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We study the superfluid to Mott-insulator transition of hardcore bosons in commensurate superlattices in two
and three dimensions. We focus on the special case where the superlattice has period two and the system is at
half-filling. We obtain numerical results by using the stochastic series expansion algorithm, and compute
various properties of the system, such as the ground-state energy, the density of bosons in the zero-momentum
mode, the superfluid density, and the compressibility. We employ finite-size scaling to extrapolate the thermo-
dynamic limit, and find the critical points of the phase transition. We also explore the extent to which several
approximate solutions such as mean-field theory, with and without spin-wave corrections, can help one gain
analytical insight into the behavior of the system in the vicinity of the phase transition.
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I. INTRODUCTION

Recent developments in the field of ultracold Bose gases
have opened a new promising avenue of theoretical and ex-
perimental research in the study of the phases of quantum
matter. A gas of bosonic atoms in an optical trap has been
reversibly tuned from a Bose-Einstein condensate to a state
composed of localized atoms as the strength of a periodic
optical potential was varied.1,2 This is an example of a quan-
tum phase transition; a phase transition generated by quan-
tum fluctuations and correlations rather than by a competi-
tion between the energy of a system and the entropy of its
thermal fluctuations.3 Understanding this phenomenon has
emerged as one of the most challenging and interesting tasks
of condensed matter physics. Theoretically, it is generally
accepted that it can be studied using the Bose Hubbard
model, where the transition is thought to be from a superfluid
phase to a Mott-insulator �SF-MI�, as examined in the semi-
nal paper by Fisher et al.,4 with an application to 4He ab-
sorbed in porous media in mind. The relevance of the Bose-
Hubbard model to gases of alkali-metal atoms in optical
lattices was realized in Ref. 5, and recent developments have
been reviewed in Refs. 6 and 7.

Interestingly, the Bose-Hubbard model is nonintegrable
even in one dimension �as opposed to, say, its fermionic
counterpart�.8 Gaining analytical insight into the SF-MI
phase transition thus normally requires resorting to numeri-
cal and variational methods such as strong-coupling
expansion,9,10 coarse graining,11 mean-field theories,12 field-
theoretical approaches,13 or other perturbative methods14 for
a better understanding of this phenomenon. Within the varia-
tional approach, the phase transition is taken to be the point
at which the variational ansatz has lower energy than a de-
localized Bogoliubov state �where a fixed particle number at
each lattice site is constrained�.

In a recent paper, Aizenman et al.15 considered an alter-
native model for the study of the SF-MI phase transition.
They studied the half-filled Bose-Hubbard model in the limit
of infinite on-site repulsion �i.e., the case of hardcore
bosons�, in the presence of an alternating on-site chemical
potential �a superlattice with period two�. They showed that

this model exhibits all the salient properties apparent in the
Bose-Hubbard model, while also being more “treatable” ana-
lytically. Specifically, they were able to rigorously prove the
existence of superfluid and Mott-insulating phases in three
dimensions. In addition, it is also known that this very same
model is exactly solvable in one-dimension through a map-
ping to noninteracting fermions. In this case, the half-filled
system is insulating for any nonzero alternating potential.16

The off-diagonal one-particle correlations and the momen-
tum distribution function of this model, as well as its non-
equilibrium dynamics, were computed by exact means17 in
Ref. 18.

Motivated by the aforementioned results, here we study
the SF-MI phase transition of hardcore bosons in the pres-
ence of an alternating potential in two and three dimensions.
We focus on the case where the system is at half-filling, in
which case the transition between the superfluid state and the
insulating state occurs at fixed density. Our first goal is to
accurately determine the critical values of the alternating po-
tential strength at which the phase transition takes place. As
a next step, we analyze the results of different approximate
solutions, such as mean-field theory with and without the
addition of spin-wave corrections, as these allow for an ana-
lytical treatment of the problem.

Our approach is to first perform high-precision numerical
simulations using the stochastic series expansion �SSE�
algorithm19,20 in order to find the critical points of the super-
fluid to Mott-insulator phase transition in the various dimen-
sions. The quantities we calculate are the free energy �, the
density of bosons in the zero-momentum mode �0,35 the su-
perfluid density �s, and the compressibility �=�� /��. The
latter three quantities signify the transition from a superfluid
to an insulator by dropping to zero at this point �while having
nonzero values in the superfluid regime�. We then employ
mean-field and spin-wave analyses, which allow for some
analytical insight into the behavior of our observables of
interest and the location of the critical point. Our use of these
approximation methods is partly motivated by results previ-
ously reported by Bernardet et al.,21 who studied the homo-
geneous version of the model in two dimensions. There, the
mean-field approximation alone was shown to provide a
fairly good qualitative description of the model, and remark-
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ably enough, when spin-wave corrections were added, quan-
tities such as the superfluid density and the condensate frac-
tion were found to be virtually indistinguishable from their
exact-numerical counterparts.

