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We present a Green’s function-based framework for modeling the scanning tunneling spectrum from the
normal as well as the superconducting state of complex materials where the nature of the tunneling process—
i.e., the effect of the tunneling “matrix element,” is properly taken into account. The formalism is applied to the
case of optimally doped Bi2Sr2CaCu2O8+� �Bi2212� high-Tc superconductor using a large tight-binding basis
set of electron and hole orbitals. The results show clearly that the spectrum is modified strongly by the effects
of the tunneling matrix element and that it is not a simple replica of the local density of states of the Cu dx2−y2

orbitals with other orbitals playing a key role in shaping the spectra. We show how the spectrum can be
decomposed usefully in terms of tunneling “channels” or paths through which the current flows from various
orbitals in the system to the scanning tip. Such an analysis reveals symmetry-forbidden and symmetry-
enhanced paths between the tip and the cuprate layers. Significant contributions arise from not only the CuO2

layer closest to the tip but also from the second CuO2 layer. The spectrum also contains a longer range
background reflecting the nonlocal nature of the underlying Bloch states. In the superconducting state, coher-
ence peaks are found to be dominated by the anomalous components of Green’s function.
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I. INTRODUCTION

High-resolution scanning tunneling spectroscopy �STS�
together with other highly resolved spectroscopies, such as
angle-resolved photoemission �ARPES�, is making it pos-
sible to obtain a comprehensive mapping of the electronic
spectrum of the high-temperature superconductors �HTSs� in
both real and reciprocal space over a wide range of dopings
and temperatures. These studies are providing insight into
the rich phase diagrams of the HTSs and are leading thus to
an understanding of the “missing links” for developing a
definitive theory of how high superconducting �SC� transi-
tion temperatures arise in these unconventional materials. In
STS experiments, the focus to date has been on hole doped
cuprates, especially on Bi2Sr2CaCu2O8+� �Bi2212�, which
has been the subject of an overwhelming amount of experi-
mental work, see, e.g, Refs. 1–6. Bi2212 is a typical cuprate
material, which is an antiferromagnetic insulator in the
strongly underdoped regime but exhibits a superconducting
phase over a wide range of hole doping.

STS can be applied to a substantial part of the doping and
temperature spanned phase space of HTS materials. The SC
phase is observed around optimal hole doping �OP� while the
pseudogap �PG� phase is found within the underdoped re-

gime. As a practical limitation, STS requires a conducting
sample but the deeply underdoped regime is insulating and
hence unreachable by STS. However, under experimental
conditions the samples are not homogeneously doped.
Rather, there is a strong spatial variation in doping, which
makes observation of a continuum from the PG to the SC
phase possible within one sample. Although these spatial
variations in STS generally appear irregular, quite recently a
more ordered coexistence of PG and SC phases has been
observed.7

The physics of the cuprates is dominated by the cuprate
layers, which are usually not exposed to the tip of the appa-
ratus. For example, in Bi2212, the quasiparticle tunneling
takes place through insulating BiO and SrO layers. The con-
ventional interpretation of the spectra is based on the as-
sumption that the STS spectrum is directly proportional to
the local density of states �LDOS� of the CuO2 layer, espe-
cially the LDOS of the dx2−y2 orbitals, thus neglecting the
effects of the tunneling process in modifying the spectrum in
the presence of the insulating overlayers and multiple orbit-
als. The motivation for this simplification is an attempt to
reduce the quasiparticle structure to few band models, which
are amenable to theoretical treatment of strong correlation
effects in the presence of superconducting and antiferromag-
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netic order. Notably, there have been attempts to take the
effect of the overlayers into account by assuming a “tunnel-
ing matrix element” or a “filter function.”1,8,9

With this background, our recent work on STS �Ref. 10�
of Bi2212 provides a significant advance in realistic
material-specific modeling of the STS spectrum. We invoke a
Green’s function approach where a large number of orbitals
is included and all tunneling paths to the tip in the semi-
infinite solid are taken into account. We showed clearly that
instead of being a simple reflection of LDOS of the Cu dx2−y2

orbitals, the STS signal represents a very complex mapping
of the electronic structure of the system.

In this study we extend our approach by decomposing the
tunneling current in terms of regular and anomalous matrix
elements of the spectral function in an atomic-orbital basis.
As in Ref. 10, we concentrate on Bi2212 as the canonical
HTS material. We start by reformulating the well-established
methods to model tunneling current in nanostructures into a
more transparent form for interpreting tunneling in the super-
conducting state. Our derivation is based on the conventional
Todorov-Pendry11,12 �TP� approach, which is closely related
to the more common Tersoff-Hamann13 �TH� method. TP
and TH methods both employ a calculation of the LDOS but
TP is more naturally written in terms of Green’s functions.
We will show, in fact, that TP decomposes into matrix ele-
ments of the spectral function, giving very detailed informa-
tion concerning the origin of various features in the tunneling
spectrum. We thus demonstrate how the contribution of dif-
ferent atomic orbitals to the total current can be extracted
from the calculations. Our spectral decomposition also natu-
rally distinguishes between the electron and hole nature of
the quasiparticles in the superconducting state. In addition, it
leads to a multiband generalization of filtering function by
Martin et al.8 and a clarification of selection rules governing
tunneling through filtering layers. This information is impor-
tant, e.g., in determining how a dopant or impurity atom
alters the spectrum and how the effect of such a perturbation
is seen in real space.

In order to gain a handle on the effects of filtering layers,
we derive a consistent form of a filter function through
Green’s function manipulations. This rigorous form for the
filtering effects is useful for determining the relation between
the tunnel current and the LDOS of the CuO2 layers. We
show that this relation is nontrivial in that some channels are
“first-order forbidden.” Thus our new approach shows that
no direct regular signal from dx2−y2 orbitals of the Cu directly
below the STM tip reaches the microscope. Instead the dx2−y2

orbitals of the four neighboring Cu atoms give a major con-
tribution to the tunneling signal. Although we concentrate on
pristine systems in the present work, the results have impor-
tant implications for inhomogeneous situations—e.g., the re-
lationship between the observed features in the spectrum of
an impurity atom and the underlying LDOS. This decompo-
sition also allows treatment of the regular and anomalous
propagation of quasiparticles in a superconductor, and on this
basis we show that the coherence peaks result from the
anomalous electron-hole propagation.

The paper is organized as follows. The model for the geo-
metrical structure and the electronic structure is introduced
in Secs. II A and II B, respectively. The methods to calculate

the Green’s function in the normal and the superconducting
state are derived in Secs. II B and II C, respectively. The
Todorov-Pendry equation for the tunneling current is decom-
posed into regular and anomalous terms to show not only the
proper form of the matrix element but also the partial current
terms for any chosen orbital in Sec. II D. The formalism is
applied to discuss STM topographic maps in Sec. III A and
the STS spectrum of Bi2212 in Sec. III B. The spectrum is
then analyzed in terms of tunneling matrix elements and par-
tial currents in Sec. III C. Further comments on symmetry
analysis are made in Sec. IV A and remarks on electron
extraction/injection are made in Sec. IV B. Finally, conclu-
sions are drawn and future applications sketched in Sec. V.
Relevant technical details of the form of boson-electron cou-
pling assumed in the tunnel spectra and of the superconduct-
ing state calculations are given in the two appendices.

