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The current-phase relation for a short Josephson junction placed in the nonuniform field of a small ferro-
magnetic particle is studied. The effect of the particle produced on the junction appears to be strong due to the
formation of the pair of oppositely directed Abrikosov vortices which pierce the thin-film superconducting
electrode and cause a small-scale inhomogeneity of Josephson phase difference. The induced phase-difference
inhomogeneity is shown to result in the nonzero fixed phase drop �0 across the junction. The equilibrium value
�0 corresponding to the ground state of the junction depends on the configuration of the vortex-antivortex pair.
The possibility to tune the ground-state phase difference �0 is discussed.
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I. INTRODUCTION

Usually the current-phase relation �CPR� in Josephson
junction close to the critical temperature is sinusoidal Is���
= Ic sin �, and the dependence of the free energy EJ
= ��Ic /2e��1−cos �� assumes positive values of the critical
current Ic�0 �see Ref. 1�. So, in the absence of a supercur-
rent, Is=0, the phase drop across the conventional junction
equals zero.2 But under certain conditions one can fabricate
so-called Josephson � junction3 which has an energy mini-
mum at �=�, i.e., it provides a phase shift of � in the
ground state �Refs. 1 and 4�. The CPR of � junctions reads
Is���= Ic sin��+�� and can be formally described by the
negative value of the critical current Ic. The � states have
been observed in Josephson junctions consisting of two
d-wave superconductors,5 in superconductor/ferromagnet/
superconductor �SFS� junctions utilizing ferromagnetic
barriers,6–8 and also in multiterminal superconductor/normal-
metal/superconductor �SNS� Josephson junctions.9 Such �
junctions are supposed to open up new opportunities for de-
signing Josephson effect-based devices.10–12

Recently the investigations of Josephson � junctions
which provide the realization of an unusual current-phase
relation

Is��� = Ic sin�� + �0� �1�

have been attracting a lot of attention.13–15 The minimum of
the Josephson energy of � junctions EJ= ��Ic /2e��1−cos��
+�0�� corresponds to the nonzero value of the phase differ-
ence �=−�0 such as 0��0��. The realization of the �
junction is possible in the case of periodic structures com-
posed of alternating 0 and � minijunctions,13,14 or in the case
of SNS structures when the normal layer is a noncentrosym-
metric magnetic metal.15 Josephson � junctions demonstrate
unusual properties and may serve as phase shifters in the
superconducting �SC� electronics circuits.16

The ���� junctions described above utilize an intrinsic
phase change due to the peculiarities of tunneling through
the ferromagnetic layer or/and superconducting wave-
function symmetry. An alternative approach is to produce a
phase shift across the junction using flux or current biasing.
Examples are tools based on trapping fluxoids in a mesos-
copic ring incorporated into dc superconducting quantum in-

terference device17 or Josephson junction with the additional
current injector-extractor pair which creates an arbitrary dis-
continuity of the Josephson phase difference.18,19 Here we
suggest to use small ferromagnetic particles to create the
phase-biased Josephson system. An arbitrary phase drop
across the junction is shown to be caused by a small-scale
phase-difference inhomogeneity induced by the particle.

Let us briefly remind of the basic mechanisms which
could provide a strong phase variation along the contact on a
scale which is smaller than the Josephson penetration depth.
First of all, the natural source of a phase inhomogeneity is an
Abrikosov vortex �AV� pinned in the SC electrodes. Even a
single misaligned AV, trapped in the SC electrodes perpen-
dicular to the junction plane, is known to modify strongly the
critical current and the current-voltage characteristics of Jo-
sephson junctions.20–24 Next, 0-� discontinuities in the phase
difference along the barrier appear in a Josephson junction
composed of alternating 0 and � minijunctions25 �the zigzag
junctions between high-Tc and conventional
superconductors26 as well as SFS junctions with a steplike
thickness of the ferromagnetic interlayer27�. Finally, arbitrary
phase inhomogeneity can be formed with a current injection
into Josephson junction on a scale smaller than the charac-
teristic Josephson length.18,19 The presence of such phase
singularities results in the unusual CPR,13 an anomalous non-
Fraunhofer Ic�H� dependence,26 and spontaneous generation
of fractional Josephson vortices at the boundaries between 0
and � regions.28,29

