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We propose that the experimentally observed resistivity upturn of cuprates at low temperatures may be
explained by properly accounting for the effects of disorder in a strongly correlated metallic host. Within a
calculation of the dc conductivity using real-space diagonalization of a Hubbard model treated in an inhomo-
geneous unrestricted Hartree-Fock approximation, we find that correlations induce magnetic droplets around
impurities, and give rise to additional magnetic scattering which causes the resistivity upturn. A pseudogap in
the density of states is shown to enhance both the disorder-induced magnetic state and the resistivity upturns.
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I. INTRODUCTION

Exotic transport properties in metallic hole-doped cu-
prates reflect their strongly correlated nature over a large part
of their phase diagram. In the vicinity of optimal doping, the
in-plane resistivity is found to be linear in temperature T
with deviations from linear-T power laws evolving on the
underdoped and overdoped sides.1,2 As the transition tem-
perature Tc is suppressed down to zero by a magnetic field, a
resistivity that diverges logarithmically at low temperatures
�log T� is observed in La2−xSrxCuO4 �LSCO� �Refs. 3 and 4�
across a wide range of doping. Resistivity “upturns,” increas-
ing � as temperature T is decreased below a temperature Tmin
have been observed as well in Ba2Sr2−xLaxCuO6+� �Refs. 5
and 6� and sufficiently disordered and underdoped
YBa2Cu3O7−� �YBCO� samples.7–16 Such upturns are fre-
quently associated with a metal-insulator transition as the
system approaches its antiferromagnetic �AF� parent com-
pound �for a review, see Ref. 17�. However, one should keep
in mind that the explanation of these resistivity upturns must
include not only the intrinsic electronic correlations present
in the system but also their interplay with the external per-
turbations introduced to suppress superconductivity.

Besides the suppression of Tc, it is known from inelastic
neutron-scattering �INS�, nuclear-magnetic-resonance
�NMR�, and muon-spin-rotation ��SR� experiments that in-
troducing disorder and magnetic field can induce local mag-
netic order, reflecting the coexistence of strong AF correla-
tions with superconductivity. For instance, a strong signal
centered at incommensurate positions near �� ,�� has been
observed in INS experiments in the presence of a magnetic
field,18–21 indicating the formation of AF order around vorti-
ces in LSCO; a smaller but significant signal is also present
in zero field. Other neutron-scattering measurements have
observed evidence of ordered static magnetism in intrinsi-
cally disordered cuprates and shown that systematic addition
of disorder enhances this effect.22–25 NMR measurements
have furthermore shown evidence that local magnetic mo-
ments are induced around atomic scale defects such as Zn
substitutions of planar Cu or defects produced by electron
irradiation.17,26–29 The susceptibility of these induced mo-
ments shows a Curie-Weiss behavior even though the impu-
rity itself is nonmagnetic, indicating their origin in the strong

magnetic correlations present in the pure system. Finally,
�SR experiments have shown that the Cu spins freeze in the
underdoped superconducting state and eventually develop
short-range order at very low temperatures in intrinsically
disordered cuprates and even in the much cleaner system
YBCO if it is highly underdoped.30–35 The relationship be-
tween ordinary disorder and local magnetism in these and
other experiments, has been reviewed in Ref. 17, together
with a description of recent theoretical work. Since these
phenomena are well established, a theory which seeks to
account for the transport anomalies should therefore also be
capable of explaining the formation of these local moments,
as well as their ordering behavior at different dopings and
temperatures.

The logarithmic temperature dependence of the resistivity
upturns in a magnetic field has remained a mystery. It is
tempting to associate these logs with the quantum correc-
tions to the conductivity found in weak localization
theory.36–38 Indeed, in electron-doped cuprates,39 where in-
teraction effects are thought to be weaker and disorder ef-
fects stronger, as well as in overdoped cuprate samples,12

good fits of the magnetoresistance data to weak localization
theory have been obtained. By contrast, elastic-free paths in
hole-doped samples are much larger than the Fermi wave-
length scale required for weak localization effects; further-
more the magnetoresistance has the wrong field dependence
and typically �but not always5� the wrong sign. A log T be-
havior of the resistivity is also found in the theory of granu-
lar systems40 but evidence for granularity in the conventional
sense is weak or absent in the cuprate samples where the
upturns have been observed. Finally, it has been argued by
Alloul and others that the body of experimental results on
underdoped cuprates, specifically Zn-substituted and irradia-
tion damaged YBCO samples, is consistent with a one-
impurity Kondo picture, with conventional resistivity mini-
mum. However there are several inconsistencies associated
with this approach reviewed in Ref. 17. We adopt here the
alternate point of view that the upturns observed in the un-
derdoped, hole-doped cuprates are manifestations of disorder
in a Fermi liquid in the presence of strong antiferromagnetic
correlations.