II. DESCRIPTION OF THE MODEL

Our theoretical framework involves three distinct steps.
First, we choose a three-dimensional �3D� geometrical model
of atoms with a sufficiently large simulation cell with peri-
odic boundary conditions in the horizontal directions to treat
a semi-infinite solid surface. Second, we attach a basis set of
atomic orbitals to each atom. At this stage, the one-particle
Hamiltonian is constructed and the corresponding Green’s
function tensor is formed. Third, we apply our Green’s func-
tion formalism to evaluate the tunneling current. The techni-
cal details of these three steps are outlined in Secs. II A–II C.

A. Sample geometry

We model the Bi2212 sample as a slab of seven layers14

in which the topmost layer is BiO, followed by layers of
SrO, CuO2, Ca, CuO2, SrO, and BiO, as shown in Fig. 1�a�.
The tunneling computations are based on a 2�2�2�2 real-
space supercell consisting of eight primitive surface cells
with a total of 120 atoms �see Fig. 1�b��. The coordinates are

FIG. 1. �Color online� �a� Side view of the simulation cell used
to compute the tunneling spectrum of Bi2212. Tunneling signal
from the conducting CuO2 layers reaches the tip after passing
through the filtering layers of SrO and BiO. �b� Cuprate layer show-
ing the supercell consisting of eight primitive cells. �c� Top view of
the surface showing the arrangement of various atoms.
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taken from the tetragonal crystal structure of Ref. 15. For
STS simulations, the STM tip is modeled as an orbital with
an s-wave symmetry at the assumed position of the apex of
the tip. This tip is allowed to scan across the substrate for
generating the topographic maps such as those in Fig. 5 or
held fixed on top of a surface Bi atom for the computed
spectra presented for example in Fig. 6.

B. Construction of the uncorrelated normal-state Hamiltonian

In order to construct a realistic framework capable of de-
scribing the tunneling spectrum of the normal as well as the
superconducting state of the cuprates, we start with the
normal-state Hamiltonian for the semi-infinite solid in the
form

Ĥ1 = �
���

���c��
† c�� + V��c��

† c��� , �1�

which describes a system of tight-binding orbitals created �or
annihilated� via the real-space operators c��

† �or c���. Here �
is a composite index denoting both the type of orbital �e.g.
Cu dx2−y2� and the site on which this orbital is placed, and �
is the spin index. �� is the on-site energy of the �th orbital.
� and � orbitals interact with each other through the poten-
tial V�� to create the energy eigenstates of the entire system.

The specific electron and hole orbital sets used for various
atoms are �s , px , py , pz� for Bi, Ca, and O; s for Sr; and
�4s ,d3z2−r2 ,dxy ,dxz ,dyz ,dx2−y2� for Cu atoms. This yields 58
electron or hole orbitals in a primitive cell and a total of 2
�464 orbitals in the 2�2�2�2 simulation supercell. The
number of k points used in the computations depends on
whether we do band calculations or solve the Green’s func-
tion. For band calculations, we use a dense set of k values to
produce smooth bands for directions 	→M→X→	 as
seen, for example, in Fig. 2. In the case of Green’s function
calculations, we use Nk=256 k points for the supercell Bril-
louin zone. This corresponds to 8�256=2048 k points for a
primitive cell.

The Slater-Koster formalism16–18 is used to fix the angular
dependence of the tight-binding overlap integrals. The on-
site energies and the prefactors are fitted to the local-density
approximation �LDA� band structure of Bi2212 that under-
lies, for example, the extensive angle-resolved photointensity
computations of Refs. 19–24. In Table I, we show the spe-
cific values of the v��m prefactors used for computing the
Slater-Koster hopping integrals. Notably, we have shifted the
bottom of the BiO conduction band to agree with experi-
ments, which do not observe the Bi bands at least within 1
eV above the Fermi level. This choice is also supported by
calculations of Ref. 25, which show the sensitivity of the
position of the Bi band with respect to impurities and doping.
The absence of the bottom of the BiO band in the STS spec-
tra may also be due to a voltage gradient across the insulat-
ing filter layers �BiO and SrO layers� when applying a bias
voltage between the tip and the sample. If so, the absolute
value of the voltage within these layers is less than the bias
voltage Vb and thus the apparatus would need to apply a bias
which would be significantly larger than Vb to locally see
states that are strictly at EF+eVb.

The tight-binding parameters of the normal-state Hamil-
tonian of Eq. �1� produce the detailed band structure of
Bi2212 shown in Fig. 2. While the tight-binding band struc-
ture is in reasonable agreement with the LDA band structure
of Ref. 25, in order to carry out spectroscopic computations,
one must additionally make sure that the underlying wave
functions are described correctly including their symmetries.
Our procedure based on the use of Koster-Slater matrix ele-
ments not only fits the band stuctures but the symmetries and
phases of the associated wave functions are also described
correctly.

Figures 2�a� and 2�b� show the normal-state tight-binding
band structure based on our 58 orbital Hamiltonian of Eq.
�1�. The main cuprate bands, with predominantly Cu dx2−y2

character, are seen in panels �a� and �b� to follow the corre-

FIG. 2. �Color online� ��a�–�d��: Normal-state band structure of
Bi2212 for the tight-binding Hamiltonian and from first-principles
LDA computations. Weights of Cu dx2−y2 and Cu dz2 contribution to
the bands are shown using a color scale where red/light denotes
high and blue/dark low values �see color bar�. Note that the tight-
binding calculations are done for a slab so that the tight-binding
bands do not display the splitting of Bi-O bands seen in LDA re-
sults. The LDA bands have been calculated using virtual crystal
approximation with 24% Pb doping to set the bottom of the BiO
band. ��e� and �f��: quasiparticle band structure in the superconduct-
ing state based on the Hamiltonian of Eq. �3� is shown in �e�. Panel
�f� zooms in on the gap region of �e� which is shaded gray. Electron
character of quasiparticles is shown in red and the hole character in
blue. Notice that the quasiparticles differ significantly from being
electrons or holes only in the close neighborhood of the supercon-
ducting gap around the M point.
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sponding LDA calculations in panels �c� and �d�. Note that in
our tight-binding modeling, we have adjusted the positions
and bilayer splitting of the two van Hove singularities
�VHSs� to approximately match the experimental photoemis-
sion and STS findings for the OP region with hole concen-
tration p�0.16 �Refs. 26 and 27�. In addition to Cu dx2−y2,
Cu dz2 is seen in panels �b� and �d� to give a significant
spectral weight to this band, especially at energies below the
Fermi level. The complicated “spaghetti” region has large
contributions from the dz2 of Cu and horizontal px�py� orbit-
als of the oxygens within the cuprate layer as well as the
vertical pz orbital of the apical oxygen. Concerning the filter
layers, the bottom of the BiO-like conduction band �or bis-
muth pocket� along the M�
 ,0� direction carries the charac-
ter of the horizontal p orbitals of the surface oxygens O�Bi�
�see Fig. 2�a��.

