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The dynamics of the flux lattice in the mixed state of strongly type-II superconductor near the upper critical
field Hc2�T� subjected to ac field and interacting with a periodic array of short-range pinning centers �nano-
solid� is considered. The superconductor in a magnetic field in the absence of thermal fluctuations on the
mesoscopic scale is described by the time-dependent Ginzburg-Landau equations. An exact expression for the
ac resistivity in the case of a �-function model for the pinning centers in which the nanosolid is commensurate
with the Abrikosov lattice �vortices outnumber pinning centers� is obtained. It is found that below a certain
critical pinning strength uc and sufficiently low frequencies there exists a sliding Abrikosov lattice, which
moves nearly uniformly despite interactions with the pinning centers. At small frequencies the conductivity
diverges as �u−uc�−1, whereas the ac conductivity on the depinning line diverges as i�−1. This sliding lattice
behavior, which does not exists in the single vortex-pinning regime, becomes possible due to strong interac-
tions between vortices when they outnumber the columnar defects. Physically it is caused by “liberation” of the
temporarily trapped vortices by their freely moving neighbors.
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I. INTRODUCTION

The great interest in the problem of magnetic-flux pinning
in type-II superconductors is associated with its relevance to
technological applications of superconductivity as well as
with its implications to the general problem of complex glass
dynamics with tunable parameters. An important challenge
in applications of type-II superconductors is in achieving op-
timal critical currents under given magnetic fields. This re-
quires preventing depinning of Abrikosov vortices during
formation of the resistive state under the applied current.
Random pointlike pinning centers naturally appear due to
imperfections of lattice structure or chemical disorder. Pin-
ning can be artificially enhanced by ion irradiation,1 in which
case one obtains a random array of columnar defects. Theory
of dynamics of the pinned vortex matter by a random distri-
bution of pins is very complicated.2–4 However in the ab-
sence of significant thermal fluctuations on the mesoscopic
scale the problem simplifies considerably. It was studied
theoretically mostly in two-dimensional �2D� systems using
either numerical methods within a model of interacting
points such as particles representing vortices subject to pin-
ning potential and driving force5 or within the elasticity
theory3 in which the vortex matter is treated as an elastic
manifold subject to both pinning stress and driving force.
Elastic manifold under and ac electromagnetic radiation was
investigated in Ref. 6.

Recently there have been advances in the study of vortex
pinning by fabricating periodic arrays of pinning sites where
each pinning site may be either magnetic or normal nanopat-
tern inclusion effectively trapping vortices. Pinning arrays
with triangular, square, and rectangular geometries have been
fabricated using either microholes or blind holes,7 arrays of
magnetic dots,8 and periodic array of columnar defects.9 The
resulting critical current is enhanced when vortex lattice is

commensurate with the periodic array of pinning sites.8 In
addition this system is a convenient experimental tool to
study the general problem of interacting periodic system
moving in periodical potential such as dislocations in crys-
tals or charge-density waves.10 Theory of the Abrikosov lat-
tice subjected to an ac field and periodic pinning is simpler
but so far has been treated either numerically using
molecular-dynamics approach11 or by means of the elastic
manifold approach.12 In the one-dimensional situation of the
vortex transport in narrow channels a sliding vortex phase
was studied numerically13 following the Frenkel-Kontorova
model approach.14

Theoretically a basic question concerns the importance of
correlation of defect centers for pinning of highly correlated
vortex matter. It is sometimes believed that pinning of vortex
lines in type-II superconductors is analogous to localization
of correlated electrons by impurities in metals and semicon-
ductors. According to this line of thought the vortices are
mapped onto quantum particles, rather than considered as
classical line—such as objects. If this were the case, a peri-
odic array would not be able to trap the vortex lattice. How-
ever the vortices are topological solitons of the essentially
nonlinear Ginzburg-Landau equations and behave like clas-
sical objects. Consequently both the random pinning and
highly correlated pinning are expected to result in a roughly
similar critical current and other characteristics of the pinned
state especially when the density of columnar defects is
much smaller than the density of vortices. We therefore con-
centrate on a simpler problem of a periodic array of short-
range pins �to be named “nanosolid”� and employ the time-
dependent Ginzburg-Landau �TDGL� equations for the order
parameter � �Ref. 15� to describe the dynamics of the vortex
matter in a magnetic field.

Considering the electric current applied to the system as a
perturbation, a linear-response theory is used allowing the

PHYSICAL REVIEW B 80, 134512 �2009�

1098-0121/2009/80�13�/134512�13� ©2009 The American Physical Society134512-1

http://dx.doi.org/10.1103/PhysRevB.80.134512


calculation of the ac resistivity. In the absence of thermal
fluctuations on the mesoscopic scale, an exact solution for
the linear response in the case of a �-function model for the
pinning centers in which the nanosolid is commensurate with
the Abrikosov lattice �vortices outnumber pinning centers� is
obtained. In the strong magnetic field regime near Hc2�T�
investigated here, two features emerge as compared to the
low-field regime, commonly studied previously by the Lon-
don approach. The number of vortices �described by a set of
zeros of the order parameter field ��x ,y�� significantly ex-
ceeds the number of columnar pins. In addition the custom-
ary London approach is inapplicable since the distances be-
tween vortices are not much larger than the size of the vortex
cores. Interactions between vortices in this regime are sig-
nificant and neighbors of the trapped vortices can liberate
them from the potential trap resulting in a significant de-
crease in the critical current.

We find, that below a certain critical pinning strength uc,
Abrikosov lattice of vortices is moving coherently despite
interactions with the pinning centers, thus forming a “sliding
Abrikosov lattice state.” The dependence of the ac conduc-
tivity on pinning strength u, magnetic induction and fre-
quency in this phase is calculated. In particular, at small
frequencies conductivity as a function of u behaves as �u
−uc�−1, demonstrating an ideal metal behavior, i�−1, as func-
tion of frequency at u=uc.