The paper is organized as follows: in Sec. II we briefly
review the model at hand. In Sec. III, we present the exact
numerical solutions obtained using the stochastic series ex-
pansion �SSE� algorithm. We compute the various physical
quantities at zero temperature, and find the critical values of
the SF-MI phase transition. In Sec. IV, we proceed to study
several approximation schemes, namely, mean-field ap-
proaches and spin-wave corrections, comparing the critical
values obtained using these methods, with the SSE results. In
Sec. V, we conclude with a few comments.

II. MODEL

The Hamiltonian for hardcore bosons in a period-two su-
perlattice in d dimensions, with N=Ld sites and periodic
boundary conditions, can be written as

Ĥ = − t�
�ij�

�âi
†âj + âj

†âi� − A�
i

�− 1���i�n̂i − ��
i

n̂i. �1�

Here, �ij� denotes nearest neighbors, âi �âi
†� destroys �cre-

ates� a hardcore boson on site i, n̂i= âi
†âi is the local density

operator, � is the global chemical potential, and A�−1���i� is
an alternating local potential with ��i�=0 on the even sub-
lattice and 1 on the odd sublattice. The hopping parameter t
sets the energy scale.

The hardcore boson creation and annihilation operators
satisfy the constraints

âi
†2 = âi

2 = 0, �âi, âi
†� = 1, �2�

which prohibit double or higher occupancy of lattice sites, as
dictated by the U→� limit of the Bose-Hubbard model. For
any two different sites i� j, the creation and annihilation
operators obey the usual bosonic relations

�âi, âj	 = �âi
†, âj

†	 = �âi, âj
†	 = 0. �3�

The expected phase diagram of the model, in dimensions
higher than one, is sketched in Fig. 1. Our model has two
�trivial� insulating regimes corresponding to a completely
filled lattice �with particle density �=1�, obtained for large
and positive chemical potential values, and a second insulat-
ing regime, which corresponds to an empty lattice, formed in
the case where the chemical potential is large and negative.
These two regimes are also present in the absence of the
alternating potential. The alternating one-body potential cre-
ates another insulating phase, one for which the density of
particles is �=1 /2. In this case, the alternating potential,
will, in some cases �depending on its strength�, create a gap
in the energy spectrum, generating a superfluid to Mott-
insulator transition. As the latter regime is the one which is
of interest to us, we shall henceforth set the global chemical
potential to �=0. In this case, the model has particle-hole
symmetry which in turn fixes the density at �=1 /2 as de-
sired.

Before moving on, a remark is in order. The �=1 /2 insu-
lating phase of the model at hand is a consequence of a

counterbalance between strong on-site interactions �which in
our model are in fact infinite� and an alternating potential.
The resulting local density will thus be different on the odd
sublattice than on the even sublattice. While this state is
sometimes referred to as a charge density wave,16 in what
follows, we shall address this phase as a Mott-insulator, in
the spirit of Ref. 15.

III. NUMERICAL RESULTS

We obtain numerically exact results for the model at hand
by performing numerical simulations based on the stochastic
series expansion algorithm.19,20 As our main objective is to
find the critical points of the SF-MI phase transition in the
various dimensions, simulations are performed for a range of
values of the ratio A / t and for various system sizes. Since we
are interested in the zero-temperature properties of the sys-
tem, simulations are performed with high inverse-
temperature �=1 /T �in our units, kB=1�, where in most
cases we will find it sufficient to have �	2L in order to
obtain virtually zero-temperature results. �The effects of in-
creasing � beyond this value are indiscernible.�

Finite-size effects are corrected by repeating the simula-
tions with different system sizes. The thermodynamic-limit
value of the phase transition is then extrapolated by perform-
ing finite-size scaling of the results in the vicinity of the
phase transition: Around the critical point, most physical
quantities �which we denote here by X� scale according to
the general rule

XL
/� = F�
A − Ac
L1/�� , �4�

where F is a universal scaling function, A−Ac is the shifted
control parameter �A being the control parameter, and
Ac—the critical value�, � is the correlation length critical
exponent and 
 is the critical exponent belonging to the ob-
servable X. The values of these exponents are determined by
the universality class the transition belongs to. In our case
�and in the Bose-Hubbard model for integer filling as well�,
it is the �d+1� dimensional XY universality class.4,22 We note

MI

SF

Ρ�1�2

Ρ�0

Ρ�1

empty

fully�filled

0

t�A

Μ�
A

FIG. 1. Qualitative description of the expected phase diagram of
the model at hand, Eq. �1�. The diagram contains three insulating
regions corresponding to zero �“empty”�, half �“MI”�, and full
�“fully filled”� filling, and a superfluid �SF� phase.
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that the above universality class characterizes only the fixed-
density transition �the dashed line in Fig. 1�. The transition
driven by changing the density belongs to the mean-field
universality class and is characterized by different critical
exponents.