In tunneling calculations, we directly evaluate the Green’s
function instead of diagonalizing the Hamiltonian. For this
purpose, the normal-state Green’s function is solved first by
starting from the orbital matrix elements of the Green’s func-
tion,

g��
� =

���

� − �� − ��
����

, �2�

where �� is the on-site energy of the orbital �. At this point,
a diagonal self-energy ��

�=��� � i��� can be included
straightforwardly. The simplest self-energy is a constant
broadening of the states in the form of a convergence factor
��

�= 
 i�. Appendix A �Eq. �A2�� presents a more general
self-energy which we use to model electron-boson coupling.

The total Green’s function G is constructed by solving
Dyson’s equation

G = g + gVG ,

where V�� are the off-diagonal overlap integrals of Eq. �1�
Dyson’s equation is exactly solved using the method de-
scribed in Ref. 28, which is suitable for tunneling
calculations.29

C. Pairing interaction and the superconducting state
Hamiltonian

Superconductivity is included by adding a pairing interac-
tion term � in the Hamiltonian of Eq. �1� as follows:

Ĥ = Ĥ1 + �
���

����c��
† c�−�

† + ���
† c�−�c��� . �3�

A gap parameter value of ���=0.045 eV is chosen to model
a typical experimental spectrum2 for the illustrative purposes
of this study. We take � to be nonzero only between dx2−y2

orbitals of the nearest-neighbor �NN� Cu atoms and to pos-
sess a d-wave form, i.e., �d�d�x�=+��� and �d�d�y�=−���,
where d denotes the dx2−y2 orbital at a chosen site and d�x /y
the dx2−y2 orbital of the neighboring Cu atom in x /y direc-
tion. In momentum space, the corresponding � is given by

�k =
�

2
�cos kxa − cos kya� , �4�

where a is the in-plane lattice constant. The pairing interac-
tion of Eq. �3� allows electrons of opposite spins to combine
to produce superconducting pairs such that the resulting su-
perconducting gap is zero along the nodal directions kx
= �ky and is maximum along the antinodal directions. This
choice of pairing interaction follows, e.g., the one-band for-
malism given in Ref. 30.

For treating the superconducting case, we employ the ten-
sor �Nambu-Gorkov� Green’s function G �see Ref. 31� with
the corresponding Dyson’s equation,

G = G0 + GVG0, �5�

where

G = 	Ge F

F† Gh

 and V = 	 0 �

�† 0

 ,

where Ge and Gh denote the Green’s functions for the elec-
trons and holes, respectively.

The normal-state electron Green function Ge can be used
to derive the hole Green function Gh. It can be shown by,
e.g., the equation of motion method that

TABLE I. Slater-Koster prefactors, v��m, and on-site energies ��. The v��m are used to construct the Hamiltonian overlap matrix
elements V�� as described in Ref. 16.

v��m

�eV�

vss� vsp� vpp� vpp
 vsd� vpd� vpd
 vdd� vdd
 vdd�

−0.28 0.94 1.23 −0.13 −0.62 −2.81 1.16 −9.00 12.60 −2.29

��

�eV�
s /Bi p /Bi s /O�Bi� p /O�Bi� s /Sr s /Ca p /Ca

−12.200 1.800 14.700 −2.400 7.819 5.631 13.335

s /O�Sr� p /O�Sr� s /Cu d /Cu s /O�Cu� p /O�Cu�
−15.270 −2.353 5.001 −2.962 −18.560 −3.825
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Gh,��
� ��� = − Ge,��


 �− �� .

It is straightforwardly shown then that

Ge = Ge
0 + F�†Ge

0,

F = Ge�Gh
0. �6�

The quasiparticle Green’s function projected onto electron
degrees of freedom is then written in the form

Ge = Ge
0 + Ge�

BCSGe
0, �7�

where �BCS=�Gh
0�†.

We also need the self-energy term ��
h for holes. Since the

transformation from electron to holes follows that of the
Green’s function, we obtain the general form

��
h��� = − ��

e��− �� = − ����− �� + i����− �� .

In our particular case, we use a self-energy with an odd real
part and an even imaginary part as discussed in Appendix A
�see Eq. �A2��. Our self-energy is thus invariant under
electron-hole transformation.

Figures 2�e� and 2�f� show the modifications of the
normal-state band structure from the introduction of the pair-
ing interaction. Only the region within �500 meV of the
Fermi level is shown in panel �e�, as the remainder of the
bands are unchanged from the normal-state results of panels
�a� and �b�. The superconducting state dispersion in panels
�e� and �f� clearly displays a d-wave gap with a maximum in
the antinodal region near the M point and zero gap along the
nodal direction near �
 /2,
 /2�. Note that both bonding and
antibonding VHSs possess gaps of similar magnitude. Figure
2�e� also shows the relative electron/hole character of the
quasiparticles. As expected, the quasiparticles are very dis-
tinctly either electronlike or holelike almost everywhere ex-
cept within a very narrow energy range at the top and bottom
of the SC gap. Figure 3 further shows that mixing of the
electron and hole features gives rise to coherence peaks in
the LDOS of Cu dx2−y2 and to a lesser extent in the LDOS of
Cu dz2. The effects of electron-hole mixing are however most
pronouned in the anomalous matrix element of the quasipar-
ticle Green’s function �inset of Figs. 3 and 4�. In fact, the
off-diagonal matrix element between an up-spin dx2−y2 elec-
tron orbital and a down-spin dx2−y2 hole orbital of two neigh-
boring Cu atoms gives the most important term in the
anomalous part of the Green’s function. This term has
d-wave symmetry, which manifests itself as a change in sign
each time we make a rotation of 


2 around the central Cu site.
In addition to the coherence peaks, the anomalous density
matrix inherits features from the VHSs in the regular part of
the density matrix, which in view of electron-hole symmetry
is reflected on both sides of the Fermi energy. Additionally,
strong hybridization between up-spin Cu dx2−y2 electron or-
bitals and down-spin orbitals of O px holes �and vice versa�
takes place as shown in Fig. 4. This term is comparable in
strength to the Cu d-Cu d terms and changes sign in rotations
of 
 for reasons explained in the special case �3� of the
following paragraph. Figure 4 also shows a small on-site
contribution from the up-spin electron and down-spin hole of
the px orbital on the oxygen between two neighboring Cu

atoms. It is notable that these matrix elements strictly follow
the d-wave symmetry in rotations around the central Cu
atom.

These transformation properties follow consistently from
Eq. �6�. Let us, for example, look at the equation in the x
direction: F��=Ge,�d�d�d�x�Gh,�d�x��

0 , where d is a shorthand
notation for dx2−y2 of a chosen Cu atom and d�x stands for
the dx2−y2 orbital of the neighboring Cu atom in the positive/
negative x direction and consider several specific cases as
follows.

�1� For �=d and �=d�x, both Ge,�d and Gh,�d�x��
0 are

on-site matrix elements and thus their sign remains invariant
when changing from one Cu to another. Hence the term
�d�d�x� is decisive and the sign can change only in going
from x to y direction.

