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Ferromagnet/ferroelectric/normal-metal superlattices are proposed to realize the large room-temperature
magnetoelectric effect. Spin-dependent electron screening is the fundamental mechanism at the microscopic
level. We also predict an electric control of magnetization in this structure. The naturally broken inversion
symmetry in our tricomponent structure introduces a magnetoelectric coupling energy of PM2. Such a mag-
netoelectric coupling effect is general in ferromagnet/ferroelectric heterostructures, independent of particular
chemical or physical bonding, and will play an important role in the field of multiferroics.
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Ferroelectricity and ferromagnetism are important in
many technological applications and the quest for multifer-
roic materials, where these two phenomena are intimately
coupled, is of significant technological and fundamental
interests.1–6 In general, ferroelectricity and ferromagnetism
tend to be mutually exclusive or interact weakly with each
other when they coexist in a single-phase material.2 Increas-
ing the spin-orbit interaction of the electrons7 or strategically
designing for magnetic and electric phase controls6,8 may
enhance the magnetoelectric �ME� coupling effect in a
single-phase multiferroic material. Practical applications of
the ME effect, however, remain hindered by the small elec-
tric polarization and low Curie temperature.3–5

Artificial composites of ferroic materials may enable the
room-temperature ME effect since both large and robust
electric and magnetic polarizations can persist to room tem-
perature. Two types of ME coupling at a ferromagnet �FM�/
dielectric interface have been reported: one employing the
mechanical interaction9,10 or chemical bonding11 and the
other one employing mediation by carriers �screening
charges�.12–15 The role of electrostatic screening in ferroelec-
tric �FE� capacitors has been studied by macroscopic
models.16 Recently, ab initio studies of nanoscale FE
capacitors17,18 and FE tunnel junctions19–21 have further con-
firmed that electrostatic screening is the fundamental mecha-
nism at the FE/normal-metal �NM� interface. In this Rapid
Communication we propose a strategy of achieving robust
ME coupling in a tricomponent FM/FE/NM superlattice.
The additional magnetization, caused by spin-dependent
screening,12,13 will accumulate at each FM/FE interface. Due
to the broken inversion symmetry between the FM/FE and
the NM/FE interfaces, there would be a net additional mag-
netization in each FM/FE/NM unit cell, unlike the symmetric
structures discussed in the previous work. The addition of
magnetization in this superlattice will result in a large global
magnetization.

The tricomponent superlattice is illustrated in Fig. 1�a�.
When the FE layer is polarized, surface charges are created.
These bound charges are compensated by the screening
charge in both FM and NM electrodes. In the FM metal, the
screening charges are spin polarized due to the ferromagnetic

exchange interaction. The spin dependence of screening
leads to additional magnetization in the FM electrode as il-
lustrated in Fig. 1�b�. If the density of screening charges is
denoted as � and the spin polarization of screening charges
is denoted as �, we can directly express the induced magne-
tization per unit area as

�M =
�

e
��B. �1�

As this effect depends on the orientation of the electric po-
larization in FE, the ME coupling is expected.

Before starting specific calculations, let us consider two
simple cases. �1� In an ideal capacitor where all the surface
charges reside at the metal �FM or NM�/FE interfaces, the
density of screening charge � reaches its maximum value
�= P0, where P0 is the spontaneous polarization of the FE.
This results in a large induced magnetization ��P0 /e���B�.

FIG. 1. �Color online� �a� Schematic illustration of FM/FE/NM
tricomponent superlattice. �b� The distribution of charges and in-
duced magnetization �green shaded area� calculated by our theoret-
ical model. A and B are two different choices of the unit cell. The
directions of arrows indicate the motions of positive and negative
charges across the boundary of the unit cell A. �c� Electrostatic
potential profile.