Another method for creating a controlled phase inhomo-
geneity in Josephson junctions has been proposed and suc-
cessfully realized recently. This method is based on the in-
teraction of a Josephson contact with the nonuniform
magnetic field of submicron ferromagnetic particles located
close to the junction.30–32 These experiments have demon-
strated a essential dependence of the critical current Ic on the
magnetic state of the particles. This means that the transport
properties of Josephson contacts can be effectively con-
trolled by the magnetic field of the small particles. Experi-
mentally detected additional maxima in the field dependence
of the critical current Ic�H� have unambiguously indicated
commensurability effects between a periodic distribution of
the Josephson phase difference created by the particles and
the scale of the phase modulation induced by an applied
magnetic field H.32,33 While the macroscopic commensura-
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bility effects have already been demonstrated in such hybrid
ferromagnet-superconductor �FS� systems, the insight into
the current-phase relation is still lacking.

In this paper we study theoretically the hybrid FS system
consisting of a Josephson junction coupled with a single
magnetic dot as it is shown in Fig. 1. We demonstrate that
the phase shift in the ground state of the Josephson junction
depends on the magnetic state of the particle. We discuss the
possibility to realize Josephson � junction based on such
hybrid FS structure. The paper is organized as follows. In
Sec. II, we introduce a model used to explain the appearance
of a nonuniform phase-difference distribution in Josephson
junction coupled with a magnetic dot. In Sec. III, we study
the ground state of this hybrid system which is characterized
by the finite phase-difference drop �0 across the junction. In
Sec. IV we summarize our results.

II. JOSEPHSON PHASE MODULATION INDUCED BY A
MAGNETIC PARTICLE

We consider a generic example of the FS hybrid system
consisting of a short square �W�W� Josephson junction and
an elongated magnetic particle on its top electrode. The junc-
tion is formed by overlapping two long SC strips �L�W� of
thickness d	
 �top� and D�2
 �bottom� as shown in Fig.
1�a�. The single-domain magnetic dot with in-plane magne-
tization M is separated from the top SC electrode by a thin
insulating layer, which prevents the proximity effect. The
interaction between the junction and the particle may be pro-

vided by the magnetic field generated by the dot and super-
currents. For the sake of simplicity, we consider here only
the case of a rather small junction with


 	 W 	 �,
J, �2�

where 
 and 
J are the London penetration depth and the
Josephson penetration depth, respectively, and �=
2 /d is
the thin-film screening length. The gauge-invariant phase dif-
ference across the junction is given by the expression

�r� = �b�r� − �t�r� +
2�

�0
�

b

t

dzAz�r� . �3�

Here �b�r� and �t�r� are distributions of the phase of Cooper
wave function in the bottom and the top SC electrodes, re-
spectively, r= �x ,y� is a vector in the junction plane, Az is the
normal to the junction plane component of the magnetic vec-
tor potential A=A� +Azz0, and �0=��c / �e�—is the flux
quantum. In a thin SC strip with W	�, the self-field of the
sheet current can be disregarded and the top electrode is
assumed to be transparent to the magnetic field of the par-
ticle. In its turn, this magnetic field partially penetrates into
the bottom superconductor and induces in-plane screening
Meissner currents in it. Since the top film thickness d is
assumed to be small it is reasonable to apply the gauge Az
=0 to avoid the strong singularity of the vector potential A in
the limit d→0. For this gauge the phase difference across the
junction �r� �Eq. �3�� is determined by the distributions
�t�r� and �b�r� of the phase of the wave functions only.

In the absence of vortex lines trapped in the electrodes the
ground state of the system can be described by the uniform
phase �t=�b=0 and screening Meissner currents are deter-
mined by the the in-plane component of the vector potential
A�. So, the gauge-invariant phase difference �Eq. �3�� across
the junction equals zero: �r�=0, and the magnetic field of
the particle does not modify the critical current of the Jo-
sephson junction.