FIG. 3. �Color online� Main: LDOS �or the diagonal elements
��� of the density matrix; see Appendix B for details� of dx2−y2

�green� and dz2 �blue� orbitals of Cu. �Note dz2 curve is scaled up by
a factor of 4.5 to compare the shapes of the two LDOSs.� Oscilla-
tions at high positive or negative energies �above �0.5 eV� are
artifacts due to the use of a sparse mesh of k points in the compu-
tation. Inset: Anomalous density matrix term ���

eh discussed in Ap-
pendix B, where � and � denote dx2−y2 orbitals of two neighboring
Cu atoms.

FIG. 4. �Color online� Main: matrix elements of the anomalous
Green’s function for on-site px orbital of an intermediate oxygen
atom �green lines�, dx2−y2 orbitals of two neighboring Cu atoms �red
lines�, and between Cu dx2−y2 and a px orbital of a neighboring
oxygen �black lines�. Inset: the directional dependence of the sign
of the off-diagonal element Fdp. For details see special case �3� in
the text.
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�2� For �=�=O px, we have to first look at the term
Ge,pxdGh,�d�x�px

0 . Since the relative phases of the off-diagonal
matrix elements of the Green’s function are proportional to
the sign of the overlap of the two orbitals, it is straightfor-
ward to see from the signs of the lobes of the d and p orbitals
that this product is invariant to change in direction as well as
in going from x to y. Therefore, �d�d�x� again gives the
d-wave symmetry of these terms.

�3� For �=d and �=O px, Ge,�d is diagonal and thus in-
variant. Considering the overlaps, one sees that

Gh,�d−x��
0 = − Gh,�d+x��

0

and

Gh,�d+y��
0 = − Gh,�d−y��

0 = − Gh,�d+x��
0 .

But, since �d�d�x�=−�d�d�y�,

Fdpx�−� = − Fdpx�+� = − Fdpy�+� = Fdpy�−�,

as shown in the inset of Fig. 4.
Equation �B5� of Appendix B shows that F��� �c�↑c�↓�.

Hence, case �3� of the last paragraph indicates that there is a
significant pairing �cdx2−y2↑c�↓� when

��� � �px�+ �� + �py�+ �� − �px�− �� − �py�− �� .

Recall that we introduced superconductivity in Hamiltonian
of Eq. �3� only on the Cu dx2−y2 orbitals. Thus we see that
within our model the strong Cu-O hybridization automati-
cally induces pairing on the oxygen orbitals. This pairing is
analogous to the concept of Zhang-Rice singlets �ZRSs� in
the low doping limit,32 where pair states

�dx2−y2↑���↓� − �dx2−y2↓���↑�

are formed. Note, however, that ZRS is a concept related to
doping levels in the “normal” phase and is not directly con-
cerned with superconductivity. Nevertheless, the preceding
considerations indicate that our model is in accord with the
ZRS scenario of the normal state.33

D. Green’s function formulation of tunneling current

We turn now to consider the formulation of the tunneling
spectrum. For this purpose, we apply the conventional form
of the Todorov-Pendry expression11,12 for the differential
conductance � between orbitals of the tip �t , t�� and the
sample �s ,s��, which in our case is straightforwardly shown
to yield

� =
dI

dV
=

2
e2

�
�

tt�ss�

�tt��EF�Vt�s�ss��EF + eV�Vs�t
† , �8�

where the density matrix

�ss� = −
1



Im�Gss�

+ � =
1

2
i
�Gss�

− − Gss�
+ � �9�

is given in terms of the retarded electron Green’s function or
propagator Gss�

+ . Eq. �8� differs from the more commonly
used Tersoff-Hamann approach13 in that it takes into account

the details of the symmetry of the tip orbitals and how these
orbitals overlap with the surface orbitals.

Since electrons are not eigenparticles in the presence of
the pairing term, Dyson’s equation needs to be applied to the
Green’s function tensor,

G− = G+ + G+��− − �+�G− = G+ − 2iG+��G−. �10�

After extracting the electron part from Eq. �10� and applying
Eq. �9�, the spectral function can be written as

�ss� = −
1



�
�

�Gs�
+ ���G�s�

− + Fs�
+ ���F�s�

− � . �11�

Using Eq. �11�, the tunneling current of Eq. �8� can be recast
into the form

� = �
t�

Tt�, �12�

where

Tt� = −
2e2

�
�
t�ss�

�tt��EF�Vt�s�Gs�
+ ���G�s�

− + Fs�
+ ���F�s�

− �Vs�t
†

�13�

and the Green’s function and the self-energy are evaluated at
energy E=EF+eVb. Equations �12� and �13� are an extension
of the Landauer-Büttiker formula for tunneling across nano-
structures �see, e.g., Ref. 34� and represent a reformulation of
Refs. 35 and 36. By comparing Eqs. �11� and �13�, we see
that if the tip makes contact with only a single surface-atom
orbital, e.g., a Bi pz orbital, then the tunneling current is
directly proportional to the LDOS of that orbital. In particu-
lar, the tunneling current bears in general no such simple
relationship to the quantity of most interest, namely, the
LDOS on the CuO2 plane. Obviously, the tunneling formal-
ism of Eq. �13� must be further elaborated in order to find the
relation between the interesting LDOSs and the tunneling
spectrum.

Tunneling channels, filter function, and tunneling matrix
element

The experimental STM spectra in the cuprates have to
date been mostly compared to the electronic LDOS of the
superconducting cuprate layer, especially the LDOS of the
Cu dx2−y2 orbital. The discrepancies between the spectra and
the LDOS are then ascribed to tunneling matrix elements or
“filtering functions.”8 The former refers to the general prob-
lem of modeling spectroscopies, where the signal is distorted
by the spectroscopic process and may even vanish due to the
presence of selection rules. The latter term refers to how the
states of electrons �or quasiparticles� from the initial state
within the superconducting layers are modified when travel-
ing through the oxide overlayers before reaching the tip.
Equation �13� above accounts fully for the tunneling process
and it can be reformulated to reveal, for example, the filter-
ing effect more clearly. For this purpose, it is convenient to
the denote various orbitals as follows: s and s� for the orbit-
als of the sample surface, which overlap with the tip orbital t;
f and f� for the orbitals of the filter layers, BiO and SrO; c
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and c� for orbitals in the cuprate layer; and � for any orbital
that is singled out, which in our case usually will be an
orbital in the cuprate layer. Denoting the Green’s function for
the filter layers decoupled from the rest of the system by Gsf

0+

and the matrix elements within the cuprate layer in the
coupled system by Gc�

+ , application of Dyson’s equation to
Gs�

+ yields

Gs�
+ = Gsf

0+VfcGc�
+ and Fs�

+ = Gsf
0+VfcFc�

+ .

Hence, Eq. �13� can be written as

Tt� = −
2e2

�
�

t�cc�

�tt��EF�Mt�c�Gc�
+ ���G�c�

− + Fc�
+ ���F�c�

− �Mc�t
† ,

�14�

where

Mtc = VtsGsf
0+Vfc, �15�

which gives the filtering amplitude between the cuprate layer
and the tip, and constitutes a multiband generalization of
filtering function of Ref. 8. Similarly, the matrix element of
the density-of-states operator �cc� within the cuprate plane
can be recovered in terms of the spectral function,

� =
2
e2

�
�

tt�cc�

�tt��EF�Mt�c�cc��EF + eV�Mc�t
† . �16�

Equations �14�–�16� show a number of interesting aspects of
the tunneling process as follows.