The rest of the paper is organized as follows. In the next
section the model is presented. In Sec. III a general linear-
response theory of a strongly type-II superconductor under a
magnetic field H to external alternating electric current is
constructed to leading order in the small expansion param-
eter ah= �1−T /Tc−H /Hc2�0�� /2. This parameter describes
deviation of H from the mean-field upper critical field
Hc2�T�. The condensate part of conductivity is presented via
Green’s function �GF� of quantum charged particle subjected
to both magnetic field and periodic potential. The exact
Green’s function for the corresponding linearized TDGL
equations in the presence of periodic array of short-range
potentials �commensurate with the vortex lattice� is calcu-
lated using the inversion of the Lippmann-Schwinger
equations16 in Sec. IV. The results for the ac conductivity are
presented and analyzed in Secs. V and VI. Criticality at low
frequencies is discussed in Sec. VI. Technical details are rel-
egated to Appendices.

II. MODEL

Let us consider a type-II superconductor under a constant
external magnetic field H parallel to a system of columnar
defects directed along z axis and carrying electric current
along the y axis, see Fig. 1. The columnar defects are located
at points ra �2D vectors r= �x ,y� will be denoted by bold
letters� and are assumed to be short range �on the scale of the
coherence length ��.

A. Basic equations

The static magnetic properties of the superconductor are
described by the GL Gibbs energy as a functional of the
order parameter � and vector potential A,

FGL��,A� =� dzdr� �2

2mc
� ��z��2 +

�2

2m�
�D��2 − a��r����2

+
b�

2
���4 +

1

8�
�B − H�2� . �1�

Here D	�−i 2�
�0

A, denotes the covariant derivative and �0

= hc
e� , e�=2�e� is the unit of flux, B=��A is the magnetic

induction. We chose the vector potentials in the form inde-
pendent of time,

Ax = −
1

2
By, Ay =

1

2
Bx . �2�

Assuming that the ratio 		
 /��1, where 
 is the penetra-
tion depth, the magnetization M is by the factor 1 /	2 smaller
than the field and consequently for magnetic fields few times
larger than Hc1, B
H. Thermal fluctuations on the mesos-
copic scale are ignored. The temperature is taken into ac-
count only on the mean-field level, namely, coefficients of
the Ginzburg-Landau energy depend on temperature T.

When the columnar defects are absent �the “clean” case�,
a��r�=��Tc−T� is uniform and the free energy is minimized
by a hexagonal Abrikosov lattice of vortices with cores lo-
cated at rn1,n2

=n1a1+n2a2 with a1=a�1 /2,�3 /2�, a2

=a�1,0�, where the lattice spacing is a=21/23−1/4��0 /B.
The columnar defects are represented by an inhomogeneous
coefficient

a��r� = ��Tc − T + V�r�� , �3�

where V consists of “potentials” around pinning centers ra,

V�r� = Tc�
a

U�r − ra� . �4�

On microscopic scale the potential arises, for example, from
deviation of local charge carriers density ne�r� from that of
the uniform sample, n0, sometimes represented as2

FIG. 1. �Color� Hexagonal Abrikosov vortex lattice �distribution
of the superfluid density ���r��2� and pinning centers. Zeros of order
parameter fall on the locations of the columnar defects �red squares�
so that vortices outnumber the pins. Vectors d1 and d2 are lattice
vectors of the lattice of pinning sites. Distance between nearest
neighbors of the Abrikosov lattice is a.

MANIV et al. PHYSICAL REVIEW B 80, 134512 �2009�

134512-2



V�r� = Tc
� ln Tc

� ln ne

�ne�r�
n0

. �5�

We assume that the defects are thin on the scale of coherence
length at certain temperature, which is quite large for low-Tc
superconductors compared to the size of damage of ions or
electrons used in irradiation experiments or nanosize antidots
with effective radius w and strength ��0 considered as phe-
nomenological parameters within the Ginzburg-Landau ap-
proach. As will be shown below, the only solvable configu-
ration corresponds to a hexagonal periodic array of very thin
pinning points located at ra=n1d1+n2d2 commensurate with
the static Abrikosov lattice so that d1=s1a1, d2=s2a2 with
s1 ,s2 integers. The density of pinning centers is proportional
to the fractional filling factor f =s1s2, namely,

Np

LxLy
=

2

f�3a
2

, �6�

for hexagonal lattice. In particular, it means that magnetic
field cannot be too small B�

�0Np

LxLy
.

The simplest relaxation dynamics of a superconductor in
the presence of electric field is described by TDGL
equation15

�2�

2m�
Dt� = −

�

���
FGL, �7�

where Dt	
�
�t − i e�

� � and the electric field is E=−��− 1
c

�
�tA.

The vortices are moving along the x direction, see Fig. 1.
Maxwell equations are

�� B =
4�

c
J, J = Jn + Js. �8�

Superconducting component of the current density is

Js =
ie��

2m�
���D� −�D��� , �9�

while the normal electron component of the current density
is Jn=�nE.

Neglecting the time dependence of the electric charge
�screened on the Thomas-Fermi length, which is smaller than
� �Ref. 15��, the charge conservation law in a superconductor
reads

� · J = 0. �10�

In our case of large 	 and the magnetic field not far from
Hc2�T�, the charge conservation Eq. �10� implies homogene-
ity of the current density. Indeed taking curl of the Maxwell
Eq. �8�, one obtains

�� J = �2M  O�	−2� . �11�

Consequently the ac current density is uniform and is ori-
ented along the y axis, J�t�=J0 cos��t�.

