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A subsurface moving dislocation in an elastic half space generates vertical displacements at the free surface.
We compare this displacement for two different values of the dislocation viscous drag coefficient. The different
resulting surface patterns suggest the free surface plays a decisive dynamical effect. We thus compare this
displacement, using the dynamic Green function for an elastic half space, with the result of the calculation
using the static Green function for an infinite space, as in the work of Zolotoyabko and Shilo �preceding paper,
Phys. Rev. B 80, 136101 �2009�, and Shilo and Zolotoyabko, Phys. Rev. Lett. 91, 115506 �2003�� when the
dislocation dynamics is the same. Considering the static Green function of an infinite space instead of the
correct dynamic Green function of the half space leads to an underestimation of the resulting displacement at
the free surface by a factor up to 50 for dislocation depths smaller than one Rayleigh wavelength �R. We also
discuss the constraints that recent ultrasound attenuation and resonant ultrasound spectroscopy experiments
place on dislocation parameters, such as density and viscous drag coefficient.
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In Ref. 1, hereafter referred to as I, we reported results
from a study of the interaction of elastic waves with subsur-
face dislocations in an elastic half space. One aspect of that
study was the development of a scheme to efficiently take
into account the presence of the free surface in the response
of the elastic half space when computing the response to
subsurface stimuli, such as that of a moving dislocation, a
recurrent technical problem �see, for instance, Refs. 2–8 and
references therein�. The Comment by Zolotoyabko and Shilo
criticizes our choice of value for the viscous drag coefficient
parameter and suggests a different choice may lead to results
in better agreement with their own study,9 hereafter referred
to as II.

I. SURFACE PATTERNS

Using the results and notation of I, we have computed the
vertical displacement at the free surface of a semi-infinite
elastic medium that results from the superposition of a sur-
face Rayleigh wave incident upon a subsurface dislocation
with the secondary wave emitted by the response of the dis-
location. Figure 1 shows the resulting pattern for values of
the dislocation viscous drag coefficient B=10−5 Pa.s and B
=5.10−7 Pa.s. Calculations have been performed for a depth
of the dislocations h=3 �m, well within the range h
�7.6 �m given in the Comment by Zolotoyabko and Shilo.
The two patterns are quite different and in the second one the
surface vertical displacement due to the wave reemitted by
the moving dislocation appears to be comparable to the inci-
dent wave. Conservation of energy suggests this effect must
be confined at the free surface. In the next section we study
the role of the free surface and conclude that it is essential:
further modeling with two unknown parameters, depth h and
viscous coefficient B, that explicitly includes the free sur-
face, will be needed to determine which value of h and B
gives the better agreement with experiment.

II. ROLE OF THE FREE SURFACE

We show below that the disagreement in the simulated
patterns in our model and in the model used in II is only due
to the choice of the Green function. Indeed, instead of choos-
ing the dynamical Green function of the elastic half space,
Shilo and Zolotoyabko used the static Green function for the
infinite space. In order to quantitatively ascertain the role of
the Green function we compute here the vertical displace-
ment generated by an infinite, straight, dislocation placed at a
depth h below the free surface of a semi-infinite, homoge-
neous, isotropic, medium, that oscillates along its glide plane
with frequency � �Fig. 2�.

The vertical displacement uhalf
s �x ,y ,z ;�� of the semi-

infinite medium generated by this oscillatory dislocation is
provided by formula �3.3� of I. In the case at hand, an infi-
nitely long straight dislocation, this equation reduces to
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where

gij
0 �y,z;�� =� dsGij

0 �s,y,z;�� �2.2�

and Gij
0 is the Green function for the semi-infinite space pro-

vided by formulas �2.2� and �2.3� of I. b is the Burgers vec-
tor, � is the frequency and � is the shear modulus of the
elastic medium.