�1� Since applying the filtering matrix element Mtc, which
describes the effect of the BiO and SrO overlayers, involves
M and M†, interference effects will occur between various
paths to the tip from the cuprate layers through the filter
layer. �2� The partial current terms in Eq. �16� under the
summation are proportional to elements of the density matrix
confined to the cuprate layer. Only orbitals with a notable
overlap with the pz orbital of the apical oxygen on the SrO
layer will give a significant contribution to the total current;
�3� The partial elements of the spectral function

�cc�� = −
1



�Gc�

+ ���G�c�
− + Fc�

+ ���F�c�
− � �17�

extracted from Eq. �14� show which orbitals � contribute to
the chosen element of the density matrix �cc�. Furthermore,
the current contribution Tt� between the tip can be divided
into regular and anomalous terms Tt�

R and Tt�
A , respectively.37

Since the filter layers are insulating at low energies, these
layers will give little structure to the spectrum at low bias
voltages so that the structure of the spectrum is mainly con-
trolled by the matrix elements �cc� and in this sense the spec-
trum is a filtered mapping of the LDOS of the cuprate orbit-
als. We will show however that the Cu dx2−y2 orbitals right
below the tip do not enter the spectrum through Eq. �16�
since their overlap with the relevant orbitals of the SrO layer
is zero. Instead, Cu dz2 has a large overlap with pz of the
apical oxygen and hence these orbitals of the Cu atoms play
a dominant role in the tunneling spectrum.

The detailed contribution of any specific orbital � can be
extracted from Eq. �14�. The regular and anomalous matrix

elements of the spectral function, Gc�
+ ���G�c�

− and Fc�
+ ���F�c�

− ,
describe propagation of electrons or holes within the cuprate
layer from orbital � to the orbitals c and c�. The latter orbit-
als act as “gates” between the cuprate layer and the filter
layer. For example, if � is dx2−y2 of a Cu atom and c and c�
are dz2 orbitals, which strongly overlap with the filter layer,
the matrix element filtered by M and M† gives the contribu-
tion of a specific dx2−y2 orbital to the total tunneling spec-
trum. Note that in the superconducting state the anomalous
matrix elements of the spectral function must also be consid-
ered. F����� involves the creation of an electron with spin up
coupled to the annihilation of a hole with spin down given by
�c�↓

† ���c�↑
† �0�� and thus describes the formation and breakup

of Cooper pairs as shown in Appendix B. The decomposition
of Eqs. �14�–�16� are, in fact, a generalization of the tunnel-
ing channel approach to transport through one-molecule
electronic components38 and STM of adsorbate
molecules.39,40 In the present context, the “tunneling path”
analysis gives us the “origin” of the signal since Gc�

+ ���G�c�
−

gives the probability of propagation between orbitals � and
c.

III. RESULTS

A. Topographic maps

We discuss first the topographic STM map, i.e., the con-
stant current surface for a tip scanning across the sample
surface. The computed topographic map is very robust
against changes in measuring parameters such as the bias
voltage or the tip-surface distance. Figure 5 compares the
calculated and typical experimental results. Furthermore,
corrugation along two paths of line scan is shown in Fig.
5�b�. The Bi atoms are seen as bright spots while the surface
oxygens are dark due to very low current coming through
these surface atoms. We will see in connection with the
analysis of the tunneling channels below that the apical oxy-
gens act as the primary gate for passing electrons from the
CuO2 layers up to the surface BiO layer. Accordingly, the Bi

FIG. 5. �Color online� �a� Typical experimental topographical
STM map after Ref. 4. �b� The computed corrugation of two STM
line scans and �c� theoretically predicted topographic map. The two
paths are shown in �c� by arrows.
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atoms appear bright because there exists an easy channel
between the surface Bi atoms and the apical oxygens below
via the Bi pz orbitals. On the other hand, the oxygens in the
surface layer are dark because the px,y orbitals of O�Bi� are
orthogonal to the �assumed� s symmetry of the tip while the
O�Bi�pz orbitals are relatively weakly coupled to the pz of
the apical oxygen as discussed below in connection with Fig.
7.

B. Tunneling spectra

Figure 6�a� compares a typical experimental �red/light
line� STS spectrum2 to the calculated one �black/dark line�.
The overall agreement between theory and experiment is
seen to be good, although the VHSs are seen as separate
structures in the calculated curve.41,42 The agreement also
extends to the low-energy region shown in Fig. 6�b�, where
the width and positions of the coherence peaks is reproduced
reasonably well.43 The tendency for increasing intensity to-
ward negative bias is seen in both measurements and com-
putations. This is in sharp contrast to the shape of the LDOS
of Cu dx2−y2 orbital �green curve�. As emphasized in Ref. 10,
this remarkable asymmetry of the spectrum between positive
and negative bias voltages reflects the opening up of chan-
nels other than Cu dx2−y2, especially of Cu dz2, as one goes to
high negative bias. This asymmetry thus appears naturally
within our conventional picture and cannot be taken to be a
hallmark of strong correlation effects as has been thought to
be the case.

There has been considerable interest in understanding the
coupling of electrons to bosonic modes in the so-called “low-
energy kink” region within 
�100 meV of the Fermi level.
In particular, the peak-dip-hump structure seen in the experi-
mental spectrum in Fig. 6�b� is generally believed to be the
result of the coupling of electronic degrees of freedom to a
collective mode �Refs. 9, 44, and 45�. Figure 6�b� shows that
the peak-dip-hump feature can be described by our simple
self-energy correction discussed in Appendix A. This point
however requires further study, including an analysis of how
this feature evolves with doping.

C. Selection rules

The filter function Mtc controls selection rules dictated by
matching of the symmetry properties of the cuprate layer,
filter layers, and the tip. A closer examination of Mtc reveals
that strong tunneling through the apical oxygen layer is as-
sociated with a matching of the symmetry of the cuprate
layer wave function to that of the apical O pz. The key is the
relative symmetry of the wave functions with respect to the
axis of tunneling: An “odd” wave function, e.g., the Cu dx2−y2

has zero overlap with an “even” wave function such as O pz.
In contrast, two orbitals with the same symmetry couple
more strongly. Accordingly, the pz of the apical oxygen and
the Cu dz2 possess large overlap while Cu dx2−y2 has zero
overlap with any s or p orbital of the apical oxygen. This is
the reason that direct tunneling is forbidden between
Cu dx2−y2 and the s-wave symmetric tip through the filter
layer. Hence, Mtc functions here are consistent with the filter
function of Ref. 8. Similarly, coupling between an s-wave tip
and the px and py orbitals of the Bi atom lying directly below
the tip is forbidden. Therefore, within the filter layer, the
main “vertical” overlap is between the pz orbitals of Bi and
apical oxygen, and these orbitals indeed are found to provide
the main channel through the filter layers as depicted in Fig.
7�a�. We find additional relatively small contributions from
the on-site Bi s orbital and p orbitals of the surrounding Bi
and O�Bi� atoms but such “background” contributions to the
current do not seem to be dominated by any particular chan-
nel.