B. Dimensionless units

The system is invariant under translations in the field di-
rections, so we use a 2D dimensionless energy density fGL:

FGL=LzHc2
2 / �8�	2��drfGL. In this paper �=� / �2m��Tc�1/2

will be used as a unit of length, r→r /�, while Hc2
=�0 / �2��2� is the unit of magnetic field, h	B /Hc2. The
scaled order parameter is defined by �=2−1/2� /�0, where
�0= ��Tc /b��1/2, so that the dimensionless energy density is
can be written in the following form

fGL = ��Ĥ� − ah�
�� +

1

2
�����2. �12�

The dimensionless parameter,

ah =
1 − t − h

2
− u0, t =

T

Tc
, �13�

has a physical meaning of “distance” from the static normal-
mixed-state boundary in the H−T space and the constant
shift u0 reflects an average pinning effect. It will be deter-
mined by exploiting the bifurcation �or transition� point
expansion17,18 around ah=0 at which the order parameter
vanishes. Defining a Hamiltonian for the case without pin-
ning,

Ĥcl = −
1

2
D2 −

h

2
�14�

and a dimensionless pinning potential U�r� one can represent
the linear operator in Eq. �12� in the following form

Ĥ = Ĥcl − u0 − �
a

U�r − ra� 	 Ĥp − u0. �15�

It should have the property17,18 that its lowest eigenvalue is
zero. It is well known that the lowest eigenstate of the Lan-
dau Hamiltonian Hcl is degenerate, however the presence of
the pinning potential in Eq. �15� partially lifts the Landau
degeneracy. The lowest energy corresponds to the lowest
Landau-level �LLL� state in which zeros of the Abrikosov
wave function fall on the pining center sites ra, see Fig. 1
and expression in Appendix A.

In analogy to the coherence length, one can define a char-
acteristic time scale. In the superconducting phase that is a
typical “relaxation” time is tGL=��2 /2 and unit of electric
field, EGL=Hc2� / �ctGL�, E=E /EGL. In these units the time-
dependent equation takes a form

− �t� = Ĥ� − ah� + ���2 − i�� . �16�

The current density is scaled as J=cHc2 / �2��	2�j, in par-
ticular,

js =
i

2
���D� − ��D���� �17�

being the dimensionless supercurrent density. The conductiv-
ity will be given in units of

�GL =
c2tGL

2�
2 =
c2�

4�	2 . �18�

This unit is close to the normal-state conductivity �n in
low-Tc superconducting metals in the dirty limit, for which
�n=c2� / �8�	2�.15 In general there is a factor k of order 1
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relating the two: �n=k�GL. The corresponding equation for
the dimensionless electric field, takes a form

kE = j − js. �19�

From now on we will take for simplicity k=1. The model
will be solved using expansions in electric field and ah but
exactly in pinning strength in the next section.

III. LINEAR-RESPONSE THEORY AND EXPANSION IN
POWERS OF SUPERFLUID DENSITY

(PARAMETER ah)

A. Linear response of the system to electric current

The set of Eqs. �16� and �19� can be solved using expan-
sion in both the total current, which can be viewed as “ex-
ternal,” and the parameter ah defined in Eq. �13�. To the first
order in j the order parameter is represented as follows:

��r,t� = ��r� + ��r,t� , �20�

where � is the static mean-field solution specified below.
Substituting Eq. �20� into TDGL, Eq. �16�, one obtains

− �t�� + �� = Ĥ�� + �� − ah�� + �� + �� + ����� + ��2 − i�� .

�21�

To this order in j one observes that the correction to the order
parameter, �, satisfies

�t� = �− Ĥ + ah − 2����� − ���2 + i�� . �22�

Similarly substituting Eq. �20� into the expression for y
component of the supercurrent Eq. �17�, Eq. �19� takes a
form

E = j − i���Dy� − ��Dy���� . �23�

This equation expresses the linear response since the correc-
tion � in turn depends on the current via the electric potential
� appearing in Eq. �22�. The equation Eq. �22� can be solved
using expansion in the small parameter ah.

B. Expansion in ah

It is important to note that by exploiting the ultimate lo-
calized form, i.e., proportional to a sum of delta functions,
for the pinning potential U�r� in Eq. �4�, the static configu-
ration, ��r�, of the order parameter to leading order in ah,
can be calculated exactly. In fact, the definition of the param-
eter ah in Eq. �13� already took this fact into account. Indeed,
the solution at small ah without pinning is well known17,18

��r� = � ah

�A
�1/2

�0�r� + O�ah
3/2� �24�

with the functions �N�r� constituting a basis of orbitals with
Landau-level index N=0,1 , . . ., defined in symmetric gauge
in Appendix A. The next to leading order in ah provides
normalization and fixes certain linear combination of the
LLL functions so that �0�r� is a hexagonal lattice. Yet with-
out pinning this solution is highly degenerate since one can
shift or rotate the lattice as a whole.

When the commensurate pinning potential is added, the
degeneracy is lifted and the only configuration of the mini-
mal energy is the one with vortex cores located exactly at the
sites of the columnar pins. Energy of all the other configu-
rations are higher. The lowest eigenvalue of the linear opera-

tor Ĥp, Eq. �15�, �determining the Hc2�T� line� is shifted by
u0. This justifies the dependence on the pinning strength in
the definition of ah, Eq. �13�. It is therefore concluded that
such a pinning does not change the shape of the configura-
tion in the leading order but does suppress the value of the
amplitude of the order parameter and the critical field.

Now we return to the linear-response relation, namely, to
expansion of physical quantities to the first order in j, Eq.
�23�. It is clear in view of Eq. �24�, that the correction to the
order parameter � is of order ah

1/2 �thus allowing to neglect
ah

3/2 and higher order terms�, and obeys

�t� = − Ĥ� + i�� . �25�

For the ac transport along the y direction

��r,t� = − �
0

y

E�x,y�,t�dy�. �26�

Defining the retarded Green’s function by

��t + Ĥ�G�r,r�,t − t�� = ��r − r�,t − t�� , �27�

one writes the solution of Eq. �22�,

��r,t� = − i�
t�=−�

t �
r�

G�r,r�,t − t����r���
0

y�
dy�E�x�,y�,t�� .