PHYSICAL REVIEW B 80, 140415�R� �2009�

RAPID COMMUNICATIONS

1098-0121/2009/80�14�/140415�4� ©2009 The American Physical Society140415-1

http://dx.doi.org/10.1103/PhysRevB.80.140415


�2� In half metals, there is only one type of carriers that can
provide the screening. If a half metal is chosen to be the FM
electrode, the screening electrons will be completely spin
polarized. In this case, a large induced magnetization is also
expected, �M = �

e �B.
Induced magnetization from screening charges. For sim-

plicity, we will first consider the case of zero bias, as illus-
trated in Fig. 1�c�. Here, the following assumptions are
made. �1� The difference in the work function between FM
and NM is ignored. �2� To screen the bound charges in FE,
the charges in metal electrodes will accumulate at the FM/FE
side, and there is a depletion at the NM/FE side. In this
process, the total amount of charge is conserved; however,
the spin density is not conserved because of the ferromag-
netic exchange interaction in the FM metal.

As shown in Fig. 1, the local induced magnetization, de-
fined as �M�x�= ��n↑�x�−�n↓�x���B, is a function of distance
from the interface x. Here, �n��x� is the density of the in-
duced screening charges with spin �. Zhang12 considered the
FM/dielectric interface within the linearized Thomas-Fermi
model and derived two coupled equations relating the local
induced magnetization �M�x� and the screening potential
V0�x�,

�M�x� = −
M0/�B

1 + JN0
eV0�x� ,

d2V0�x�
dx2 =

1

�FM
2 V0�x� . �2�

The screening length in the FM electrode is defined as �FM
={�e2N0 /�0���N0+JN0

2−J�M0 /�B�2� / �1+JN0��}−1/2, where
N0=N↑+N↓ is the total density of states, M0= �N↑−N↓��B
can be thought of as the spontaneous magnetization, �0 is the
vacuum dielectric constant, and J is the strength of the fer-
romagnetic exchange coupling in the FM layer.

We solve the above equations for our unit cell and obtain

V0�x� = �
��FM

�0
ex/�FM , − tFM 	 x 	 0

−
��NM

�0
e−�x−tFE�/�NM , tFE 	 x 	 tFE + tNM ,�

�3�

where � is the density of screening charges; �FM�NM� is the
screening length of FM �NM� electrode; and tFM, tFE, and
tNM are the thicknesses of FM, FE, and NM layers, respec-

tively. From the above equations, we see that the local in-
duced magnetization �M�x� decays exponentially away from
the FM/FE interface. This distribution is identical to that of
screening charges, because in our model the effective inter-
action J in FM is assumed to be a constant. The total induced
magnetization �M can be calculated by integrating �M�x�
over the FM layer,

�M = 	
FM layer

�M�x� = −
�M0/e

N0 + JN0
2 − J�M0/�B�2 . �4�

The effective spin polarization of screening electrons can
then be written as

� = −
M0

N0 + JN0
2 − J�M0/�B�2 . �5�

We have considered the induced magnetization in FM/
FE/NM tricomponent superlattice with several FM elec-
trodes, i.e., Fe, Co, Ni, and CrO2. Detailed parameters and
calculated values of �M are listed in Table I. The magnitude
of �M is found to depend strongly on the choice of the FM
and FE. Among the normal FM metals �Ni, Co, and Fe�, the
largest �M is observed in Ni for its smallest J and highest
spontaneous spin polarization M0 /�BN0. On the other hand,
we also predict a large �M for the 100% spontaneous spin
polarization in half-metallic CrO2.

To confirm the validity of our model, we perform first-
principles calculations of the Fe/FE/Pt superlattice.23 The
calculations are within the local-density approximation to
density-functional theory and are carried out with VASP.24 We
choose BaTiO3 �BTO� and PbTiO3 �PTO� for the FE layer.
Starting from the ferroelectric P4mm phase of BTO and PTO
with polarization pointing along the superlattice stacking di-
rection, we perform a structural optimization of the
multilayer structures by minimizing their total energies. The
in-plane lattice constants are fixed to those of the tetragonal
phase of bulk FEs. Figure 2 shows the calculated induced
magnetic moment relative to that of bulk Fe near the Fe/BTO
interface when the polarization in BaTiO3 points toward the
Fe/BTO interface. It is evident that the induced moments
decay exponentially as the distance from the interface in-
creases. This result is in line with our model for the magne-
tization accumulation in the FM at the FM/FE interface. A
numerical fitting of the exponential function yields a screen-
ing length of 
0.7 Å for the Fe /BaTiO3 /Pt structure. This
value is comparable to the screening length parameters cal-
culated using the theoretical model as shown in Table I.