Figure 7�b� illustrates another example of a symmetry-
forbidden tunneling path, where the tip is centered between
two surface Bi’s, i.e., on the top of an oxygen of the cuprate
layer. Since we assume an s-wave tip with negative hopping

FIG. 6. �Color online� �a� A typical experimental tunneling spec-
trum �red line� from Bi2212 �after Ref. 2� is compared with the
calculated spectrum �black�. The green curve shows the LDOS of
the Cu dx2−y2. �b� Expanded view of the experimental and calculated
spectrum in the low-energy region. �c� Comparison of the model
self-energy �Eq. �A2�� assumed for the Cu dx2−y2 orbitals and the
self-energy from the convolution of a Debye-type phonon spectrum
and the LDOS of Cu dx2−y2 �Eq. �A1�� as discussed in Appendix A.

FIG. 7. �Color online� �a� Dominant tunneling channel from the
cuprate layer, from Cu dx2−y2 orbitals through the neighboring
Cu dz2 to Bi Bi px to the tip. �b� An oxygen atom in the cuprate
layer is invisible to a STM tip right above when the paths through
Cu1 and Cu2 interfere destructively.
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integrals to the nearby Bi atoms, when we follow either path
up to the Cu dz2 orbitals, the signs of the hopping integrals
are identical. However, the O px orbital between the two Cu
atoms changes sign from one Cu to the other. This gives the
two paths from O px to the s-wave tip an opposite phase
leading to destructive interference between the paths, making
the O atom invisible. However, if the s-wave tip is replaced
by one with, e.g, px symmetry, the oxygen would become
visible and a weaker signal would appear from the neighbor-
ing dx2−y2 orbitals. Experimentally, this could be accom-
plished by functionalizing the tip by attaching a suitable mol-
ecule to the tip. A similar procedure has been used to obtain
a contrast inversion for CO molecules adsorbed on a Cu
surface.46,47

D. Tunneling channels

The origin of the current from the cuprate layer can be
understood by inspecting the individual terms of Eq. �17�,
which we refer to as “tunneling channels,” i.e., from the
regular and anomalous elements Gc�

+ ���G�c�
− and Fc�

+ ���F�c�
− ,

of the Green’s function. �Although tunneling channels are a
normal-state property, the anomalous matrix elements play
an important role in generating the coherence peaks and thus
are relevant more generally.� For simplicity, we assume that
the tip is right above a Bi atom. The dominant element of the
filter function Mt,c is then between the tip orbital and the dz2

orbital of the upper layer Cu atom lying beneath the surface
Bi atom, so we take c=c�=Cu dz2 in results shown in Figs. 8
and 9. Figure 8 shows the relative contributions of the regu-
lar and anomalous matrix elements. The near Fermi energy
current is primarily associated with the dx2−y2 matrix ele-
ments. While the regular matrix elements of Cu dx2−y2 are
almost solely responsible for the spectrum at energies around
the VHSs, the anomalous elements determine the features
around the gap region, especially the coherence peaks. Fig-
ure 8 shows that coherence peaks are inherited from the
anomalous and not the regular part of the Green’s function,
and reflect physically the effects of nonconservation of the
number of electrons near the gap region.

In Fig. 9, the current of dx2−y2 character is further broken
down into contributions from various neighbors of the cen-

tral Cu atom of the first and second CuO2 layer away from
the free surface. We see in panel �a� that the upper CuO2
layer is more important than the lower one but that the upper
layer is by no means dominant. It seems that the coupling
between the tip and the lower layer is strengthened via the
relatively large overlap between the dz2 orbitals of the central
Cu atoms of the two layers, which opens an important inter-
layer channel. The dx2−y2 orbitals of the two layers mix not
only to induce the well-known bilayer splitting in Bi2212 but
also play a significant role in the flow of current to the tip
from the lower cuprate layer.

It can be seen from Fig. 9�a� that the dx2−y2 orbitals of the
four nearest-neighbor Cu atoms of the central Cu give a sig-
nificant contribution to the total spectrum but that this
amounts to only about one third of the contribution from all
dx2−y2 terms from the upper layer. Due to the nonlocal nature
of the Bloch states within the cuprate layers, it is clear then
that the total signal involves long-range contributions and
attributing the spectrum merely to the four nearest-neighbor
Cu atoms provides only a rough approximation.

Anomalous contributions are considered in Fig. 9�b�.
Here, the upper and lower layers give an almost equally large
contribution, indicating that coherence peaks also are not all
that local in character. Notably, we find a finite on-site
anomalous contribution of dx2−y2 even though the regular
term is zero. This can be understood with reference to Eq.
�6�. Consider the term

Fz2d = Ge,z2�d+xi�
0

��d+xi�d
Gh,dd,

where d is shorthand for dx2−y2 of the central Cu and d+xi is
dx2−y2 of the neighboring Cu in either x or y direction.
Clearly, Ge,z2�d+xi�

0 transforms under rotations of 

2 in the same

way as ��d+xi�d
and since Gh,dd is an on-site term, the combi-

nation is invariant. Hence the four terms in the sum over the
neighbors are equal, yielding a nonzero onsite term.

We emphasize that the anomalous contribution of the four
neighboring Cu atoms is quite small. Let us consider the
term

FIG. 8. �Color online� Partial spectrum with c=c�=dz2 in Mtc.
The regular �red line� and anomalous �green line� components are
shown together with the total contribution of the two parts �solid
black�. Blue curve shows the corresponding regular Cu dx2−y2

contributions.

FIG. 9. �Color online� �a� Various contributions to tunneling
spectrum from the regular matrix elements �assuming c=c�=dz2 in
Mtc�, Tt�

R , of Cu dx2−y2 orbitals of upper and lower CuO2 layer.
Contributions from the NN Cu atoms in the upper and lower layers
are shown. �b� Same as �a�, except this panel refers to the contribu-
tions from the anomalous matrix elements, Tt�

A .
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Fz2�d+xi�
= Ge,z2d

0
�d�d+xi�

Gh,�d+xi��d+xi�
.

Due to symmetry, Ge,z2d
0 =0, and thus this term vanishes.

However, there are terms like

Fz2�d+xi�
= Ge,z2�d+2xi�

0
��d+2xi��d+xi�

Gh,�d+xi��d+xi�
,

which do not vanish but are very small since Ge,z2�d+2xi�
0 is a

relatively small term. A similar analysis can be carried out
for the second and third neighbors. The second-nearest
neighbors, which lie along the nodal direction in k space,
give the largest single contribution, although this contribu-
tion is not dominant. The third neighbor contribution is a
little larger than the on-site contribution.

IV. FURTHER COMMENTS

A. Symmetry analysis

The selection rules can be formalized using group theo-
retical arguments related to the filtering function.8 For ex-
ample, in order to explain the dominance of the dx2−y2 orbit-
als of the four neighboring Cu atoms, considering
representations of the two-dimensional C4v group, the d or-
bitals �dx2−y2 , i� of the site i participate in eigenfunctions of
the system as a linear combination

�
i

e−ik·Ri�dx2−y2,i� .