�28�

Since the supercurrent is on order of ah, according to Eq.
�23�, electric field has an expansion: E= j+O�ah�. Using ho-
mogeneity of current density, the integral over y� can be
performed,

��r,t� = − i�
t�=−�

t

j�t���
r�

G�r,r�,t − t��y���r�� . �29�

Consequently the linear-response relation between the cur-
rent density and the induced electric field, Eq. �23�, can be
written via the Green’s function in the form

E�r,t� = j�t� + �
t�=−�

t

j�t���
r�

G�r,r�,t − t��y���r���Dy���

+ c.c. �30�

Note that in contrast to the full current density j�r , t�,
which is spatially uniform due to the charge conservation
law, Eq. �10� and large 	, the electric field is spatially homo-
geneous only to leading order in the small parameter ah. The
inhomogeneous correction to the electric field in Eq. �30�
�induced by the supercurrent js� is however responsible for
the pinning mechanism investigated in the present paper.
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C. ac resistivity

For a homogeneous ac current density j�t�= j0 cos��t�,
Eq. �30�, averaged over volume of the sample, gives the
following expression for complex resistivity

���� =
1

T
�

t=0

T

e−i�t�E�r/j0, �31�

where in the end the large time limit T→� should be taken.
Performing integration over y� one obtains �recalling that in
our dimensionless units �n=�n=1�

���� = 1 − �s��� 

1

1 + �s���
, �32�

with the condensate contribution to conductivity

�s��� = − �
r�

y����r���Dy��r���G�r,r�,��

+ ���r��Dy��r�G��r,r�,− ���r, �33�

and the temporal Fourier transform was defined as
G�r ,r� , t− t��= 1

2���e−i�tG�r ,r� ,��.
It is important to note that since the real part of the resis-

tivity is positive, in view of Eq. �32�, our theory strictly
speaking is valid only when the condensate contribution to
conductivity is smaller than �n. Equation �33� allows to re-
late the dynamic conductivity in the superconductor with the

GF of a quantum-mechanical Hamiltonian Ĥp of a charged
particle in magnetic field in the presence of a periodic poten-
tial defined in Eq. �15�. This will also allow calculation of
the lowest-energy eigenvalue determining the shift u. The
next section and Appendix B deal with this problem.

IV. GREEN’S FUNCTION FOR A SYSTEM WITH
PERIODIC �-PINNING ARRAY

To find the GF we approximate the potential by an array
of delta functions

U�r� = − U0�
a

��r − ra� , �34�

where

U0 =
�w2�

�2Tc
, �35�

and � is the pinning energy. The delta function represents
sufficiently localized defects on the scale of coherence
length. First we review the comprehensively studied clean
case.

A. Retarded Green’s function Gcl for a system without
pinning potential

Neglecting pinning, it can be easily seen that in the sym-
metric gauge

Dx =
�

�x
− i

h

2
y, Dy =

�

�y
+ i

h

2
x , �36�

the function

Gcl�r,r�,t� = exp� ih

2
�xy� − yx���gcl�r − r�,t� �37�

satisfies Eq. �27� for the retarded GF for the operator Ĥcl
defined in Eq. �15�. Here

gcl�r,t� = C�t�exp�−
r2

2��t�� ,

��t� =
2

h
tanh�ht

2
�, C�t� =

h

4�
exp�ht

2
�sinh−1�ht

2
�

�38�

is a gauge-invariant translation symmetric part of the GF.
The Gaussian form of the GF allows analytic integration of
the periodic pinning problem.

B. Relation between Gcl and Greens’ function with periodic
array of delta potentials

The GF with added potential U�r�, Eq. �34�, obeys

��t + Ĥp�G�r,r�,t − t�� = ��r − r����t − t�� , �39�

where one chooses to divide the operator Ĥp of Eq. �15� into

a solvable part Ĥcl related to the “clean case” of Sec. IV A
and the delta potentials. Similar problems have been consid-
ered in quantum mechanics16 using path integrals. We start
from the related Lippmann-Schwinger equation linking the

GF of Ĥcl and that of Ĥp,

G�r,r�,t − t�� = Gcl�r,r�,t − t�� −� dr�

�� dt�Gcl�r,r�,t − t��U�r��G�r�,r�,t� − t�� .

�40�

For the Fourier transform G�r ,r� , t− t��
= 1

2���ei�tG�r ,r� ,�� the equation separates in frequencies

G�r,r�,�� = Gcl�r,r�,��

−� dr�Gcl�r,r�,��U�r��G�r�,r�,�� . �41�

Substituting the potential Eq. �34� one obtains

G�r,r�,�� = Gcl�r,r�,�� − U0�
a

Gcl�r,ra,��G�ra,r�,�� .

�42�

In particular, at pinning points r=rb one gets �using Eq. �37��

G�rb,r�,�� = Gcl�rb,r�,�� − U0�
a

e+ih/2ra�rbgcl

��rb − ra,��G�ra,r�,�� . �43�

Here we assumed commensurability with vortex lattice
for pins in zeros so there will be no phase factor on the
right-hand side due to flux quantization,
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ra � rb =
2�f

h
�na1nb2 − nb1na2� . �44�

If f =s1s2 is even the phase in Eq. �43� disappears while for
an odd s1s2 one still can solve the pinning problem by divid-
ing the pinning sites into two sublattices. We continue here
with the even case. Under this conditions, translation sym-
metry allows to solve the set of linear equations

�
a

Mba���G�ra,r�,�� = Gcl�rb,r�,�� �45�

with a symmetric matrix M defined by

Mba��� = �ab + U0gcl�rb − ra,�� , �46�

Using Fourier transform

gcl�ra,�� =
1

�2��2�
k

gk,�
cl exp�ik · ra�

=
1

�2��2�
q�BZ

g̃q,� exp�iq · ra� . �47�

The function gcl�ra ,�� is more conveniently written via

g̃q,� = �
K

g�q+K�,�
cl , �48�

where K are reciprocal pinning centers lattice points

K = m1e1 + m2e2,

e1 =
2�

s1a
�0,

2
�3

�, e2 =
2�

s2a
�1,−

1
�3

� . �49�

Here a=a /�=2�3−1/4�� /h is the dimensionless Abrikosov
lattice spacing.