Equation �4� above will help us find the critical point, as it
tells us that �a� the quantity XL
/� should be independent of
the system-size at the phase transition, and �b� when plotting
XL
/� against 
A−Ac
L1/� the resulting curve should be inde-
pendent of the system-size as well.

The quantity we shall be using to that end is the superfluid
density, which has the critical exponent 
=��d+z−2� �see
Ref. 4 for details� where d is the dimension, and z is the
dynamical critical exponent, which in our case is z=1.22 The
correlation length exponent � is dimension-dependent and
takes the values 1, 0.672 and 0.5 in one, two, and three
dimensions, respectively.

A. One dimension

In one dimension, our model has an analytic solution.16

This is due to the Jordan-Wigner transformation which en-
ables the mapping of the hardcore bosons Hamiltonian to
that of noninteracting spinless fermions.16 The latter Hamil-
tonian may be diagonalized to produce exact analytical re-
sults. In this case, the SF-MI phase transition occurs at
Ac / �2dt�=0, i.e., the system is superfluid only when the al-
ternating potential is absent, in which case it exhibits off-
diagonal quasi-long-range order �a power-law decay of the
one-particle correlations�. In that sense, one may say that the
system exhibits quasicondensation when A=0.16–18

Simulations in one dimension were thus performed only
as a check on our computational method. No discrepancies
between the analytical solution and the numerical one were

found: In Fig. 2, the superfluid density is plotted against
A / �2dt� for different system-sizes �here, �=500�. In the fig-
ure, all curves intersect at the critical point Ac / �2dt�=0, in-
dicating the location of the phase-transition in the thermody-
namic limit, in agreement with the analytic results. The inset
shows the scaled superfluid density as a function of the
scaled control parameter, in which case all curves should be,
and in fact are, on top of each other. The numerical value for
the superfluid density at the transition coincides with the
expected value of �−1 given by the analytic solution.16

As superlattices such as the one we study here have al-
ready been realized in experiments with ultracold bosons in
optical lattices,23–26 and the observable usually measured in
those kind of experiments is the momentum distribution
function n�k�, we plot it in Fig. 3 for two different values of
A / t. Due to the quasi-long-range decay of one-particle cor-
relations in the superfluid phase, the momentum distribution
function has a peak at k=0 �Fig. 3�a�	. On the other hand, in
the insulating phase, the one-particle correlations decay ex-
ponentially, yielding a broad momentum distribution �Fig.
3�b�	. This leads to the following observation: As one in-
creases the size of the lattice �while keeping the density
fixed�, one finds that in the superfluid phase n�k� increases
for small values of k �Fig. 3�a�	, while for the insulating
phase �Fig. 3�b�	 this does not happen. Exact results for n�k�
�using the approach described in Ref. 17�, are also presented
in Fig. 3. As expected, the SSE results are right on top of the
exact ones.

B. Two dimensions

In dimensions higher than one, no analytic solution to the
model exists, so accurate results are obtainable only numeri-
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FIG. 2. �Color online� Scaled superfluid density as a function of
A / �2dt� for the various system sizes in the one-dimensional case.
The intersection at A / �2dt�=0 indicates the location of the SF-MI
phase transition. In the inset, the control parameter �the horizontal
axis� is scaled as well, leading to the collapse of all data points into
a single curve.
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FIG. 3. �Color online� Momentum distribution function n�k� in
the superfluid regime �top� and in the insulating regime �bottom� for
the one-dimensional system with 100 sites. In one dimension, the
system is superfluid only at A=0 �top panel�. This is shown by the
sharp peak in the k=0 mode of the momentum distribution function
which diverges in the thermodynamic limit. In this case, the system
exhibits quasi-long-range order. In both panels, the SSE results
�empty circles� are on top of the analytical ones �full circles�, serv-
ing as an indication to the accuracy of our computational method.
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cally. Here, we have applied the SSE algorithm to systems of
sizes ranging from 1010 to 6464, with inverse-
temperature �=96. In Fig. 4, the scaled superfluid density is
plotted against A / �2dt� for the different system-sizes �the
errors are on the order of magnitude of the symbol sizes�. All
curves intersect at Ac / �2dt�=0.495��0.004�, signifying the
phase transition. The inset shows the scaled superfluid den-
sity as a function of the scaled control parameter. As in the
one-dimensional case, all data points fall into a single curve.
The value for the critical point we obtained here agrees with
the value recently obtained by Priyadarshee et al.27

The momentum distribution function in the superfluid and
insulating regimes are shown in Figs. 5�a� and 5�b�, respec-
tively. In two dimensions, the superfluid regime exhibits true
off-diagonal long-range order, which means that the n�k=0�
peak is sharper that in one dimension, which exhibits only
quasi-long-range order. This can be seen in Fig. 5�a�. The
Mott-insulating regime is once again characterized by an ex-
ponential decay of one-particle correlations. The correspond-
ing momentum distribution function has a broad peak around
n�k=0� as shown in Fig. 5�b�.