A theory that can cover the anomalies of transport prop-
erties in cuprates over a wide range of doping does not cur-
rently exist. Recently, an attempt was made to treat disorder
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and interactions in a model tailored to the cuprates by Kon-
tani et al.41–43 Within the fluctuation-exchange approach and
particular approximations regarding the impurity-scattering
processes, these authors had considerable success in repro-
ducing resistivity upturns observed in some cuprates in zero
magnetic field. However, as a perturbative approximation it
perforce neglects certain self-energy and vertex correction
diagrams; in addition, the physical content of the approxima-
tions made is not always clear.

Here we focus on the optimally and slightly underdoped
cuprates, in the spirit of Kontani et al.,43 and assume the
Fermi-liquid picture properly describes the electronic excita-
tions in the normal state. We examine the following simple
hypothesis that connects the transport anomalies with the
impurity-induced magnetization: the resistivity upturns are
due to the extra scattering associated with the correlation-
induced magnetic droplets which carry local moments.
Within a two-dimensional �2D� single-band Hubbard model
where interactions are treated in mean field but disorder is
treated exactly, we show that the resistivity increases coin-
cide with the conditions which enhance impurity-induced
magnetic moments. The present study focuses on the doping
regime where static moments, even in most strongly corre-
lated LSCO, are paramagnetic centers induced by the applied
field. Other recent studies relevant to this phase have exam-
ined the more disordered, or more correlated state where
such magnetic droplets are spontaneously formed around de-
fects in zero field, and shown that they can indeed affect
macroscopic observables such as NMR, thermal conductivity
and superfluid density ��T�.44–49 The physical picture of the
ground state, that of an inhomogeneous mixture of AF drop-
lets carrying net moments near the defect, is quite similar in
our case. By working in the regime where moments are
smaller and the effect of the field is larger, however, we hope
to explain some of the observed puzzling aspects of the mag-
netoresistance. Since we consider relatively weak correla-
tions, we explicitly confine ourselves to the doping regions
in each system under consideration where the resistivity up-
turns first set in. This means that we, within a self-consistent,
unrestricted Hartree-Fock treatment of the correlations, do
not expect to be able to describe the true metal-insulator
transition or log T behavior, but rather the leading perturba-
tive corrections to the high-T behavior of the resistivity.50

The conditions in which positive correlations between
impurity-induced magnetization and transport anomalies can
be found are examined, which confirm our hypothesis that
the enhancement of the scattering rate is due to an enlarged
cross sections associated with these induced moments. We
first examine the case of optimal doping, and then discuss the
effect of including a pseudogap in the density of states
�DOS�, which will allow us to extend the model to lower
dopings.

II. MODEL HAMILTONIAN

Since resistivity upturns are typically revealed after Tc is
suppressed to zero, the pairing correlation is ignored in de-
scribing the normal-state properties as a first approximation.
We therefore start with the two-dimensional Hubbard model
to describe the CuO2 plane

H = �
ij�

− tijci�
† cj� + �

i�

��i� − ��n̂i� + �
i

Un̂i↑n̂i↓, �1�

where ci� is the electron operator at site i with spin �,
n̂i�=ci�

† ci�, tij = t , t� is the hopping amplitude between
nearest-neighbor �t� and next-nearest-neighbor �t�� sites, and
U is the onsite Coulomb repulsion. The external perturbation
due to impurities and magnetic field is included in �i�

�i� = −
1

2
�g�BB + �

r

�irVimp, �2�

where Vimp is the scattering potential produced by defects
such as Zn substitution or electronic irradiation. The Zeeman
term takes into account the spin-dependent energy shifts
caused by the magnetic field with �=+ /− for spin up/down,
respectively. We will denote 1

2g�BB�B in the figures pre-
sented below. A Hartree-Fock mean-field decomposition is
then adopted to the above Hamiltonian

ni = �n̂i↑ + n̂i↓�

mi = �n̂i↑ − n̂i↓� , �3�

and gives rise to

H = �
ij�

− tijci�
† cj� + �

i�

��i� − ��n̂i� + �
i�

U
ni − �mi

2
n̂i�.