The result reads formally

G�ra,r�,�� = �
b

Mab
−1���Gcl�rb,r�,�� . �50�

The Kronecker delta function appearing in Eq. �46� has the
following integral representation,

�ab =
1

SBZ
�

q�BZ
eiq·�rb−ra�, �51�

where the area of the Brillouin zone �BZ� of the pinning
centers lattice is

SBZ = �2��2�p =
2

31/2f
�2�

a
�2

=
2�h

f
. �52�

Using this representation the inverse matrix reads

Mba
−1��� =

1

SBZ
�

q�BZ
eiq·�rb−ra��q,�, �53�

where the polarization kernel is defined as

�q,� =
1

1 + U0�pg̃q,�

. �54�

As a result Eq. �50� becomes explicit,

G�ra,r�,�� =
1

SBZ
�

b
�

q�BZ
eiq·�rb−ra��q,�Gcl�rb,r�,�� .

�55�

Substituting this into the expression of the full GF with
arbitrary positions, Eq. �42�, one obtains

G�r,r�,�� = Gcl�r,r�,��

−
U0

SBZ
�
a,b
�

q
eiq·�rb−ra��q,�Gcl�r,ra,��Gcl�rb,r�,�� .

�56�

The exact full GF allows to determine both the position of a
new mean-field transition line �ah=0� and the conductivity
from Eq. �33�.

C. Shift of the mean-field transition line

Position of the mean-field transition line is determined by

the lowest eigenvalue of the operator Ĥp, Eq. �15�. This can

be obtained from poles of the resolvent of the operator Ĥp
which is simply related to the GF. In particular, the ground
state is determined by the large-time asymptotic.

The resolvent of Ĥp is defined as

R��� = �
r

G�r,r,�� . �57�

Substituting Eq. �56� one obtains

R��� = �
r

Gcl�r,r,��

−
U0

SBZ
�
a,b
�

q
eiq·�rb−ra��q,��

r
Gcl�r,ra,��Gcl�rb,r,�� .

�58�

It is shown in Appendix B that in our case integration over
the small Brillouin zone can be approximated by taking q
=0 in the polarization kernel �q,�

R��� = �
r

Gcl�r,r,��

− U0�q=0,��
a
�

r
Gcl�r,ra,��Gcl�ra,r,�� . �59�

Using the Landau-level basis �N—the Landau-level number,
k—quasimomentum�, see Appendix A and Ref. 18, and its
completeness

Gcl�r,r,�� = �
Nk

��Nk�r��2

i� + Nh
, �60�

and it simplifies to
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R��� = �
Nk

1

i� + Nh
− U0

h

2�
�q=0,��

a
�
Nk

��Nk�ra��2

�i� + Nh�2 .

�61�

The ground-state energy is obtained from the LLL �N=0�
contribution to the resolvent

R��� =
h

2�

1

i��1 − U0�0,��
a

�
k

��0k�ra��2

i� �
=

h

2�

1

i��1 − U0�0,��
a

gcl
LLL�ra,ra,���

=
h

2�

1

i�
�1 −

U0�ph

2�i�
�0,�� . �62�

For the magnetic field considered to obey h��p, it origi-
nates from the LLL contribution to �q=0,�,

R��� =
h

2�

1

i��1 −

2�U0�ph
1

i�

1 + 2�U0�ph
1

i�
� =

h

2�

1

i� + u0
,

�63�

where

u0 = 2�U0�ph 	 uh �64�

is the lowest eigenvalue of Ĥp. One observes that it is pro-
portional both to the pinning strength and magnetic field.
This should be contrasted with the shift of the ground-state
energy in the absence of the magnetic field for the same
potential which is finite: u0=u. Our derivation is valid only
for magnetic fields h��p to satisfy the commensurability
condition and therefore the limit h→0 cannot be taken.
Physically one notes that the system takes advantage of zeros
of the wave function created by magnetic field to avoid the
increase in ground-state energy due to repelling delta poten-
tial barriers.

D. Final expression of the Green’s function of Ĥ

To determine the operator Ĥ of the bifurcation point ex-
pansion, Eq. �15�, one subtracts the constant u0 of Eq. �64�
from Ĥp: Ĥ= Ĥp−u0. In the � space such a transformation is
equivalent to a shift of frequency by the imaginary number
iu0 in the GF

G�r,r�,�� → G�r,r�,� + iu0� . �65�

Consequently the Eq. �56� can be written as

G�r,r�,�� = Gcl�r,r�,� + iu0�

−
U0

SBZ
�
a,b
�

q
eiq·�rb−ra��q,�+iu0

Gcl�r,ra,�

+ iu0�Gcl�rb,r�,� + iu0� . �66�

This explicit expression for the Green’s function allows cal-

culation of any transport coefficients including electric con-
ductivity. Note that the quantity Gcl�rb ,r� ,�+ iu0� should be
defined as an analytic continuation of the clean GF, since, as
explained above, the spectrum of the “shifted” clean Hamil-
tonian has negative eigenvalues, However the full GF has
positive spectrum and is well defined.

V. ac CONDUCTIVITY OF THE VORTEX LATTICE
SLIDING OVER PERIODIC PINNING ARRAY

Returning to the ac conductivity Eq. �33�, we substitute
the GF of the previous section. It can be divided into two
contributions

�s��� = �I��� + �II��� , �67�

where

�I��� = −
2

LxLy
�

rr�
y���r���Dy��r���Gcl�r,r�,� + iu0� ,

�68�

�II��� =
2U0

SBZ
�
a,b
�a

1����b
2����

q
eiq�rb−ra��q,�+iu0

. �69�

Here we defined

�a
1��� =

1
�LxLy

�
r

�Dy��r���Gcl�r,ra,� + iu0� , �70�

�b
2��� =

1
�LxLy

�
r�

y���r��Gcl�rb,r�,� + iu0� . �71�

The first part is the flux flow conductivity �I=�FF in the
absence of pinning while the second term vanishes in this
limit. We therefore first calculate �FF.