TABLE I. Parameters extracted from band structures of Ni, Co, and Fe from Ref. 12 and CrO2 from Ref.
22. Here, �M is the value at Va=VC, where Va is the applied bias and VC is the coercive bias.

FM
J

�eV nm3�
N0

�eV−1 nm−3�
M0 /�BN0

�%�
�FM

�Å�
�M

��B nm−2�



�G cm /V�

Ni 0.65 1.74 −79.3 0.9 −0.280 0.015

Co 1.25 0.89 −58.4 1.5 −0.126 0.004

Fe 2.40 1.11 56.8 1.3 0.078 0.003

CrO2 1.8 0.69 100 1.7 0.323 0.010
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Using our theoretical model we also calculate the ME
coupling coefficient 
, which is defined as the ratio of the
magnetization change 2�0�M /�FM to the coercive field
VC / �ltFE�, where VC is the coercive voltage and l is the num-
ber of the unit cell. The 
 values listed in Table I reach as
large as 0.015 G cm/V in Ni. For comparison, 
 of about 0.01
G cm/V arising from the chemical bonding between Fe and
Ti atoms is predicted for the Fe /BaTiO3 bilayer.11 The ME
coefficient measured in epitaxial BiFeO3-CoFe2O4 columnar
nanostructures10 is also 0.01 G cm/V. We should point out
that in our calculation the coercive field is assumed to be 200
kV/cm; if we choose the coercive field of 10 kV/cm same as
Ref. 11, 
 will be 20 times larger than those listed in Table I.
Therefore, the ME effect arising from spin-dependent elec-
tron screening in FM/FE/NM tricomponent superlattice can
be much larger than in other composite multiferroics.

What is the source of this large ME effect? In fact, the
magnetoelectric effect discussed in this Rapid Communica-
tion is not the usual bulk magnetoelectric coupling at all.
Spontaneous electric polarization in FE results in the induced
surface charge. In turn, this produces the screening charges
of density �. These screening charges are polarized with the
polarization �. Therefore, it is the amount of screening
charges and polarization that determine the magnitude of the
ME effect ��M and 
�. If we expand the induced magneti-
zation �M in Eq. �4� as a power series in order parameters
P0 and M0 �spontaneous polarization and magnetization�, we
obtain

�M � P0M0 + high-order terms in P0 and M0. �6�

The higher-order terms in Eq. �3� vanish exactly in the fol-
lowing limiting case: the screening length �FM →0 and spin
polarization �→ �100%. In general, the leading term in Eq.
�6� is linear, which is consistent with the computational re-
sult of Ref. 13. It is also clear that this effect depends on the
magnetization of the ferromagnetic metal.

First-principles calculations confirm the central conclu-
sion that the ME coupling in the tricomponent system is
linear in polarization of FE. We compare a superlattice with
BTO and that with PTO. The induced magnetization differ-
ence is 3.6 times larger in the case of PTO. This ratio is

almost exactly that of the bulk spontaneous polarization of
BTO and PTO.

Electric control of magnetization. So far, we have dis-
cussed the magnetoelectric coupling effect in the case of no
external bias. A natural question is what happens to �M
when an external bias Va is applied. In this case, the electric
polarization P will have two parts: the spontaneous polariza-
tion P0 and the induced polarization. The equation determin-
ing P is obtained by minimizing the free energy. From the
continuity of the normal component of the electric displace-
ment, we find equation relating � and P :�= ��PtFE /�FE�
+ �Va / l�� / ����FM +�NM� /�0�+ �tFE /�B��. Here, �FE is the di-
electric constant of the FE layer. These two equations need to
be solved self-consistently. The value of � at a given bias can
then be calculated and the induced magnetization �M is
given by Eq. �4�.