Vortex �antivortex�, if appears, must be located near the
negative �positive� pole of the magnetic dot,34 as shown in
Fig. 1�a�. According to the concept proposed in Ref. 32, a
pair of vortices of opposite directions pierce the top electrode
of the junction. As before, we put �b=0 due to the absence of
vortex lines in the bottom electrode. Suppose that the pair
size �i.e., the vortex-antivortex distance� �rv−ra�=2a is rather
large compared with the superconducting coherence length �,
then the electrodynamic mechanism based on the spatial de-
pendence of the gauge-invariant phase difference,

�r� = − �t�r� �4�

is dominant.21,22 Here rv= �xv ,yv� and ra= �xa ,ya� are the
vortex and antivortex positions, respectively.

A. Basic equations

As a next step we should find the phase-difference distri-
bution �r� over the junction area. The small size of the
junction W	
J means that self-field effects of the Josephson
current can be neglected compared to the in-plane currents.
In this case, the phase-difference distribution �r� obeys the
two-dimensional Laplace equation,35,36

(b)

(a)

FIG. 1. �Color online� �a� Schematic of the Josephson contact
with the ferromagnetic particle on the top electrode. The junction
area �W�W� occupies only part of the superconducting electrodes
�L�W�. The vortices indicated by vertical arrows are located near
the opposite poles of a uniformly magnetized particle. The inset
schematically shows the structure of the stray field of the ferromag-
netic particle and the pair of oppositely directed Abrikosov vortices
which pierce the top superconducting electrode. �b� The picture
shows the location of a vortex �rv� and antivortex �ra� trapped in
the top electrode of the contact. The phase difference p is specified
by the angle between the directions from the reference point r to the
points of the vortices location rv,a. The thin dashed lines shows
vortex�antivortex� images, which provides zero normal currents at
the edge y=0.
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� = �x
2 + �y

2 = 0. �5�

In the presence of trapped Abrikosov vortices the top elec-
trode of the Josephson contact becomes a multiply connected
domain. So, it is necessary to take into account the topologi-
cal singularities of the phase distribution �t�r� which are
caused by presence of the vortex-antivortex pair.37 According
to the Eq. �4� we obtain the following condition for �r�:

curlz��� = 2����r − ra� − ��r − rv�� , �6�

which fixes the circulation around the singularities.
For W	�, the in-plane sheet current density in the top

electrode

�t = −
c�0

8�2�
���t +

2�

�0
A�	 �7�

is determined mainly by the phase gradient ��t induced by
the trapped vortices rather than the vector potential A�. In-
deed, the term with A� in the Eq. �7� is on the order of
2� /�	 ���t�
2� /W and can be neglected. It means that
the sheet current density �Eq. �7�� is determined by the
gauge-invariant phase difference �r�: �t
��t
�. At the
edges of the top stripe �x=0,W ; y=0� the normal compo-
nent of the sheet current �t vanishes and the Eq. �5� must be
supplemented with the following boundary conditions:

�x�x=0,W = 0, �y�y=0 = 0. �8�

Finally, a local phase inhomogeneity due to the presence of a
vortex-antivortex pair has to vanish at distances larger as
compared with the pair size 2a. For the sake of simplicity the
top electrode is assumed to be a semi-infinite SC strip, and
the condition

�x,y� = 0, for y → � �9�

has to be satisfied. Thus, the Eqs. �5� and �6� and the bound-
ary conditions �8� and �9� describe the phase-difference dis-
tribution which is induced by a vortex-antivortex pair
trapped in the top electrode of the contact.