�4�

By applying this mean-field ansatz we certainly cannot study
Mott correlations in the regime U	 t. We can, however, dis-
cuss qualitatively the physics arising from the tendency to
form magnetic moments near impurities, as is appropriate
near optimal doping. To study the response of the system in
a static electric field, we calculate conductivity via linear-
response theory, where we use the current in the x direction,

Ji = Ji
x = it�

�

�ĉi+x�
† ĉi� − ĉi�

† ĉi+x��

+ it��
�

�ĉi+x
y�
† ĉi� − ĉi�

† ĉi+x
y�� , �5�

and express the site-dependent current-current correlation
function in terms of eigenstates and eigenenergies

�ij�t� = − i��t���Ji�t�,Jj�0��� ,

�ij��� = �
n,m

�n	Ji	m��m	Jj	n�
f�En� − f�Em�

� + En − Em + i
,

�i = �
j

− lim
�→0


 Im��ij����
�

�
= ��

j
�
n,m

�n	Ji	m��m	Jj	n�F�En,Em� . �6�

The global conductivity � is realized by averaging �i over
the whole sample with a proper normalization. The function
F�En ,Em� is symmetric under exchange of En↔Em.51 The
resistivity � is then given by the inverse of � and is plotted in
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units of 2D resistivity � /e2. One can also convert it into a
three-dimensional �3D� resistivity for materials such as
YBCO, in which one assumes two conducting planes per
unit cell and gives � as 3D resistivity in units of
� / �e2c�=241 �� cm, where c is the average distance be-
tween CuO2 planes and the numerical value given is for
YBCO. Note that this procedure gives us only the resistivity
part due to impurity scattering; since Hamiltonian �4� is de-
coupled at the Hartree level, the inelastic processes which
may lead to, e.g., the linear resistivity at optimal doping52 are
not treated. We calculate therefore only the low-T part due to
elastic scattering.

The proper choice of system size in simulating Eq. �4� is
determined by the following criteria. First, in the absence of
impurities, homogeneous resistivity �0 should be propor-
tional to the artificial broadening . Second, the resistivity in
the case with impurities should be proportional to the impu-
rity concentration. We found that a 40�40 lattice was suffi-
cient to achieve the above two criteria down to temperature
as low as T�=0.02, which is roughly equal to the average
energy-level spacing, and will be the system size used in the
following. Each data point is then averaged over ten different
impurity configurations, which we found to be sufficient to
ensure the randomness of the impurity distribution. We chose
t�=−0.2 and the energy unit to be t=100 meV, which gives
temperature scale T=0.01t�10 K and the magnetic field
scale B=0.004–7 T, in the same scale as a recent study of
NMR line shapes in the superconducting state.53

Before the resistivity under the influence of induced mag-
netization is studied, we first compare the present study in
the normal state with the data in the d-wave superconducting
�dSC� state.53 Such a comparison reveals the importance of
finite DOS in the normal state as well as the bound-state
formation in the dSC state. The effect of nonmagnetic

impurities in the dSC state is studied within the framework
of d-wave BCS theory plus magnetic correlations, equivalent
to the Hubbard model in Eq. �1� with additional pairing
correlations between nearest-neighbor sites Hpair
=�i���ici↑

† ci+�↓
† +H.c., where the gap is to be determined self-

consistently ��i=V�ci↑ci+�↓+ci+�↑ci↓� /2, with V=1. The real-
space magnetization pattern induced by a single nonmagnetic
impurity is shown in Figs. 1�a� and 1�b�, where we found
three major differences. �1� In the presence of a magnetic
field, the normal state has homogeneous magnetization sig-
nificantly larger than that of the dSC state. This is obviously
due to the opening of the gap in the dSC state which reduces
the DOS at the Fermi level and hence exhibits a smaller
susceptibility than the normal state. �2� The magnetization on
the nearest-neighbor sites of the impurity is drastically en-
hanced in the dSC state, consistent with the bound-state for-
mation due to the d-wave symmetry.17 �3� The dSC state has
a shorter correlation length, resulting from the enhancement
of nearest-neighbor site magnetization in comparison with
the relatively smaller magnetization on the second- and
third-nearest sites away from the impurity. To give a quanti-
tative description of these features, we introduce the total
magnetization Sz and the magnetic contrast �

Sz = �
i

mi,

� =
1

N
�

i

	mi − m0	 , �7�

where mi is the magnetization at site i and m0 is the homo-
geneous magnetization in the absence of impurities but in the
presence of a magnetic field. The meaning of � is to estimate
the fluctuation of site-dependent magnetization away from its
homogeneous value m0, hence an indication of locally in-
duced staggered moment. Since interference between impu-
rities is always present and the local environment is different
around each impurity, the deviation from m0 of the whole
system needs to be considered, and therefore we sum over i
for � in Eq. �7�. The behavior of Sz and � versus the applied
field is shown in Figs. 1�c� and 1�d�, where one sees that Sz
in the normal state is one order of magnitude larger than in
the dSC state, which is attributed to the overall larger homo-
geneous susceptibility in the normal state. However, in the �
versus field plot, we see that after the homogeneous magne-
tization is subtracted, as in the definition of �, the dSC state
has a larger value due to the enhanced magnetization attrib-
uted to the bound-state formation. Such a comparison indi-
cates that DOS at the Fermi level is crucial to the formation
of impurity-induced moments, which in turn motivates us to
propose a phenomenological model that emphasizes the ef-
fect of reducing DOS in the underdoped region, as will be
discussed in Sec IV.

III. RESISTIVITY UPTURNS AT OPTIMAL DOPING

Motivated by the NMR experiments,17,26–29 we study the
magnetic response in the paramagnetic region close to the
magnetic phase boundary. For convenience and direct com-
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FIG. 1. �Color online� ��a� and �b�� Real-space magnetization
pattern induced by a single nonmagnetic impurity for �a� the normal
state, and �b� the dSC state, both at U=1.75 and B=0.01. One sees
that the dSC state has more pronounced nearest-neighbor site mag-
netization due to bound-state formation and has smaller homoge-
neous magnetization due to the opening of a gap at the Fermi sur-
face. These effects are shown more clearly in �c� the total
magnetization Sz and �d� the magnetic contrast � versus external
field.
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parison to experiments where unitary scatterers are created
by Zn substitution or irradiation defects in YBCO, we choose
Vimp=100. For a system with 2% impurities, we show in Fig.
2�a� the magnetic contrast � versus U. For the band structure
used in this paper, the critical Coulomb repulsion is found to
be Uc�1.75, above which a spontaneous magnetization is
observed for zero field. This value is found to depend on
system size and impurity content53 but the value is roughly
close to Uc�1.75. As seen in Fig. 2�b�,the resistivity in-
creases with U and coincides with the behavior of � in the
region both below and above its critical value. This positive
correlation between � and � serves as the first evidence that
we can attribute the increase of resistivity to the extra scat-
tering induced by the magnetic moments. In the following
discussion we choose U=1.74 such that it is close to but
slightly below the critical Uc, and the system exhibits para-
magnetic response to an external field.

We note that in the region where the system cross the
magnetic phase boundary, for instance at large U or low
temperatures, numerics found that there are several stable
states with comparable energies competing with each other.
Taking different initial conditions or a different route for the
convergence can result in a different apparent ground-state
configuration; for instance, we found a charge-density wave
ground state with periodicity �� ,�� that can exist in large U
and zero field, consistent with the spin- or charge-modulated
state found in other studies with a sufficiently large Coulomb
repulsion.45,54–57 However, considering the strong experi-
mental evidence of magnetic ordering, as well as the result-
ing resistivity in comparison with the transport measurement,
only the paramagnetic-induced moment state can give a
proper description of both induced magnetization and trans-
port anomalies in the optimal to lightly underdoped systems,
and hence will be the stable configuration focused on in this
paper.

Due to the limited system size, we are unable to explore
the extremely low-T regime, which prevents us from com-
paring the present theory with the experimentally observed
log T divergence. However, numerics down to as low as
T=0.026–26 K show significant resistivity upturns in com-
parison with the zero-field case. Figure 3 shows both mag-
netic contrast and change in resistivity �� /�0 versus tem-
perature T, where �0 is the resistivity at the uncorrelated
zero-field case �U=0, B=0�, and one sees again the positive
correlation between these two quantities. The lowest tem-
perature explored is slightly lower than the critical tempera-

ture Tspon�0.025 below which a spontaneous magnetization
is observed in the zero field. The magnitude of the upturn at
T=0.026 in comparison with high-temperature resistivity is
on the order of 5%, roughly consistent with the value ob-
tained in slightly underdoped YBCO after the inelastic con-
tribution has been subtracted.8