A. Flux flow ac conductivity in the clean system

Substituting the clean �u=0� retarded GF and using the
Abrikosov wave function expressed in Appendix A in terms
of the Landau harmonics �N�r�, the expression of Eq. �68�
includes

y��0�r�� =
1

�2h
�1�r�� + ��, �72�

where the function �� belongs to the LLL and therefore do
not contribute to the average current. The integration over r�
results in

�FF��� = 31/84�
ah

�A
�

t=0
e−i�tC

h − 2/�
�2/� + h�2�

l

ei�l2/2

�exp�−
�2�2l + 1�2

2a2h
−

i�l

2
�

� ��y −
�

ah
�2l + 1���Dy�0��
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�exp�−
i�

a
�2l + 1��x − iy� −

h

2
y�ix + y���

r

,

�73�

where C�t� and ��t� are given in Eq. �38�. Substituting Dy�0
from Appendix A, the average over r is performed

�FF��� = 2�
ah

�A
�

t=0

�

dte−i�tC�t�
2/��t� − h

�2/��t� + h�2 =
ah

�A

1

i� + h
,

�74�

which also can be directly computed using the Landau-level
basis.

To make the resulting expression more transparent physi-
cally it may be rewritten in terms of dimensional parameters
�recalling that this is just the superconducting component�

�FF��� =
c2�

8�	2�A

Hc2�T� − B

i�tGLHc2 + B
, �75�

where Hc2�T�=Hc2�1−T /Tc�. There exists a well-defined
limit �→0 which coincides with the dc conductivity. For
�=0 the result

�FF =
c2�

8�	2�A

Hc2�T� − B

B
= �n�Hc2�T�/B − 1� �76�

is well known15 and consistent with the Bardeen-Stephen law
derived in the London limit �well-separated vortex cores�.
Indeed, adding the normal component of the conductivity
one obtains

� = �n + �FF = �nHc2�T�/B . �77�

The dependence of the flux-flow conductivity on frequency
is very weak for �� tGL

−1 1013 Hz, even for low-Tc materi-
als. This is not the case in the presence of strong pinning
when electromagnetic shaking even at low frequencies leads
to depinning and hence strong increase in resistivity.

B. ac conductivity in the presence of pinning

In the presence of pinning the first contribution to the
conductivity, Eq. �68� is renormalized into

�I��� =
ah

�A

1

i� + h − u0
. �78�

Now we consider the second contribution to conductivity Eq.
�67�. The Gaussian integration over r in the first integral of
Eq. �70� gives

�a
1��� =

4�31/8

�LxLy

� ah

�A
�1/2 h

i� + h − u0
�
m

e−i�m2/2

��ya −
��2m + 1�

ah
�

�exp� i�m

2
−
�2�2m + 1�2

2a2h

+ ���2m + 1�

a
−

hya

2
��ya − ixa��

= − � hah

2�A
�1/2�1

��ra�

�LxLy

1

i� + h − u0

. �79�

Similarly integration over r� results in

�b
2��� = − h�b

1��− �� , �80�

so that

�II��� =
ah

�A

��1�r = 0��2

LxLySBZ

U0

�i� + h − u0�2�
q
�
a,b

eiq·�rb−ra��q,�+iu0
.

�81�

Performing the double lattice sum,

�
a,b

eiq·�rb−ra� = Np
2�

K
�q,K, �82�

and recalling that q is restricted to the first BZ, the resulting
reciprocal-lattice sum reduces to the single term with q=K
=0 so that

�II��� =
ah

�A

U0�p��1�0��2

�i� + h − u0�2�q=0,�+iu. �83�

An explicit expression for the polarization kernel, Eq. �54�,
can be obtained by using the results derived in Appendix B,
i.e.,

�
q
�q,�+iu0

= �
q

1

1 + U0�pg̃q=0,�+iu0
,



SBZ

1 + u� h

i� − u0

+��1 + i
�

h
− u�� , �84�

where

��X� = log�Kmax
2

2h
� − ��X� . �85�

Here � is the digamma function and Kmax=2� /w serves as
an ultraviolet cutoff, which is determined by the lateral size,
w, size of a pinning center. Finally the second term is

�II��� =
ah

�A

3.75U0�ph

�i� + h − u0�2� i�

i� − u0

+ u��1 + i
�

h
− u�� ,

�86�

where we have used �1�r=0�=1.373�1+ i�h1/2 from Appen-
dix A and Eq. �52�.

A large positive denominator suppresses the second con-
tribution to the conductivity �II, Eq. �81�, due to “screening”
of the pinning potential by excitations with high LL quantum
numbers N. In the presence of thermal �or quantum� fluctua-
tions �e.g., close to the vortex lattice melting point�, when

MANIV et al. PHYSICAL REVIEW B 80, 134512 �2009�

134512-8



the energy scale of the vortex lattice shear fluctuations19 be-
comes comparable to the pinning energy scale u, this de-
nominator can be reduced significantly resulting in large en-
hancement of the pinning conductivity.

Combining the two contribution of the previous section,
one expresses the ac conductivity at frequency � as a func-
tion of two dimensionless parameters u=2�U0�p �pinning
strength� and h,

�s��� =
ah

�A

1

i� + h

��1 +
0.6u

�i
�

h
+ �� i�

i� − uh
+ u��i

�

h
+ ��� ,

�87�

where

 = 1 − u �88�

is the distance from the “pinning-depinning line.” It is im-
portant to note that for �0 the linear-response approxima-
tion is invalid. Physically this means that the flux flow state
does not exists and the I-V curve becomes nonlinear. The
reason is that there exists �assuming no thermal fluctuations
on the mesoscopic scale� a nonzero critical �threshold� cur-
rent. Vortices are effectively pinned and as a consequence
electric field cannot penetrate the superconductor.