The free-energy density F includes contributions from the
FE layer, FM layer, and FM/FE interface and takes the form

F =
tFEF�P� + tFMF�M� + FI�P,M�

tFE + tFM + tNM
. �7�

M is the magnetization of the bulk ferromagnet and here
M =M0 because of zero external magnetic field. The interface
energy FI�P ,M� is the sum of the electrostatic energy and
magnetic exchange energy of the screening charges,

FI�P,M� =
��FM + �NM�

2�0
�2 +

J

2�B
2 �M + �M��M . �8�

For FE, the free-energy density F�P� can be expressed as
F�P�=FP+PP2+�PP4+�0

PEBdP, where FP is the free-
energy density in the unpolarized state. P and �P are the
usual Landau parameters of bulk ferroelectric. EB is the de-
polarization field in the FE film. Similarly, F�M� can be ex-
panded as a series in the order parameter M, i.e., F�M�
=FM +�MM2+�MM4, where FM is the free-energy density of
bulk ferromagnet and �M and �M are the Landau parameters
of bulk ferromagnet. The calculated induced magnetization
as a function of the applied bias is shown in Fig. 3. Clearly,
the electrically controllable magnetization reversal is real-
ized.

To discuss the macroscopic properties of the electric con-
trol of magnetization, we analyze the magnetoelectric cou-

FIG. 2. �Color online� Layer-resolved induced magnetic mo-
ment of Fe near the interface between Fe and BaTiO3 in the
Fe /BaTiO3 /Pt superlattice. Solid line is the fitted exponential func-
tion for the induced moment as a function of the distance from the
interface.

FIG. 3. �Color online� �M versus Va / l for different ferromag-
netic metal electrodes. Va is the applied bias and l is the number of
the unit cell. Here, the thickness of FE layer is 3 nm. However, a
thicker FE layer can be used to avoid the possible electron tunnel-
ing effect.
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pling energy in our tricomponent superlattice. For the mac-
roscopic average polarization to be represented by the
electric polarization obtained for a unit cell, this cell needs to
be chosen with special care.25 Therefore, in the following
calculation of total free energy, unit cell B in Fig. 1�b� is
chosen, and

P̄ =
PtFE + ��tFM + tNM�

tFE + tFM + tNM
. �9�

The macroscopic average magnetization M̄ is

M̄ =
MtFM + �M

tFE + tFM + tNM
. �10�

Considering the lowest-order term of the magnetoelectric

coupling, P̄ and M̄ can be expanded as

P̄=cpP+cp�PM2 , M̄ =cmM +cm� PM. Therefore, the total free

energy �Eq. �7�� can be expressed as the power series of P̄

and M̄, F�P̄ ,M̄�=F0+P̄2+�P̄4+�M̄2+�M̄4+�P̄M̄2+¯.
We would like to point out that biquadratic ME coupling

P̄2M̄2 is easily achievable, but is usually weak and is not
electrically controllable. However, because of the naturally

broken inversion symmetry, the large ME coupling P̄M̄2 is
possible in our tricomponent structure.

The ME coupling in FM/FE/NM superlattices may be ob-
served experimentally and may have practical applications.
Although the net additional magnetization of each FM/
FE/NM unit cell is small, stacking several of them in a su-
perlattice will result in a large overall magnetization. From
Eq. �10�, with a thinner metallic electrode, the ME effect will
be larger, as long as the thicknesses of metallic electrodes are
larger than the screening length, which is easy to achieve.

To summarize, expanding upon the theory of spin-
dependent screening,12 we develop a theory of additional
magnetization in tricomponent superlattice. We show that the
additional magnetization can be electrically controlled and is
linear in FE polarization. The latter can be switched if the
coercive voltage of the ferroelectric is reached. We demon-
strate that an asymmetric FM/FE/NM structure has practical
advantages over the previously discussed symmetric struc-
ture.
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