The magnetoresistance in the presence of induced magne-
tization is shown in Fig. 4, where we again see a positive
correlation between � and �� /�0 with increasing magnetic
field B. At the temperatures where the resistivity upturns set
in, we found that both � and �� /�0 first increase with the
field, and eventually saturate and slightly decrease in the
high-field region. One can unambiguously define a field scale
Bsat above which � and �� /�0 saturate, and we found that
Bsat decreases as temperature is lowered. Such a increase-
saturation behavior is consistent with the magnetoresistance
observed in YBCO,15,16 although Bsat observed therein is
slightly higher, possibly due to the higher field required to
eliminate the superconductivity before normal-state proper-
ties can be observed. Since Bsat decreases as lowering tem-
peratures, the region where the magnetic contrast � is linear
with respect to the external field also decreases accordingly,
which indicates that as the magnetization starts to grow at
low temperatures, the interference between the magnetic is-
lands induced around each impurity is also enhanced, caus-
ing � to deviate from a linear response.

The last issue we need to address is the behavior of � and
�� /�0 with changing impurity concentration nimp, in com-
parison with the available experimental data which shows
that the resistivity upturns monotonically increase with nimp
up to nimp�3%. Figure 5 shows the numerical result under
the influence of changing nimp, where one again sees the
consistency between the behavior of � and �� /�0. However,
instead of increasing monotonically with increasing nimp, we
found that both � and �� /�0 increase up to a critical con-
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FIG. 2. �a� Magnetic contrast � and �b� resistivity in units of
241 �� cm versus U at optimal doping with T=0.03 and 2%
impurities.
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centration nimp
c �1%, and then decrease as more impurities

are introduced on the plane. Such a result indicates that the
impurity-induced magnetization is proportional to nimp only
up to a certain extent, beyond which the interference takes
place and eventually destroys the magnetization and the as-
sociated magnetic scattering. Note that to further demon-
strate that the interference effect is more destructive than
constructive to the induced magnetization, we study the two-
impurity case in the present model, and plot � against the
separation between the two impurities, as shown in Fig. 5�b�.
We first found that there exists a strong enhancement of mag-
netization if both impurities are on the same sublattice, con-
sistent with previous studies in the dSC state.45,58 Second, �
indeed decreases as the two impurities get closer, which is
the case when nimp is increased, indicating the destructive
nature of the interference effect, and hence the decreasing of
magnetization at sufficiently large impurity content. Our re-
sult therefore predicts that if extremely disordered samples
�nimp�3%� can be studied experimentally, a critical concen-
tration can occur beyond which the resistivity upturn drops
as increasing impurity content, assuming that weak localiza-
tion has not yet taken place. The critical concentration nimp
�1% shown in the present study is apparently smaller than
the experimental value, which may be due to a smaller
linear-response region in the present model in comparison
with the real cuprates, presumably an artifact of such a weak-
coupling mean-field approach. In addition, the critical disor-
der concentration nimp will depend on the details of the dis-
order modeling, for instance, the nature of the disorder, or
the extent of the impurity potential, which is outside of the
scope of our study.

IV. EFFECT OF PSEUDOGAP IN DOS ON RESISTIVITY

From a weak-coupling perspective, we expect enhance-
ment of resistivity upturns as the system is underdoped,
based on the following two features: first, correlations are
more significant as one approaches half filling, resulting in
an increase in the effective U entering our model. Although
the Hartree-Fock type mean-field theory cannot capture the
Mott transition induced by correlations nor the pseudogap
phenomenon, the drastic increase in resistivity near the criti-

cal value of U suggests that correlations indeed affect resis-
tivity as one approaches the strong-coupling region. The
large U region in Fig. 2 demonstrates that correlation
strength U, as well as the induced magnetic moment, are
indeed essential ingredients to determine the magnitude of
the upturn.

Second, the opening of the pseudogap in the quasiparticle
spectrum is known to favor bound-state formation, which in
turn promotes the impurity-induced magnetic moment.17

This is similar to the dSC state where the pole of impurity T
matrix falls within the gap, producing a bound state localized
around the impurity. We expect that the reduction in the DOS
in the pseudogap state also produces poles of the T matrix
near the Fermi energy, although the exact form of the
Green’s function is unknown. Resistivity upturns are then
affected by the pseudogap formation based on the naive ar-
gument that impurity induced moments result in the upturn.
To get a crude idea of the effect of reducing the DOS, we
introduce a pseudogap in an ad hoc way without going
through the T-matrix formalism, since no microscopic model
of the pseudogap state is generally agreed upon at present.
The following form of dispersion and DOS is proposed for
the homogeneous pseudogap state