At a constant value of the critical current density jc and
the standard sinusoidal form of CPR the ground state of this
junction in the absence of a supercurrent corresponds to a
minimum of the Josephson energy

EJ��� =
�Ic

2e
−

�jc

2e
�

SJ

dr cos�� + �r�� , �10�

where the integral is evaluated over the junction area SJ : �0
�x , y�W� and Ic= jcSJ. The current-phase relation for the
junction

IJ��� = jc�
SJ

dr sin�� + �r�� �11�

reveals the shift which depends on the phase-difference dis-
tribution �r�.

By minimizing the Josephson energy �Eq. �10�� with re-
spect to � one can find the equilibrium distribution e�r�
=�r�+�0 of the gauge-invariant phase difference for the
junction containing the vortex-antivortex pair, where the ad-
ditive constant

�0 = − a tan�S/C� �12�

determines the fixed phase shift between the top and bottom
electrodes away from the junction area. The coefficients C

and S in Eq. �12� depend on the distribution of the phase
difference �r� induced by the trapped Abrikosov vortices,

C = �
SJ

dr cos �r�, S = �
SJ

dr sin �r� . �13�

Varying the magnetic state of the particle one may control
�r� changing the vortex�antivortex� position, and, thereby,
tune the average phase difference �0 across the junction.

B. Phase-difference distribution

The the gauge-invariant phase difference �r� due to the
presence of a single vortex-antivortex pair trapped in the top
electrode can be calculated as follows. First of all, let’s ne-
glect the edge effects �Eq. �8��. The distribution �r�, which
satisfies the Laplace Eq. �5� and provides for the required
phase circulation �Eq. �6�� around the singularities rv,a, can
be written as a superposition of contributions from two point
opposite vortices,

�r� = p�r�, p�r� = �a�r� − �v�r� . �14�

The phase �v,a�r� of the wave function describing a point
vortex �antivortex� is determined by the polar angle specify-
ing the direction from the position of the vortex axis rv,a to
the reference point r �see Fig. 1�b��,

�v,a�r� = a tan� y − yv,a

x − xv,a
	 . �15�

It is evident that p�r�→0 for �r�� �rv,a� and, thus, the dis-
tribution �14� and �15� satisfies the condition �9�. Figure 2
illustrates schematically the distribution of the phase differ-
ence p�r� created by a pair of opposite vortices. The dark
central area between the vortices shows the region where
� /2�p�3� /2 and cos p�0. This domain provides with
an additional positive contribution to the Josephson energy
�Eq. �10�� and, as a consequence, such state of the junction
appears to be an energetically unfavorable. The energy ex-
cess associated with the pair presence grows as the intervor-
tex distance �rv−ra� increases.

FIG. 2. �Color online� Distribution of cosine of the phase p are
schematically illustrated. The dark area corresponds to the region
where � /2�p�3� /2 and cos p�0. The vortex�antivortex� po-
sition is shown by the bright spot.
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To take into account the boundary conditions �8� the so-
lution �r� may be written in the following convenient form:

�r� = p�r� + p��r� + ��r� . �16�

Here p��r�=�v��r�−�a��r� is the phase distribution created by
the vortices images �see Fig. 1�b��

�v,a� �r� = a tan� y + yv,a

x − xv,a
	 �17�

and ��r� is the solution of the Laplace equation

�� = 0 �18�

in the infinite stripe �0�x�W , �y���� with the following
boundary conditions at the stripe edges x=0 and x=W:

�x��x=0,W = − �x�p + p���x=0,W: �19�

��x,y� =
1

�
�

−�

+�

du� yv�u2 − rv
2�

�rv
2 + u2�2 − 4yv

2u2

−
ya�u2 − ra

2�
�ra

2 + u2�2 − 4ya
2u2�ln�cosh��

y − u

W
	

− cos��
x

W
	� −

1

�
�

−�

+�

du� yv�u2 − pv
2�

�pv
2 + u2�2 − 4yv

2u2

−
ya�u2 − pa

2�
�pa

2 + u2�2 − 4ya
2u2�ln�cosh��

y − u

W
	

+ cos��
x

W
	� , �20�

where

rv,a
2 = xv,a

2 + yv,a
2 , v,a

2 = �W − xv,a�2 + yv,a
2 .

