanding even with atomistic potentials and are

not presently feasible in conjunction with ab initio methods.
In many cases, approximate methods such as harmonic or
QH calculations are used. In this study, we found that the QH
method gives reasonable results for vacancy properties in bec
Fe but performs poorly for interstitials. Some of these dis-
crepancies can be attributed to specific features of the par-
ticular interatomic potential for Fe used in this work. These
potential functions were defined by cubic splines, which are
quite suitable for fitting to energies and forces but tend to be
less predictable than analytical functions in capturing ther-
mal expansion and other anharmonic effects. In the future, it
would be interesting to examine if potentials based on ana-
lytical functions can give more accurate QH results.

Besides properties of particular potentials, there are ge-
neric limitations of the QH method that have contributed to
the above discrepancies. Such limitations include the pos-
sible breakdown of the quadratic expansion of energy when
vibrational amplitudes become large at high temperatures.
They also include the neglect of the difference between the
local thermal expansion around point defects and thermal
expansion of the perfect lattice. Furthermore, the lattice dis-
tortions around defects can produce relatively shallow
minima of the potential energy and can make the QH ap-
proximation less reliable than for perfect crystals even at
relatively low temperatures. These limitations of the QH ap-
proximation can be more severe around interstitials, which
produce much stronger lattice distortions than vacancies. In
addition, part of the interstitial-formation entropy is due to
the multiplicity of different orientations of the dumbbells and
other structural forms of the interstitials at high temperatures.
The harmonic and QH calculations were performed in this
work for only the [110] dumbbell orientation. Even with
these limitations, the QH approximation can give a better
accuracy for point-defect concentrations than the simple har-
monic method, see example in Fig. 6.
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