Ek = sign��k��k
2 + �k

2,

N��� =� dk2

4�2

/�
�� − Ek�2 − 2 , �8�

where �k=−2t�cos�kx�+cos�ky��−4t� cos�kx�cos�ky�−� f is
the normal metallic dispersion with a constant “pseudogap”
�k=0.2 and =0.1. We then Fourier transform Ek back to
real space and find an effective long-range hopping model
that gives the energies Ek. The hopping amplitude tij of this
extended hopping model is therefore

tij =� dk2

4�2Ek�cos�kx · �xi − xj�� + cos�ky · �yi − yj��� . �9�

We calculate the hopping range up to 	xi−xj	= 	yi−yj	
=20 on a 40�40 lattice. Numerics show a roughly 40%
reduction in DOS at the chemical potential, as shown in Fig.
6. The calculation of resistivity then follows Eqs. �5� and �6�
while the contribution from all hopping terms t�= tij and their
corresponding distance �� =r�i−r� j all need to be considered.

Figures 7�a� and 7�b� shows the magnetization and resis-
tivity comparing extended hopping model with the normal-
state Hubbard model, Eq. �1�, which contains only nearest-
and next-nearest-neighbor hopping. We fix both models at
optimal doping �=0.15 and examine solely the effect of re-
ducing DOS. Within the magnetic field region explored
0�g�BB /2�0.01, the magnetic contrast � is found to be
enhanced in the extended hopping model, confirming our
hypothesis that reducing the DOS promotes bound-state for-
mation, which also gives larger resistance between tempera-
ture range 0.02�T�0.045. The magnetization and resistiv-
ity versus field is shown in Figs. 7�c� and 7�d�, where one
sees larger magnetization comparing to the metallic normal-
state model, with a smaller linear-response region and the
saturation at high field is again revealed. Resistivity upturns
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FIG. 5. �a� Magnetic contrast � and change in resistivity �� /�0

versus nimp at optimal doping with U=1.74, B=0.001, T=0.03, and
�b�� induced by the two-impurity model plotted against the separa-
tion between the two impurities r12, collecting all relative positions
up to 13th shell. Values of r12 that correspond to average distance of
impurities at nimp=3%, 1%, and 0.5% are indicated.
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are enhanced overall in both low- and high-field regions, and
are consistent with the behavior of �. The hypothesis that
reducing the DOS promotes induced moments, and in turn
enhances the resistivity upturns, is then substantiated.

V. CONCLUSIONS

In summary, we employed a Hartree-Fock decomposition
of the Hubbard model to study transport properties in the
cuprates in the presence of disorder-induced magnetization,
which is a consequence of the interplay between strong cor-
relations and inhomogeneity. The numerical results suggest
that, at low enough temperatures and strong enough correla-
tions, impurity-induced magnetization is drastically en-
hanced. Within this regime, both induced magnetization and
resistivity are increased as �1� the temperature is lowered, �2�
the magnetic correlations are enhanced, �3� the magnetic
field is increased, and �4� more impurities are introduced,
consistent with the conditions in which the enhancement of
resistivity is observed experimentally. We predict, in addi-
tion, that the addition of further disorder can sometimes lead
to a nonmonotonic field dependence as the magnetic poten-
tial landscape becomes smooth; this property has not yet
been observed to our knowledge. Extremely heavily disor-
dered or strongly correlated samples will lie in a different
regime, which we have not yet treated, where disorder will
create a spontaneous, short-range ordered magnetic state
even in zero field;45 in this case we anticipate that the mag-
netoresistance will quite small.

The positive correlation between induced magnetization
and resistivity confirms our hypothesis that the enlarged
cross section due to these local magnetic moments gives ex-
tra scattering and hence the resistivity upturns, consistent
with the mechanism previously suggested by Kontani et
al.,41–43 and indicates that the hole-doped cuprates lie within

this regime over a wide range of �under� doping, in which
strong correlations can cause anomalies in the thermody-
namic observables. A phenomenological model that produces
reduction in DOS near the Fermi level in an ad hoc way
further suggests that, as the system is underdoped, the
anomalous spectrum can promote the impurity bound state
and hence the magnetization, which in turn boosts the mag-
netic scattering and the resistivity upturns. The proposed
mean-field theory plus real-space diagonalization scheme is
therefore a powerful tool to capture the complex effect on the
transport properties due to strong correlations, inhomogene-
ity, and the spectral anomalies in the low-temperature region
where the transport is dominated by disorder. Further appli-
cations of the present theory, as well as the influence of
impurity-induced magnetization on other thermodynamic ob-
servables in the metallic cuprates, will be addressed in a
future study.
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