In Fig. 2 the dependence in the �→0 limit on the pinning
strength u for magnetic fields in the h=0.85–0.99 range is
presented. One observes that when the pinning strength ap-
proaches the critical value, u=1, the conductivity diverges.
In Fig. 3 the dependence of the real �dissipation, Figs. 3�a�
and 3�c�� and the imaginary �inductive, Figs. 3�b� and 3�d��
parts of the ac conductivity as function of u at two values of
magnetic fields close to Hc2�T� �h=0.95 in Fig. 3�a� and h
=0.99 in Fig. 3�b�� is shown.

Returning to physical units, one obtains

���� =
c2�

2	2�A

Hc2�T� − B

i���0 + 4�B�1 − u��1 +
0.6u

�i
��0�

4�B
+ 1 − u�� i��0�

i��0� − 4�uB
+ u��i

��0�

4�B
+ 1 − u��� , �89�

where Hc2�T�=Hc2�1−T /Tc� within linear approximation for
the coefficient a� of the Ginzburg-Landau energy, Eq. �3�.
Note that, as mentioned above, use of the ah expansion re-
stricts the range of frequencies since the correction to resis-
tivity, Eq. �32�, should not exceed �n. In the next section we
analyze several simple cases which explain the main features
of the conductivity shown in Figs. 2 and 3 and, in particular,
the transition to the pinned state.

VI. CRITICAL BEHAVIOR NEAR THE DEPINNING LINE

A. Criticality for small frequencies

When pinning is present the limit �→0 in the expression
for the ac conductivity is nonzero and exhibits criticality
features at the continuous transition

h = u0. �90�

Approaching the line u0=h− for small  the first contribu-
tion to the conductivity, Eq. �87�, diverges

���→ 0� =
ah

�A

1


+

ah

�A

1

2

0.6

���



ah

�A

1.6


. �91�

The depinning line, Eq. �90�, determines the critical pin-
ning strength since according to Eq. �64�

h = u0 = 2�U0
c�ph → U0

c =
1

2��p
. �92�

which, in terms of dimensional parameters, reads

2�2Npw2�

LxLyTc
= 1. �93�

Therefore the pinning strength is only factor determining the
transition into the pinned state. The critical value is indepen-
dent of the magnetic induction. To conclude the conductivity
diverges as a power −��z−1� with critical exponent ��z−1�
=1, hence superconductivity is recovered. This means that

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

pinning strength u

Σ
s�
Σ

G
L
�Ω
�

0�

H�Hc2�0.99

H�Hc2�0.95

H�Hc2�0.9

H�Hc2�0.85

FIG. 2. �Color� Conductivity at �→0 as function of the pinning
strength u for magnetic field in the h=0.85–0.99 range. When the
pinning strength approaches the critical, u=uc, the conductivity
diverges.
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the vortex lattice is pinned and electric field cannot penetrate
the superconductor despite persistent current flow in it at
least when the current is not large. This is consistent with
results in the London limit for both a 2D system with point-
like defects and a three-dimensional system with columnar
defects2 �in the absence of thermal fluctuations on the meso-
scopic scale�.

B. Dependence of the ac conductivity on frequency
on the depinning line

It can be readily seen by analyzing Eqs. �78� and �86� that
on the depinning line =0 the ac conductivity of Eq. �87�
simplifies to

���� =
ah

�A

1

i��1 +
0.6

i
�

h
� i�

i� − h
+��i

�

h
��� , �94�

and for ��h leads to the same dynamic critical exponent

���� =
ah

�A

1.6

i�
. �95�

C. Subcritical pinning strength

When u�1 the expression �87� can be simplified by ex-
pansion in this parameter �=1�,

���� =
ah

�A

1

i� + h

��1 +
0.6u

�i
�

h
+ 1�� i�

i� − uh
+ u��i

�

h
+ 1��� .

�96�

Let us consider two cases. The simplest case is for very large
frequencies or very small fields, ��h. In this case the con-
ductivity simplifies significantly

���� =
ah

�A

1

i�
. �97�

It is largely inductive and pinning does not influence it. In
the opposite case of very large fields or relatively small fre-
quencies, h��, considered next disorder is important.

In the opposite case of very large fields or relatively small
frequencies, ��h, Eq. �96� in this case simplifies into

���� =
ah

�A

1

h

i� − ���1� + 0.6�u2h

i� −��1�u2h
. �98�

There are two cases. For ��hu2 the system becomes purely
dissipative
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FIG. 3. �Color� ac conductivity for various frequencies as function of the pinning strength u for magnetic field close to Hc2: h=0.95 in
�a� and �b� and h=0.99 in �c� and �d�. The real part �dissipation, �a� and �c�� and the imaginary part �inductive, �b� and �d�� are shown.
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���� =
ah

�A

1

h

��1� + 0.6

��1�
. �99�

In the intermediate case hu2���h

���� =
ah

�A

1

h
. �100�

VII. SUMMARY

To summarize we have extended the theory of electro-
magnetic response of a type-II superconductor in magnetic
field with a periodic array of pinning centers beyond the
London approximation �employed commonly in the litera-
ture� using the Ginzburg-Landau approach. The ac conduc-
tivity as a function of magnetic field and frequency, see Eq.
�89� and Figs. 2 and 3, is calculated analytically and can be
applied to an experimentally important regime of strong
magnetic fields when the London approximation is inappli-
cable. This is the main result of the present paper. The ana-
lytic solution was obtained by the Lippmann-Schwinger
method not far from the Hc2�T� line for a 2D Abrikosov
lattice of vortices is commensurate with the short-range
pinning array.