This combination of the four neighboring orbitals at �0, �
�
and ��
 ,0� belongs to the same representation of C4v as the
4s and dz2 orbitals of the central Cu atom �see Fig. 10�, as
well as the pz orbitals of the apical oxygen and the surface Bi
atom. At this k point, the phase difference between the lattice
sites causes all the d-orbital lobes pointing toward the central
atom to have the same sign. Hence, this combination yields a
large off-diagonal element overlap with the surface pz orbital
and a dominant tunneling contribution around the gap. Simi-
lar arguments can be applied to understand contributions
from other farther out atoms. An example was given in Fig.
7�b� above where the position of the tip and the symmetry of
the relevant orbital strongly influence the visibility of an
atom.

B. Electron extraction/injection

To relate the tunneling current to the LDOS of the cuprate
layer, we have introduced the concept of tunneling paths

through Eq. �14�, which implies that each path begins or
ends on a particular atomic orbital. This nonintuitive con-
cept requires some comment. In reality, the current flows
through the sample with each electron ejected to the tip be-
ing replaced by an electron from a distant counterelectrode.
For a simple system, such as a nanostructure, nonequilibrium
Green’s function formalism with two “leads” closing a cur-
rent circuit have been invoked �see, e.g., Ref. 34�. TH or TP
approach, on the other hand, assumes that the current is com-
posed of a series of tunneling events48 and that the replace-
ment of electrons at the counterelectrode has a negligible
effect on the tunneling process. Since the current in STS is
on the order of 10–100 pA, there is only about one electron
each 1–10 ns which flows across the sample, justifying the
assumptions underlying TH/TP approach. Both TH and TP
are based on calculating individual tunneling events in a low-
energy electron diffraction-like formalism.49 Due to the finite
��, an electron created on a particular atom will have only a
finite probability of escaping to the tunneling tip and Eq. �14�
shows how to add up the contribution of all these tunneling
processes in terms of the equilibrium LDOS of the sample.

V. CONCLUSIONS

We have presented a comprehensive framework for mod-
eling the STS spectra from the normal as well as the super-
conducting state of complex materials in a material-specific
manner. Our formulation makes transparent the connection
between the LDOS and the STS spectrum or the nature of the
tunneling “matrix element” and it is cast in a form that re-
veals the filtering effect of the overlayers separating the tip
and the layers of interest. Our decomposition of the tunnel-
ing current into contributions from individual local orbitals
allows us to identify important tunneling channels or paths
through which current reaches the STM tip in the system.
Our analysis highlights the importance of anomalous terms
of the Green’s function, which account for the formation and
breaking up of Cooper pairs, and how such terms affect the
STS spectrum.

We apply the formalism to the specific case of Bi2212.
Mismatch of symmetry between orbitals on adjacent atoms,
or between the tip and the sample orbitals, is shown to se-
verely restrict the corresponding contribution to the tunnel-
ing current. For these reasons, the contribution from
Cu dx2−y2 orbitals comes not directly from the Cu atom lying
right below the Bi atom but from a fourfold symmetric indi-
rect route involving the four nearest neighbors of the central
Cu as well as longer range background from farther out
Cu dx2−y2 orbitals. In the superconducting state, the coher-
ence peaks of the spectrum are shown to be dominated by the
anomalous spectral terms, which also are found not to be all
that localized around the central Cu atom. In particular, we
find a small anomalous on-site term and a practically vanish-
ing first-nearest-neighbor contribution, with most of the
anomalous contribution arising from the second neighbors
and beyond.

We have concentrated in this study on the large hole dop-
ing regime of the cuprates where a homogeneous electronic
Fermi-liquid phase is consistent with most experiments. The

FIG. 10. �Color online� Relative phases of the central dz2 orbital
and the neighboring dx2−y2 orbitals �a� at the 	 point and �b� at the
M point.
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fact that we have obtained good overall agreement between
our computations and the measurements, especially with re-
spect to the pronounced asymmetry of the spectrum between
positive and negative bias voltages, indicates that this re-
markable asymmetry can be understood more or less within
our conventional picture without the need for invoking ex-
otic mechanisms. At lower dopings, strong correlation effects
including the possible presence of competing orders or inho-
mogeneous electronic states �nanoscale phase separation�
would need to be taken into account. However, the present
framework can be extended fairly straightforwardly through
the addition of Hubbard terms in the Hamiltonian to provide
a viable scheme for investigating the tunneling response
throughout the phase diagram of the cuprates and other com-
plex materials, including the modeling of effects of impuri-
ties and dopant atoms in the system.
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APPENDIX A: BOSON-ELECTRON COUPLING

In the vicinity of the Fermi energy, dispersion anomalies
are found in ARPES spectra arising from coupling of elec-
tronic degrees of freedom to phonons and/or magnetic
modes, often giving the appearance of a peak-dip-hump
feature.44 These boson-electron couplings also strongly affect
the STS spectrum.45 This appendix discusses a model self-
energy for describing such anomalies.

A significant contribution to the electron-phonon coupling
is associated with modulation of the electronic hopping inte-
grals by the phonons. The generalized coordinate of atomic
displacement in q basis is quantized in the standard way,

Qq =� �

2�q
�aq + aq

†� ,

where aq�aq
†� is the annihilation �creation� operator of the

phonon mode q and �q is the frequency of the mode. How-
ever, the most natural way to couple this to real-space tight-
binding basis is to make a transformation to the basis of
real-space displacement of atom � in the following way:

û� = ���q�Qq,

where Einstein summation over phonon modes q is implicit.
Note that � is a composite index denoting both the index of
an atom and the direction of displacement.

Consequently, in tight-binding basis, this gives rise to a
term in the Hamiltonian of the form

Hel−vib =
1

�m�

�V��

�R�

û�c�
†c� = 	�

��û�c�
†c�,

where V�� is the hopping integral between orbitals � and �,
and R� is the coordinate of atom �.

This coupling can be embedded into the electronic Hamil-
tonian as an energy-dependent self-energy. Following the ar-
guments of Ref. 50, the general form of self-energy is written
as

���
� ��� =

�

2
	�

��	�
��� d�

1

�
g�������1 − f�� − ���

+ nb����G��
� �� − ��� + �f�� + ��� + nb����G��

� ��

+ ���� , �A1�

where g�����=�q�� �q����−�q��q ��� is an element of the
vibration mode density matrix. Note again that we use Ein-
stein summation convention so that summation is implied
over orbital indices � and � and the phonon polarization
indices � and �.

For simplicity, we now assume that: �i� the bosonic cou-
pling only affects the Cu dx2−y2 orbitals, where we include a
diagonal self-energy of the form, g���=g�2 when ���d
and it is 0 when ���d. For a Debye spectrum of phonons,
�d is the Debye cutoff frequency and the normalization fac-
tor is g=3 /�d

3; �ii� ���=− 1

 Im�G��

+ �=� is approximately a
constant. This amounts to assuming that the electronic den-
sity of states is smoothly varying within the range of the
phononic spectrum; and �iii� take 	�

��=	, a constant param-
eter. Using these assumptions, the final form for the self-
energy is

�+ = −
A



��2z + i
� + �z2 − 1�ln	 z − 1

z + 1

� , �A2�

where z= ��+ i�� / ���d�, A= 3�
4�d

	2�, and � is a convergence
parameter. Although we have derived the preceding form for
coupling to a 3D Debye spectrum of phonons, the results are
not too sensitive to details of the spectrum and we would
expect a similar result for an Einstein phonon or the
magnetic-resonance mode.51

It is interesting to consider the asymptotic forms of self-
energy as follows. If ��d��,

���� � − A	 2


z
+ i
 .