The expressions �14�–�17� and �20� determine the distri-
bution of the gauge-invariant phase difference �r� created
by the pair of opposite point vortices trapped in the thin top
electrode of the Josephson junction. This phase distribution
�r� is used to calculate the Josephson energy �Eq. �10�� and
the total current through the contact �Eq. �11�� for different
positions of vortex and antivortex.

III. GROUND STATE OF JOSEPHSON JUNCTION
COUPLED WITH A MAGNETIC PARTICLE

Now we proceed with the calculations of the ground state
of the Josephson junction which depends on the size and
orientation of the vortex-antivortex pair induced by the mag-
netic particle. We restrict ourselves to the case of zero ho-
mogeneous external magnetic field. For simplicity, the vortex
and antivortex are assumed to be placed symmetrically with
respect to the center of the junction x0=y0=W /2,

xv + xa = W, yv + ya = W .

Figures 3 shows the dependence of the average phase dif-
ference �0 �Eq. �12�� and the Josephson energy EJ��0� �Eq.
�10�� on the location of the vortices. As an example we con-

sider the change in the phase �0 due to the rotation of the
vortex-antivortex pair with respect to the midpoint x0=y0
=W /2. In this case the location of the vortices is determined
by the intervortex distance 2a and the angle of the pair rota-
tion

� = a tan� yv − ya

xv − xa
	

relative to the direction of x axis �see Fig. 1�. The range of
the change in �0 depends on the pair size 2a. For 2a	W
�Fig. 3, curve 1� the phase inhomogeneity occupies a small
part of the junction area and the presence of the vortex-
antivortex pair does not affect the junction properties essen-
tially. The value of �0 varies weakly round about the point
�0=0, and the junction demonstrates mainly the properties of
a conventional junction; the ground state corresponds to the
almost zero phase drop across the junction. An increase in
the pair size leads to forming a strong phase modulation
�r�, and the average phase difference �0 can take practi-
cally any value between −� /2 and � /2 in dependence on the
angle � �Fig. 3, curve 2�. This is accompanied by the growth
of the Josephson energy EJ due to the expansion of the do-
main where cos �r��0. The further increase in the pair size
�2a�W /2� leads to the additional � shift of the average
phase difference �0 �Fig. 3, curve 3�, and the junction exhib-
its the switching into the new ground state which is specific
for � junctions; the value of �0 oscillates about the point
�0=�.

Figure 4 shows the dependences of the average phase dif-
ference �0 and the Josephson energy of the ground state EJ

�0

vs the intervortex distance 2a for the fixed orientation of the
vortex-antivortex pair �=� /2. For a small intervortex dis-
tance 2a, the domain, where the energetically unfavorable
phase difference � /2��r��3� /2 exists, occupies the cen-
tral part of the junction. The size of the domain is small and
this part of the junction gives a small additional positive
contribution to the Josephson energy EJ. As a result, the con-
ventional ground state realizes, which is described by the
zero value of the average phase difference �0. The increase
in the intervortex distance 2a provokes an expansion of the
energetically unfavorable domain, and, consequently, the rise
in the Josephson energy EJ

0 of the state corresponding to a
choice of �0=0. Let us introduce the complementary phase-
difference distribution ��r� which differs from the initial

(b)(a)

FIG. 3. �Color online� Dependence of �a� the average phase
difference �0 and �b� the Josephson energy EJ

�0 of the ground state
on the angle of the vortex-antivortex pair rotation � for different
values of the pair size 2a: 1. 2a=0.1W; 2. 2a=0.4W; 3. 2a=0.8W
�E0=�Ic /2e�.
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one �r� by the � shift, ��r�=�r�+�. In the absence of
trapped vortices the complementary state is unrealizable
since it corresponds to a maximum of the Josephson energy
�Eq. �10��. The generation of the vortex-antivortex pair re-
sults in a decrease in the Josephson energy EJ

� of the comple-
mentary state ��r�. The crossing of the curves EJ

0�2a� and
EJ

��2a� occurs at 2a=2a�0.56W so that the switch between
the conventional state ��0=0� and the �-shifted one ��0
=�� takes place. As a result, the ground state of the junction
changes for sufficiently large intervortex distances 2a�2a�.
Certainly, the switching point 2a� depends on configuration
of the vortex-antivortex pair. Such a crossover between 0 and
� states manifests itself as a � shift of the superconducting
phase between the electrodes of the junction.