It is predicted that in strong magnetic fields the short-
range pinning can effectively influence the vortex dynamics
due to long-range correlations of the superconducting order
parameter. In particular, a magnetic field independent critical
pinning strength

U0
c =

�w2�

Tc
=

l2

2�
, �101�

was found at which the conductivity at low frequencies di-
verges as a power2 � �U0−U0

c�−��z−1� with the critical expo-
nent ��z−1�=1. Here l is the distance between pinning sites
of �energy� depth � and width w. For columnar defects due to
irradiation �2Tc, w��T�, making this condition l
�2���T�. At criticality the conductivity diverges Using an
accepted 2D value of �=1,2 this implies z=2. The ac con-
ductivity on the depinning line diverges as i�−1. Below U0

c

and sufficiently low frequencies there exists a sliding Abri-
kosov lattice, which moves nearly uniformly. This sliding
lattice behavior, which does not exists in the single vortex-
pinning regime, becomes possible due to strong interactions
between vortices when they outnumber the columnar defects.
Physically it is caused by “liberation” of the temporarily
trapped vortices by their freely moving neighbors.

Finally, let us qualitatively contrast the results of two phe-
nomenological approaches to the problem, the TDGL
method adopted in the present paper and the London ap-
proximation approach used in previous numerical
simulation.11,20 The former is valid for fields much larger
than Hc1 while the later is valid far below Hc2. In strongly
type-II superconductors the applicability ranges might over-
lap. The difference is more pronounced in the case of short-
range pinning considered in the present paper. Indeed this
type of pinning is very ineffective within the London ap-
proach since it assumes that a vortex is a “pointlike” 2D

particle and consequently its velocity tracks the pinning po-
tential landscape only at pinning centers. In contrast, within
the GL approach the mixed state is described by a wave
function. It senses pinning potential even when the size of
the pin is smaller than ��T�. Formally it is very similar to
influence of the deltalike potential on wave function in quan-
tum mechanics, as we have used while calculating Green’s
functions in Sec. III.
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APPENDIX A: ABRIKOSOV FUNCTIONS
COMMENSURATE WITH A
HEXAGONAL ARRAY OF

PINNING CENTERS

The first two Landau harmonics in dimensionless units are

�0 = 31/8�h�
l

ei�l2/2 exp�i�−
h

2
xy +

��2l + 1�
a

�x −
a

4
��

−
h

2
�y −

��2l + 1�
ah

�2� , �A1�

�1 = 21/231/8h�
l
�y −

��2l + 1�
ah

�ei�l2/2exp�i�−
h

2
xy

+
��2l + 1�

a
�x −

a

4
�� −

h

2
�y −

��2l + 1�
ah

�2� , �A2�

where the dimensionless Abrikosov lattice spacing a=a /�.
In particular, at origin �0�0�=0 while

�1�0� = − 33/8��h/2�
l

�2l + 1�

�exp��
4
�i�2l2 − 2l − 1� −

�3

2
�2l + 1�2�� .

We also need the covariant derivative of the LLL,

Dy�0 = � �

�y
+ i

h

2
x��0 = −�h

2
�1. �A3�
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APPENDIX B: FOURIER TRANSFORM OF THE GAUGE
INVARIANT PART OF THE GREEN’S FUNCTION

OF THE CLEAN SYSTEM

In the t space the inverse Fourier transform with respect to
position is

gQ
cl�t� = �

r
gcl�r,t�exp�− iQ · r�

= �
r

C�t�exp�−
r2

2��t��exp�− iQ · r�

= 2���t�C�t�exp�−
��t�Q2

2
� , �B1�

where Q=q+K, with q belonging to the first Brillouin zone
and K runs over the reciprocal lattice of the pinning centers.

This is transformed into the � space gQ,�
cl =�t

e−i�t
gQ

cl�t�. The
quantity appearing in the expression for polarization kernel,
Eq. �54�, has a form

g̃q,� = 2��
K
�

t

e−i�t��t�C�t�exp�−
��t��q + K�2

2
� .

�B2�

It is useful to divide the integrand into the well-known LLL
part,21 �which diverges when �=0� and the rest as �higher
Landau levels, HLL�

g̃q,� = SBZ„g
HLL�Q� + gLLL�Q�… , �B3�

gHLL = 2�
t=0

�

e−i�t�
K
� exp�−

Q2

h
tanh�ht

2
��

1 + exp�− ht�
− exp�−

Q2

h
�� ,

�B4�

gLLL = 2�
K

exp�−
Q2

h
��

t=0

�

e−i�t =
2

i�
�
K

exp�−
Q2

h
� .

�B5�

For the large values of the filling factor f =s1s2 character-
izing the pinning arrays under study any value of q within
the first BZ of the pinning-center lattice is small on the scale
of the inverse magnetic length so that we can take q=0 in
Eqs. �B4� and �B5�. Under the same assumption the sum

over reciprocal lattice can be approximated into an integral.
Thus, for the LLL part we have

gLLL =
2

i�
�
K

exp�−
K2

h
� =

2

i�SBZ
�

K
exp�−

K2

h
� =

2�h

SBZ

1

i�
.

�B6�

Similarly, the HLL part becomes

gHLL = �
t=0

�

e−i�t f

2�h
�

K
� eht/2

cosh�ht/2�

�exp�−
K2

h
tanh�ht

2
�� − 2 exp�−

K2

h
�� , �B7�

which reduces to

gHLL =
f

2�h
�

t=0

�

e−i�t�
0

Kmax
2

dK2

�� exp�−
K2

h
tanh�ht

2
��

e−ht + 1
− exp�−

K2

h
�� �B8�

=−
f

2�
�

t=0

�

�1 + �e−i�t − 1��I�t� = g1
HLL + g2

HLL, �B9�

where

I�t� =

exp�−
Kmax

2

h
tanh�ht

2
�� − 1

1 − e−ht + 1 − exp�−
Kmax

2

h
� ,

�B10�

and Kmax=2� /w is the ultraviolet cutoff of order of the in-
verse width of columnar defect which in turn is of order
larger than the inverse coherence length. Dependence on the
cutoff is logarithmic and is obtained from the first term,

g1
HLL =

f

2�h
�log�Kmax

2

2h
� + �E + O�Kmax

−1 �� , �B11�

where �E is the Euler constant. The second term is calculated
at the Kmax

2 →� limit directly

g2
HLL =

f

2�h
�− �E − ��i

�

h
+ 1�� . �B12�
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