For large boson energies, i.e., ��d��, we obtain

���� � − A	 4



z + iz2
 . �A3�

While Eq. �A1� gives a general form of phononic self-
energy for any pair of orbitals, in the present calculations, we
adopt a few simplifications. First, we assume only diagonal
terms of self-energy to make the model more tractable. Sec-
ond, we apply Eq. �A2� to Cu dx2−y2 orbitals using param-
eters ��d=80 meV and A=60 meV. The former value
gives the best fit to the peak-dip-hump structure and the lat-
ter controls the smoothness of the spectrum. In Fig. 6�c� we
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make a comparison between the more general form of Eq.
�A1� with the accurate density of states of Cu dx2−y2 orbitals.
For the remaining orbitals we mimic a Fermi-liquid-type
self-energy, which can be modeled with a ����2 and ��
��; here we employ the asymptotic form of Eq. �A3�, choos-
ing parameters ��d=2.0 eV �to ensure the correct
asymptotic form for whole the energy range� and A
=100 meV. In this way, the need for a Kramers-Kronig
transformation is avoided.

We can straightforwardly include in the self-energy the
effect of magnon scattering42 responsible for the high energy
kink.52 This will broaden the spectrum in the vicinity of the
VHS peaks, thereby improving agreement with experiment
in Fig. 6�a�. It should be noted, however, that a more accu-
rate modeling of the self-energy will be required both for the
bosonic coupling and the Fermi-liquid term for treating the
underdoped system.

APPENDIX B: BOGOLIUBOV QUASIPARTICLES IN
TIGHT-BINDING BASIS

This appendix discusses aspects of the Bogoliubov trans-
formation within a tight-binding basis. The Bogoliubov
transformation is not explicitly carried out in the present cal-
culations since the Green’s function tensor is obtained di-
rectly from Dyson’s equation. Nevertheless, understanding
the relation between the transformation and the Green’s
function tensor in the tight-binding basis is necessary for
interpreting some of our results. In particular, our analysis of
pairing symmetry is based on the relation between F�� and
�c�↑c�↓�.

The Bogoliubov transformation53 is conventionally car-
ried out in a combined basis of spin-up electrons and spin-
down holes,

ck = 	 ck↑

c−k↓
† 
 . �B1�

These c’s diagonalize the one-particle Hamiltonian of Eq. �1�
via the transformations

c�↑ = ���k�ck↑

and

c�↓
† = �− k���c−k↓

† = ���k�c−k↓
†

or in a more compact form

c� = 	 c�↑

c�↓
† .


 = 	���k� 0

0 ���k�

ck = B�kck, �B2�

with inverse ck=Bk�c�.
This change of basis diagonalizes the one-particle Hamil-

tonian,

�k = �k���H1,�����k�

�with summation over � and ��. In this basis the Hamil-
tonian of Eq. �3� becomes

H = �kck↑
† ck↑ + �k�1 − c−k↓c−k↓

† � + �kck↑
† c−k↓

† + �k
†c−k↓ck↑,

now with summation over k. After shifting this by a constant
energy, it assumes the simple form

Hef f = c†Ĥc ,

where

Ĥ = 	 �k �k

�k
† − �k


 , �B3�

which can be diagonalized into

Hef f = c†U−1UĤU−1Uc ,

where

U = 	 uk
� vk

− vk
� uk


 and U−1 = 	uk − vk

vk
� uk

� 
 .

The coefficients are chosen in the standard way in order to
obtain a diagonal matrix

UĤU−1 = 	Ek 0

0 − Ek

 ,

with Ek=��k
2+ ��k�2.

This Bogoliubov transformation introduces the quasipar-
ticle basis

a = 	 ak

b−k
† 
 = Uc .

Since we are working in the tight-binding basis, we end
up with

	 ak

b−k
† 
 = 	 uk

��k��� vk�k���

− vk
��k��� uk�k���


	c�↑

c�↓
† 


�summation over � and �� or inversely

	c�↑

c�↓
† 
 = 	���k�uk − ���k�vk

���k�vk
� ���k�uk

� 
	 ak

b−k
† 


�summation over k�.
We are particularly interested in writing the expectation

values of electron and hole densities, �c��
† c��� and �c��c��

† �,
and pairing amplitudes �c�↑

† c�↓
† � and �c�↓c�↑� in terms of the

Green’s function tensor. For this purpose, we start with a 2
�2 tensor

�c�c�
†� = �B�kckck

†Bk�� = �B�kU
−1aa†UBk�� . �B4�

Using the fact that �akak
†�=1− f�Ek� and �bk

†bk�= f�Ek�, we
evaluate each element of the tensor �c�c�

†� separately as fol-
lows:

�1� the number density

�c�↑
† c�↑� = ���k���u�2f�Ek� + �v�2�1 − f�Ek����k��� .

Now we use a trick following Ref. 54 where

���k��u�2f�Ek��k��� =� d�f������k�u��� − Ek�u��k���

and
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��� − Ek� � −
1



Im	 1

� − Ek + i�

 .

Hence

���k��u�2f�Ek��k��� =� d�f������
e ��� ,

where

���
e ��� = −

1



Im�Ge,��

+ ���� ,

where Ge,��
+ refers to the electron part of the Green’s func-

tion,

Ge,��
+ ��� =

��,e�k��k�e,��
� − Ek + i�

=
���k��uk�2�k���

� − Ek + i�
.

It is straightforward to show that

�c�↑
† c�↑� =� d��f������

e ��� + �1 − f�������
h ���� ,

where ���
h is the hole density matrix. The first part of the

integral, in fact, gives the number of electrons with a chosen
spin. The latter part gives the same result as the former since
the Bogoliubov transformation reflects the electron bands to
hole bands with respect to the Fermi energy.

�2� The pairing amplitude

�c�↑c�↓� = ���k��u�f�Ek�� − �1 − f�Ek��v��k��� .

Using the trick of Ref. 54 again gives us the formula

�c�↑c�↓� = −� d��1 − 2f�������
eh ��� , �B5�

where

���
eh ��� = −

1



Im�F��

+ ����

and

F��
+ ��� =

��,e�k��k�h,��
� − Ek + i�

=
���k�ukvk�k���

� − Ek + i�
.

In the same manner, one can see that

�c�↑
† c�↓

† � = −� d��1 − 2f�������
eh†��� , �B6�

where

���
eh†��� = −

1



Im��F+���

† ���� .

Equations �B5� and �B6� also reveal how the anomalous
part of the Green’s function tensor is related to the pairing
amplitude �c�↑c�↓� in a tight-binding basis or equivalently
how the anomalous part of the current is related to the mak-
ing and breaking of Cooper pairs. In particular, symmetry
properties of F�� are seen to be related directly to those of
�c�↑c�↓�.
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