In Fig. 5 we present examples of the simulations of the
equilibrium phase difference �r�+�0 for the junction con-
taining the vortex-antivortex pair. For a small intervortex dis-
tance �2a�2a��, the conventional ground state �0=0 real-
izes �Fig. 5�a��. This state corresponds to the zero phase drop
across the junction in the absence of a supercurrent. With the
increase in the intervortex distance �2a�2a��, the additive

phase shift �0=� decreases in part the Josephson energy
corresponding the central domain between the vortices �Fig.
5�b��. As a result, there appears a � shift in the phase of the
superconducting order parameter across the junction.

IV. SUMMARY

In conclusion, we have studied theoretically the properties
of the hybrid system consisting of a short Josephson junction
located in a nonuniform field of the magnetic particle. The
effect of the particle on the junction is shown to be strong
due to the formation of the pair of oppositely directed Abri-
kosov vortices which pierce the top electrode of the junction.
From an experimental point of view the vortex-antivortex
pair can be created by cooling the junction through transition
temperature Tc in the dipole magnetic field of a magnetic
dot.34 As a result, one should use single-domain magnetic
dots with in-plain magnetization such as elongated submi-
cron Co dots. For parameters of magnetic dots taken from
the experiments,32 �the saturation magnetization Ms

800 Oe, lateral dimensions 
650�easy axis��250 nm2

and a thickness of 
50 nm� we can estimate typical dimen-
sion of the Josephson junction as W
1 �m. Magnetostatic
calculations show that the stray field of both poles of the dot
creates a �positive or negative� flux �s��0 through the top
SC electrode, and the criterion34,38 for the nucleation of the
vortex-antivortex pair is satisfied. Since the flux �s rapidly
decreases when a distance between the magnetic dot and a
superconductor becomes comparable with the lateral sizes of
the dot, the Meissner state is more energetically favorable in
the thick bottom electrode upon cooling through Tc.

The vortex-antivortex pair trapped in the top electrode
causes the inhomogeneity of the gauge-invariant phase dif-
ference on scales that are significantly smaller than the Jo-
sephson length. The pair size and orientation are determined
by the size and magnetization of the particle. We have cal-
culated the corresponding distribution of the Josephson
phase difference over the junction and have studied the de-
pendence of the Josephson energy EJ on the vortex configu-
ration. It was shown that the ground state of the junction
corresponds to the nonzero drop of the average phase differ-
ence across the junction �0. The equilibrium value of the
phase difference �0 depends on the size and orientation of
the vortex-antivortex pair, i.e., on the magnetic state of the
particle. This demonstrates the possibility to realize the tun-
able current-phase relation Is= Ic sin��+�0� by changing the
magnetization of the particle. Finally, note that such hybrid
FS system incorporated into a superconducting ring should
induce spontaneous currents and may serve as a natural
phase shifter in the superconducting electronic circuits.
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FIG. 4. �Color online� Dependence of the average phase differ-
ence �0 and the Josephson energy EJ

�0 of the ground state on the
size 2a of the vortex-antivortex pair ��=� /2�. The dashed lines
show the dependence EJ

0�2a� and EJ
��2a� for �0=0 and �0=�, re-

spectively; EJ=min�EJ
0 ,EJ

�� �E0=�Ic /2e�.

(b)(a)

FIG. 5. Distribution of cosine of the phase �=�r�+�0 for dif-
ferent values the pair size �intervortex distance� 2a: �a� 2a=0.5W;
�b� 2a=0.6W. The edge of the junction y=W is marked by the dash
line.
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