C. Three dimensions

In three dimensions, we have performed simulations for
system sizes ranging from 666 to 202020 and an
inverse temperature of �=40. Here, the SF-MI phase transi-
tion is found at Ac / �2dt�=0.693��0.005�, as indicated by the
scaled superfluid density plotted as a function of A / �2dt� in
Fig. 6, for the different system sizes. The inset in Fig. 6
depicts the scaled superfluid density as a function of the
scaled control parameter, exhibiting the collapse of all data
points into a single curve, as in one and two dimensions. The

momentum distribution function in three dimensions is quali-
tatively similar to its two-dimensional counterpart, both in
the superfluid phase and in the insulating phase, and thus will
not be presented here.

IV. APPROXIMATION SCHEMES

Having obtained the critical values via quantum Monte
Carlo techniques, we now turn to look for approximation
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FIG. 4. �Color online� Scaled superfluid density as a function of
A / �2dt� for the various system sizes in the two-dimensional case.
The intersection at Ac / �2dt��0.495 indicates the occurrence of the
phase transition at that point. In the inset, the control parameter �the
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FIG. 5. �Color online� Momentum distribution function n�k� in
the superfluid regime A / �2dt�=0.1 �top� and in the insulating re-
gime A / �2dt�=0.7 �bottom� for a 6464 system and �=96.
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FIG. 6. �Color online� Scaled superfluid density as a function of
A / �2dt� for the various system sizes in the three-dimensional case.
The intersection at Ac / �2dt��0.693 indicates the location of the
SF-MI phase transition. In the inset, the control parameter �the hori-
zontal axis� is scaled as well, leading to the collapse of all data
points into a single curve.
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schemes that would provide analytical descriptions of the
phase transition. We start this investigation with the
Gutzwiller mean-field approach. Before doing so, however,
we recall that the model at hand can also be viewed as the
XY model of a spin-1/2 system.28 We shall make use of this
correspondence, utilizing the exact mapping between
bosonic operators and SU�2� generators, namely,

âi
† ↔ Si

+,

âi ↔ Si
−,

âi
†âi ↔ Si

z + 1/2. �5�

With this mapping, the hardcore bosons Hamiltonian, Eq.
�1�, becomes that of the XY antiferromagnet with an alternat-
ing magnetic field applied along the ẑ direction

Ĥ = − t�
�ij�

�Si
+Sj

− + Sj
+Si

−� − �
i

�� + A�− 1���i�	�Si
z +

1

2
 .

�6�

A. Mean-field approach

We start our mean-field calculation with the following
product state as an initial ansatz:


0�MF = �
j

� �sin
� j

2

↓� + cos

� j

2
ei�j
↑� , �7�

where �� j ,� j� specify the orientation of the j-th spin. Obvi-
ously, we expect every other site to be described by the same
wave function, due to the symmetry of the problem. This is
schematically shown in Fig. 7. As we are using the grand-
canonical scheme, the orientations of the spins will be deter-
mined by minimizing the grand-canonical potential �per site�

�MF = MF�0
Ĥ
0�MF

= −
t

2N
�
�ij�

sin �i sin � j cos��i − � j�

−
1

2N
�

i

�� + A�− 1���i�	�1 + cos �i� . �8�

with respect to these angles. For the azimuthal angles, this
simply implies a constant �yet arbitrary� value � j =�, while
for the polar angles, extremization yields

cos �1 = �1�1 + �2
2

1 + �1
2 , �9a�

cos �2 = �2�1 + �1
2

1 + �2
2 , �9b�

where �1,2����A� / �2dt�. These values correspond to a
minimal configuration only in the region 
�1�2
�1. Outside
this region, the system is saturated, and the solution is one
where all spins are aligned—pointing either all up or all
down. In bosonic language, these latter configurations corre-
spond to the completely full/empty insulating configurations.

At this point we can calculate the following quantities.
First, the density of particles is

�MF =
1

N
�

i
MF�0
âi

†âi
0�MF

=
1

2
+

1

2N
�

i

cos �i

=
1

2
+

1

4
�cos �1 + cos �2� . �10�

Next, the free energy becomes

�MF = MF�0
Ĥ
0�MF

= −
dt

2
sin �1 sin �2 −

�

2
−

1

4
�� + A�cos �1

−
1

4
�� − A�cos �2, �11�

and the density of bosons in the zero-momentum mode �0 is
calculated as

�0,MF =
1

N MF�0
âk=0
† âk=0
0�MF

=
1

4N2�
i,j

sin �i sin � j

=
1

16
�sin �1 + sin �2�2. �12�

The superfluid density �s requires a special treatment of
the boundary conditions. As is well-known,29 one can relate
the superfluid density to the “spin stiffness.” To accomplish
this, one needs to compare � �the free energy� of the system
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�Ψ1�

�Ψ2�

�Ψ2�

�Ψ2�

�Ψ2�

�Ψ2�

�Ψ2�

�Ψ2�

�Ψ2�

FIG. 7. A schematic description of the product state in the
mean-field approach in two dimensions. Every other site is de-
scribed by the same wave function.
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under periodic conditions with the free energy under a
“twist” in the boundary conditions along one of the linear
directions �say, the x direction�. In the periodic case, which
we treated above, the azimuthal angles � j were all identical.
To implement a twist, we take this angle to be site-dependent
and with a constant gradient such that the total twist across
the system in the x direction is �, namely, ��=� j+x̂−� j

=� /L. Within the mean-field treatment, one can show that
addition of this gradient is equivalent to substituting
t→ t /d��d−1�+cos ��	. Now, the square of the gradient
twist is related to the superfluid density via,21,29

�twisted − � = t�s��2, �13�

which in turn yields the simple expression

�s = −
1

2d

��

�t
. �14�

Setting �=0, this expression for the superfluid density
coincides with that of �0,MF

�s,MF = �0,MF = � 1
4 − � A

4dt�2, A
2dt � 1

0, A
2dt 	 1

� , �15�

giving the critical value for the phase transition Ac / �2dt�=1.
Figures 8 and 9 show: �a� the free energy, �b� the superfluid
density, �c� the density of bosons in the zero-momentum
mode, and �d� the compressibility of the system as a function
of A / �2dt� in two and three dimensions. The dashed and
solid curves represent the mean-field and SSE results, re-
spectively. As one can immediately see, the critical values
obtained within the mean-field approximation do not agree

with the exact-numerical results. In two dimensions the error
is �100% and in three dimensions, it is �50%. The very
large errors here merely reflect the fact that the mean-field
approach used here is not fit to describe the model at hand,
especially in the vicinity of the SF-MI phase transition.

B. Adding spin-wave corrections

As pointed out earlier, the addition of spin-wave correc-
tions yields virtually exact results in the homogeneous case
in two dimensions.21 For the reader’s convenience, we re-
view the mean-field calculations of the homogeneous
�A=0� case and its spin-wave corrections in Appendix A
�thereby also correcting some misprints that appeared in the
original manuscript examining this case, Ref. 21�. Let us see
how the mean-field results are modified by the addition of
spin-wave corrections in our case. To include these, we pro-
ceed in the usual way.30–33 We first introduce a set of local
rotations that align the ẑ direction of each of the spins with
its mean field orientation. This is accomplished by switching
to new spin operators defined by

�Sj�
x

Sj�
y

Sj�
z � = R�� j,� j��Sj

x

Sj
y

Sj
z � , �16�

where R�� j ,� j� is the 33 rotation matrix
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FIG. 8. �Color online� Thermodynamic quantities in two dimen-
sions. �a� Free energy �t=1	, �b� superfluid density, �c� the density
of bosons in the zero-momentum mode, and �d� compressibility as a
function of A / �2dt�. The solid lines indicate the SSE results
�6464 sites, �=96�, whereas the dashed, dotted and dash-dotted
lines indicate the mean-field, mean-field plus spin-waves and im-
proved mean-field results, respectively.
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FIG. 9. �Color online� Thermodynamic quantities in three di-
mensions. �a� Free energy �t=1	, �b� superfluid density, �c� the den-
sity of bosons in the zero-momentum mode, and �d� compressibility
as a function of A / �2dt�. The solid lines indicate the SSE results
�161616 sites, �=40�, whereas the dashed, dotted and dash-
dotted lines indicate the mean-field, mean-field plus spin-waves,
and improved mean-field results, respectively.
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R�� j,� j� = �cos � j cos � j − sin � j sin � j cos � j

cos � j sin � j cos � j sin � j sin � j

− sin � j 0 cos � j
� .

�17�

The corresponding new annihilation and creation operators

b̂j↔Sj�
− and b̂j

†↔Sj�
+ describe low-energy fluctuations about

the mean-field ground state—these are spin waves. They too
obey hardcore bosons commutation relations. Substituting
these expressions into our Hamiltonian, and ignoring cubic
and quartic terms in these bosonic operators �thus assuming a
dilute gas of spin waves�, the new Hamiltonian reads

ĤSW = ĤMF + D�
i

b̂i
†b̂i + C�

i

�− 1���i�b̂i
†b̂i

+ B�
�ij�

�b̂i
†b̂j

† + b̂ib̂j� −
A

2 �
�ij�

�b̂i
†b̂j + b̂ib̂j

†� , �18�

where the coefficients are

A = t�1 + cos �1 cos �2� , �19a�

B = t/2�1 − cos �1 cos �2� , �19b�

C = dt��1 cos �1 − �2 cos �2� , �19c�

D = dt�2 sin �1 sin �2 + �1 cos �1 + �2 cos �2� . �19d�

This quadratic Hamiltonian can be diagonalized by first go-

ing to Fourier space, using b̂j =N−1/2�ke
2�ikj/Lb̂k. This, in

turn, yields the Hamiltonian:

ĤSW = ĤMF + �
k

�D − A�k�b̂k
†b̂k + C�

k

b̂k
†b̂k+L/2

+ B�
k

�k�b̂k
†b̂L−k

† + b̂kb̂L−k� , �20�

where, �k=�i=1
d cos�

2�ki

L �, and k1 . . .kd are the components of
the momentum vector in each of the directions. We note that

the Fourier-space operators b̂k and b̂k
† no longer obey the

hardcore bosons commutation relations. These field opera-
tors are only excitations about the ground state, and are
treated as softcore bosons.21,30–33 At this point, our Hamil-
tonian may be diagonalized in a straightforward manner �we
review the diagonalization process in Appendix B�. Once
diagonalized, the Hamiltonian takes the form

ĤSW = ĤMF + �
k

�k�̂k
†�̂k + E0, �21�

where the �k’s are energy levels and E0 is the correction to
the ground-state energy of the system, given by

E0 =
1

4�
k

�− 2D + ��A2 − 4B2��k
2 + D2 + C2 + 2��DC�2 + ��AD�2 − �2BC�2	�k

2

+ ��A2 − 4B2��k
2 + D2 + C2 − 2��DC�2 + ��AD�2 − �2BC�2	�k

2� . �22�

The operators �̂k
† and �̂k in Eq. �21� are modified spin-wave

creation and annihilation operators, respectively, and are

each a linear combination of b̂k , b̂L−k , b̂k+L/2 , b̂L/2−k and their
adjoints. The coefficients of these linear combinations are
fixed during the diagonalization process, and using them, all
physical observables can be calculated in a straightforward
manner �we elaborate on this matter in Appendix B�.

The results of the spin-wave analysis are indicated by the
dotted lines in Figs. 8 �two dimensions� and 9 �three dimen-
sions�. They show: �a� the free energy, �b� the superfluid
density, �c� the density of bosons in the zero-momentum
mode, and �d� the compressibility, after the addition of spin-
wave corrections, as a function of A / �2dt�.

As one can see in those figures, in the superfluid phase,
the spin-wave corrected values for the free energy are almost
on top of the exact-numerical ones; and more so in the three-
dimensional case than in the two-dimensional one. As for the
other measured observables, the spin-wave corrections are
clearly an improvement over the mean-field results, espe-
cially for small values of A / t where the spin-wave correc-
tions yield virtually exact results. Unfortunately, however, as

one approaches the phase transition itself, the spin-wave cor-
rections lose their accuracy, eventually leaving the phase-
transition at its mean-field value, namely, at Ac / �2dt�=1.

Another issue worth noting here is the behavior of the
spin-wave corrected superfluid density �Figs. 8�b� and 9�b�	
in the vicinity of the predicted phase transition, A / �2dt�=1.
On the superfluid side of the transition, the superfluid density
becomes negative, indicating the breakdown of the spin-
wave approximation for that quantity. The transition point is
still signaled by a discontinuity in �s. However, the overall
behavior of the superfluid density around the transition point
is clearly an artifact of the spin-wave approximation and
should not be considered further.

C. Improved mean-field approach

Having seen that spin-wave corrections, albeit accurate in
the weak-potential regime, do not modify the critical point
predicted by the mean-field solution, we have devised an
improved mean-field approach. As we show now, this
method provides a significant improvement over the mean-
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field results �and the spin-wave corrections� discussed previ-
ously, particularly in the context of the location of the critical
point.

We start with a variational ansatz which, as before, is a
product state. However, this time we do not choose a product
of single-site wave-functions. The new ansatz is a product of
wave functions each describing the state of a “block” of 2d

sites, such that with this block as the basic cell, the model
turns homogeneous. In two dimensions, a block consists of
22 cells �as shown in Fig. 10� each of which is described
by the general wave function


0�IMF = �
blocks

�

� �
i,j,k,l��↓,↑�

cijkl
ijkl� , �23�

where the generalization to three dimensions, in which case
the basic block is a 222 cell, is straightforward �note
that the coefficients for each of the blocks are the same�. As

before, we minimize the free energy �IMF= IMF�0
Ĥ
0�IMF
with respect to the coefficients cijkl of the wave function �this
time we do so numerically�. Obtaining the various observ-
ables in terms of the wave function given in Eq. �23� is
straightforward, and was performed in much the same way as
the usual mean-field approach discussed in Sec. IV A. The
results of this approximation are given by the dash-dotted
lines in Figs. 8 and 9. They depict: �a� the free energy, �b� the
superfluid density, �c� the density of bosons in the zero-
momentum mode, and �d� the compressibility, as a function
of A / �2dt�.