As explained in I, expression �2.1� is also valid when the
medium is infinite, provided the dynamical response g0 for
the half space is replaced by the response appropriate for
infinite space. Close enough to the dislocation �i.e., at dis-
tances small compared to wavelength� the response reduces
to the static response, leading to the following expression for
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the vertical displacement ufree
s �x ,y ,z ;�� of the infinite me-

dium generated by the oscillatory dislocation:

ufree
s �y,z;�� =

− by�̇

i�4��1 − ��� �1 − 2��
y2 + z2 +

2z2

�y2 + z2�2�
�2.3�

where � is Poisson’s ratio. This is the expression used by
Shilo and Zolotoyabko.9 Note that both Eqs. �2.1� and �2.3�
are linear in the dislocation velocity �̇.

We have calculated, using the parameters of II, both uhalf
s

and ufree
s generated by the same dislocation motion � at the

free surface or, more precisely in the second case, at the
position the free surface would have if it were present. Their
ratio, which depends only on the ratio of the Green func-
tions, is plotted in Fig. 3 as a function of position for several
dislocation depths. The result is that taking into account the
dynamical effect of the response and including the effect of
the free surface produces an amplification of the signal by a
factor of up to 50.

Our conclusion is that the simulation used in II cannot be
used for a quantitative comparison with the experimental re-
sult because it does not take into account the essential role

played by the free surface. Our simulation, on the contrary,
does take it into account and can be used as a starting point
for a systematic study of the surface displacement as a func-
tion of two unknown parameters: dislocation depth h and
viscous coefficient B. A proper study would also consider the
fact that experiments provide x-ray diffractograms that,
while inspiring, cannot be used to infer, without elaboration,
the vertical displacement at the free surface. Such a program
is outside the scope of the present paper.

III. DETERMINATION OF DISLOCATION PARAMETERS
THROUGH ULTRASOUND ATTENUATION

METHODS

When modeling the response of a subsurface dislocation
to surface elastic waves, an important parameter, discussed
in the previous Comment, is the phenomenological param-
eter B that measures energy losses due to dislocation inter-
action with phonons, electrons, and such. To the best of our
knowledge, this coefficient is inferred from acoustic, or ul-
trasonic, attenuation methods. The issue of acoustic attenua-
tion by dislocations in elastic media was studied by us in
Refs. 10 and 11: when a dislocation segment is modeled as
an overdamped elastic string, a common assumption, the
acoustic attenuation coefficient � is proportional to the prod-
uct of B and dislocation density 	, measured in units on
inverse area

� 
 	B . �3.1�

That is, a property of a single dislocation is inferred from a
measurement that involves many such dislocations, and one
of the many exciting aspects of the work of Shilo and
Zolotoyabko9 is their ability to visualize the interaction of a

(b)

(a)

FIG. 1. Upper panel: vertical displacement at the free surface of
a semi-infinite medium reproduced from I �the field is normalized to
the amplitude of the incident wave, B=10−5 Pa.s�. Lower panel:
same calculation, with a viscous drag coefficient B=5.10−7 Pa.s
Both simulations are performed considering the dislocation depth is
3 �m.
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FIG. 2. An infinite dislocation lies along the x axis, parallel to
the free surface at depth h.
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FIG. 3. The ratio �uhalf
s � / �ufree

s � along the y axis, in units of Ray-
leigh wavelength �R, on the free surface generated by an oscillating
dislocation at depth h. uhalf

s is the vertical displacement calculated
with the dynamic Green function of the half space and ufree

s is the
vertical displacement calculated with the Green function of the in-
finite space, as in II. The ratio only depends on the ratio of the
Green functions. Choosing the erroneous Green function underesti-
mates the vertical displacement by a factor of up to 50. dashed-
dotted line h=6 �m, solid line h=1 �m, and dotted line h
=0.5 �m.
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surface wave with a single dislocation. It is true, as pointed
out in the previous Comment, that acoustic attenuation val-
ues have a wide variability among different materials.12 But
it is also true that dislocation densities can be very different
as well: for copper, say, dislocation densities as high as
1010 m−2 and up to 1015 m−2 have been reported,13,14 while
for LiNbO3 dislocation densities as low as 107–108 m−2

have been reported15–17 and it does not appear to be possible

to ascertain with accuracy a value for B without an indepen-
dent measurement for 	 for the same sample. We are not
aware of any such measurements although recent results with
aluminum18 appear to provide a path forward.
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