As the figures indicate, in most instances, the results of
this method are more accurate than those of the previous
approximation schemes, in particular, for the location of the
phase transition. The critical values given by this approxima-
tion are Ac / �2dt�=0.815 in two dimensions ��60% error�
and Ac / �2dt�=0.875 in three dimensions ��24% error�.
Also, we note that while the spin-wave corrected values for
the various thermodynamic quantities are a better approxi-

mation in the weak potential �small A / �2dt�	 regime, as one
moves away from this region, the improved mean-field tech-
nique proves to be a better estimator for all quantities but the
free energy. It is clear still that the improved-mean-field
method presented here is far from being very accurate.

V. CONCLUSIONS

We have studied the superfluid to Mott-insulator phase
transition of hardcore bosons in a period-two superlattice in
two and three dimensions. We focused on the case where the
system is at half-filling, for which the quantum phase transi-
tion belongs to the �d+1� dimensional XY universality class.

Using quantum Monte Carlo simulations and finite-size
scaling, we have determined the critical value of the alternat-
ing potential parameter A at which the SF-MI phase transi-
tion occurs. In two dimensions, our results agree with previ-
ous calculations.27

We have also compared our numerical results against sev-
eral approximation schemes, some of which have been used
successfully in the two-dimensional homogeneous version of
the model. We have seen that employing a mean-field ap-
proach using the usual Gutzwiller ansatz works very poorly
��100% error in two dimensions and �50% error in three
dimensions�. This is a clear indication of the fact that this
mean-field approach is not suitable for describing this model,
especially in the vicinity of the phase transition, as it breaks
down in the strong coupling regime.

The spin-wave corrections to the mean-field solution
turned out to be very useful, especially in the superfluid
phase, where the spin-wave corrected estimation of the free-
energy is very close to the exact values, and also reproduced
the exact results for all observables for small values of A / t.
However, as one moves away from the weak potential re-
gime, the spin-wave corrections become more and more in-
accurate, and their predictions of the critical points eventu-
ally coincide with those of the mean-field approach,
therefore indicating their unusefulness in that region.

The improved mean-field approximation scheme we have
devised here, which was based on the underlying homogene-
ity of the problem, has proved to be an improvement over the
previous methods, albeit still far from being accurate. This
approach provides an analytical description of the superfluid-
to-Mott-insulator transition and gives an estimate of the criti-
cal value for the transition with �around� one half the error of
the usual Gutzwiller ansatz, i.e., it is an improvement in
terms of the location of the critical point.
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APPENDIX A: MEAN-FIELD RESULTS AND SPIN-WAVE
CORRECTIONS IN THE HOMOGENEOUS CASE

In what follows, we briefly review the results of the
mean-field approximation of Sec. IV A and its spin-wave

�Ψ�

�Ψ�

�Ψ�

�Ψ�

FIG. 10. In the “improved mean-field” case, a larger unit-cell is
defined. In the two-dimensional case at hand, the new cell consists
of 22 sites. With this new definition, the model turns homoge-
neous and a product of identical wave functions is then guessed as
a solution.
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corrections in the homogeneous �A=0� case for arbitrary val-
ues of �.

Starting with the ansatz given in Eq. �7�, minimization of
the free energy Eq. �8� with respect to the spin orientation
angles yields

cos � j =
�

2dt
, �A1�

where the azimuthal angle takes on, once again, a constant
yet arbitrary value � j =�. The density of particles becomes

�MF =
1

N
�

i
MF�0
âi

†âi
0�MF =
1

2
+

1

2N
�

i

cos �i =
1

2
�1 +

�

2dt
 ,

�A2�

and the free energy is

�MF = MF�0
Ĥ
0�MF

= −
dt

2
sin2 � −

1

2
��1 + cos ��

= −
1

2
dt�1 +

�

2dt
2

. �A3�

The density of bosons in the zero-momentum mode turns out
to be

�0,MF =
1

N MF�0
âk=0
† âk=0
0�MF

=
1

4N2�
i,j

sin �i sin � j

=
1

4
�1 − � �

2dt
2� . �A4�

Using Eq. �14�, it can be easily shown that the expression for
the superfluid density �s,MF in the homogeneous case coin-
cides with the expression obtained for �0,MF above �as is the
case with the alternating potential�.

The addition of spin-wave corrections to the mean-field
results is carried out in exactly the same manner as with the
staggered potential. The Hamiltonian in this case has the
same form as the one given in Eq. �18� but with coefficients

A = t�1 + � �

2dt
2� , �A5a�

B =
t

2
�1 − � �

2dt
2� , �A5b�

C = 0, �A5c�

D = 2dt . �A5d�

The spin-wave field operators, which diagonalize the Hamil-
tonian, are given by the simple relation21

b̂k = cosh �k�̂k − sinh �k�̂L−k
† , �A6�

with �k obeying

sinh2 �k =
1

2� D − A�k

��D − A�k�2 − �2B�k�2
− 1 , �A7a�

cosh2 �k =
1

2� D − A�k

��D − A�k�2 − �2B�k�2
+ 1 , �A7b�

and so, the various spin-wave corrected quantities may be
written explicitly: the corrected density of particles is

�SW = �MF −
1

N

�

2dt �k�0
sinh2 �k, �A8�

and the free energy becomes

�SW = �MF +
1

2 �
k�0

���D − A�k�2 − �2B�k�2 − �D − A�k�	 .

�A9�

Using Eq. �14�, the superfluid density immediately follows.
Finally, the density of bosons in the zero-momentum mode
turns out to be:

�0,SW = �0,MF −
1

N
�1 − � �

2dt
2��

k�0
sinh2 �k. �A10�

APPENDIX B: DIAGONALIZATION OF QUADRATIC
BOSONIC HAMILTONIANS

Following the prescription given in Ref. 34 for the diago-
nalization of fermionic quadratic Hamiltonians, we provide
here the analogous prescription for the diagonalization of
bosonic quadratic Hamiltonians of the general form

Ĥ = �
k,m

�Akmb̂k
†b̂m +

1

2
Bkm�b̂k

†b̂m
† + b̂kb̂m� , �B1�

where b̂k and b̂k
† are bosonic annihilation and creation opera-

tors, respectively, and Akm and Bkm are real-valued and sym-
metric. For the spin-wave Hamiltonian of Eq. �20�, the coef-
ficients are

Akm = �D − A�k��km + C�k,m+L/2, �B2a�

Bkm = 2B�k�k,L−m. �B2b�

The diagonalization process starts by defining the following
linear transformation:

�̂k = �m
�gkmb̂m + hkmb̂m

† � , �B3�

where gkm and hkm are real-valued and we require �̂k and �̂k
†

be bosonic operators. This is enforced by the constraint

�km = ��k,�m
† 	 = �

l

�gklgml − hklhml� . �B4�

The coefficients gkm and hkm are determined in such a way
that the transformed Hamiltonian takes the diagonal form
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H = �
k

�k�̂k
†�̂k + E0, �B5�

once the �̂k’s are substituted for the b̂k’s, and
E0=−�k,m�mhmk

2 . As the new Hamiltonian is already in diag-
onal form, the new field operators obey the eigenvalue equa-
tion

��̂k,Ĥ	 = �k�̂k. �B6�

Plugging in the transformations given in Eqs. �B3�, we ob-
tain the relations

�kgkm = �
l

�gklAlm − hklBml� , �B7a�

�khkm = �
l

�gklBml − hklAlm� . �B7b�

These relations may be further simplified by defining the
new coefficients

�km = gkm + hkm, �B8a�

�km = gkm − hkm, �B8b�

for which, the constraint ��B4�� translates to

1

2�
l

��kl�ml + �kl�ml� = �km. �B9�

With the above definitions, Eqs. �B7� may be cast in vector
notation

�k�A − B� = �k�k, �B10a�

�k�A + B� = �k�k. �B10b�

These can be solved by simply plugging each of these equa-
tions into the other, resulting in the eigenvalue equations

�k�A + B��A − B� = �k
2�k, �B11a�

�k�A − B��A + B� = �k
2�k. �B11b�

These equations are to be solved by standard techniques.
Once the �k’s, �k’s, and �k’s are found, all physical observ-
ables can be readily calculated: first, the observable of inter-
est should be expressed in terms of normal-ordered �̂k’s. This
may be accomplished by using the inverse of the transforma-
tion given in Eq. �B3�

b̂k =
1

2�
m

���km
−1 + �km

−1��̂m + ��km
−1 − �km

−1��̂m
† 	 . �B12�

As a next step, one should use the fact that as excitations, the
�̂k’s obey �̂k
0�MF=0. This leads to

MF�0
b̂k
†b̂m
0�MF =

1

4�
l

��kl
−1 − �kl

−1���ml
−1 − �ml

−1� . �B13�

As an example, consider the spin-wave corrected density of
particles in our model. It is calculated as

�SW =
1

N
�

i
MF�0
âi

†âi
0�MF

= �MF −
1

N
�

i
MF�0
b̂i

†b̂i cos �i
0�MF

= �MF −
1

2N
�cos �1 + cos �2��

k
MF�0
b̂k

†b̂k
0�MF

−
1

2N
�cos �1 − cos �2��

k
MF�0
b̂k

†b̂k+L/2
0�MF

= �MF −
1

8N��cos �1 + cos �2��
mk

��km
−1 − �km

−1�2 + �cos �1

− cos �2��
mk

��km
−1 − �km

−1����k+L/2�,m
−1 − ��k+L/2�,m

−1 � .

�B14�

All other observables may be calculated in the same manner.
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