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We investigate electronic distributions in nonequilibrium mesoscopic tunnel junctions subject to a high-
voltage bias V under competing electron-electron and electron-phonon relaxations. We derive conditions for
reaching quasiequilibrium and show that, though the distribution can still be thermal for low energies where the
rate of the electron-electron relaxation exceeds significantly the electron-phonon relaxation rate, it develops a
power-law tail at energies of order of eV. In a general case of comparable electron-electron and electron-
phonon relaxation rates, this tail leads to emission of high-energy phonons which carry away most of the
energy pumped in by the injected current.
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I. INTRODUCTION

Under nonequilibrium conditions, the electronic system
can be effectively heated such that its quasiparticle energy
distribution is the Fermi function with a well-defined tem-
perature,

nF��� = �exp��/Te� + 1�−1. �1�

The electron temperature, Te, �we measure the temperature
in energy units� can be significantly different from the pho-
non bath temperature Tph. This situation is referred to as the
quasiequilibrium. Alternatively, the electronic system can be
driven out of equilibrium in such a way that the quasiparticle
distribution no longer has the thermal form �Eq. �1��, and the
notion of temperature cannot be introduced. The correct in-
terpretation of the data observed in the particular experiment
requires the proper attribution of the specific phenomenon to
either of these classes. Superconducting mesoscopic struc-
tures such as tunnel and Josephson junctions are among
those that are being investigated most intensively. The com-
mon tools for inferring information about nonequilibrium
states in such systems are studies of the electron-phonon in-
teraction rates1–6 and of the electron-phonon energy
relaxation.7–13 A standard setup is a thin-film island con-
nected to leads �they all can be either superconducting or
normal� via tunnel contacts and driven out of equilibrium by
strong electron injection under bias voltages V such that eV
significantly exceeds both the temperature and the supercon-
ducting gap �. The leads are typically much bigger than the
island. Therefore one can assume that the both leads are in
the equilibrium having well-defined chemical potentials and
temperature and replace the contacts by effective resistances
in the spirit of the tunnel approximation.

In many experiments �see, e.g., Ref. 13�, a quasiequilib-
rium distribution is created with an electronic temperature Te
essentially higher than the bath temperature Tph kept low by
efficient cooling. These temperatures determine the energy
transfer from electrons to the phonon bath. The electronic
quasiequilibrium establishes when a big difference between

fast electron-electron �e-e�, �e-e, and slow electron-phonon
�e-ph�, �e-ph, relaxation rates exists at energies ��Te. These
conditions are usually fulfilled in aluminum samples at sub-
Kelvin temperatures.

The more common is the situation, however, where, in
contrast to Al samples, the ratio �e-e /�e-ph at such tempera-
tures is not very high �as illustrated, e.g., by the data in Ref.
1�. In this paper we investigate formation of the electronic
distribution in mesoscopic samples and show that for mod-
erate ratios �e-e /�e-ph the conditions of quasiequilibrium can
be easily violated. The distribution formed under a high-
voltage injection can be characterized by an effective elec-
tronic temperature Te�Tph only within a low-energy region
around ��Te provided �e-e�Te� is much larger than �e-ph�Te�.
We find that at energies of order of eV�Te, the distribution
has a long power-law tail, which crucially changes the trans-
port properties of the entire electronic system having much
lower effective temperature Te. Since the tail energies exceed
�, our results are general and apply to both normal and su-
perconducting junctions. While the derived behavior some-
what resembles the well-known electron runaway in
semiconductors,14 it is drastically different from such non-
equilibrium effects as superconductivity stimulation,15 non-
equilibrium proximity effect in Josephson junction �see, e.g.,
Ref. 16 and references therein�, etc., where the deviation
from equilibrium is maximal right in the energy range near
�.

Importance of the high-energy tail in the distribution is
elucidated by considering the energy exchange between elec-
tron and phonon subsystems relevant to a rich variety of
experiments.7–13 Since �e-ph��� grows faster than �e-e��� with
increasing energy, there exists certain energy, ��, at which
these two rates match. One would expect that nonequilibrium
effects in the energy transfer are small as long as Te���. We
show that it is indeed the case if eV��� and the e-e interac-
tion dominates in the entire nonequilibrium region. However,
at eV��� a crossover from the e-e to the e-ph mechanism of
relaxation takes place as a function of energy. In this case the
power-law tail in the electron distribution leads to emission
of high-energy phonons, which carry away most of the en-
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ergy provided by the injected current. Accordingly, the en-
ergy emitted via thermal phonons becomes a much smaller
fraction of the total inserted energy, implying that interpreta-
tion of the experimental databased on the quasiequilibrium
distribution function with some effective temperature does
not apply.

II. SETUP AND MODEL

We consider a junction consisting of a superconducting
�or normal� island �i� connected via small-area high-
resistance tunnel contacts with two superconducting �or nor-
mal� leads L1 and L2. The bias voltage V is assumed high in
the scale of characteristic energies of the particular experi-
ment. For the system mentioned above, the proper inequality
is eV�Te ,�. For the energies Te ,���	eV, which we are
interested in, the normal-state equations for the e-ph, e-e in-
teractions, and the density of states can be used both for a
normal and superconducting junction. To be more specific, in
what follows we concentrate on the normal junctions. The
electron temperature is assumed uniform along the sample.
This implies that the island length L is sufficiently small such
that the island resistance R satisfies the inequality
�R /RT��eV /Te�2�1, where RT is the tunnel contact resis-
tance. On the other hand, the island length is limited from
below by the diffusion length, L��D /�e-e, where D is the
diffusion constant, to ensure that electrons scatter at each
other many times before leaving the island.

We use the clean-limit approximations for �e-e��� and
�e-ph��� because impurity scattering does not significantly
renormalize the e-e or e-ph interactions for energies of inter-
est. The influence of the impurity scattering on the e-ph re-
laxation is controlled by the parameter q�, where � is the
electronic mean-free path and q=� /
s is the wave vector of
an emitted phonon with energy �.17–19 Taking sound velocity
s�5000 m /s and ��20 nm as in Al samples of Ref. 13 we
get q���0.5 K−1�� /kB. Therefore, at � /kB�eV /kB�1 K
the clean limit is appropriate. The impurity-induced renor-
malization of the e-e interaction20 becomes important for en-
ergies �	
3 /��pF��2��F�
 / pF��3 and can also be neglected
for ��eV.

We assume that phonon energy distribution in the island is
equilibrium,

N��� = �exp��/Tph� − 1�−1. �2�

Since we concentrate on the case when Te significantly ex-
ceeds both Tph and temperature of the leads, TL, in what
follows we assume that the leads and the phonon bath are at
zero temperature, TL=Tph=0, and that all the emitted
phonons are immediately removed from the sample due to
ideal heat contact to the substrate. Estimates of the validity
of this approximation depend on the relationship between the
island thickness, d, the phonon mean-free path with respect
to elastic scattering via defects, �ph-d, and the mean-free path
due to phonon-electron collisions, �ph-e. The estimate for
“clean” case, d��ph-d, can be obtained from the requirement
that the phonon escape time d /s is shorter than the phonon-
electron scattering time �ph-e�
vF /s�. Here � is the phonon
energy. If the Fermi velocity is vF�108 sm /s and the bias

voltage is eV /kB�100 K as in Ref. 13, the film thickness
should be d	10−5 cm for phonons with energy ��eV.

In thick impure films, d��ph-d, the propagation of
phonons inside the island is diffusive. The phonon kinetics in
such films is rather complicated, it depends also on the inter-
play between the phonon-electron relaxation time, �ph-e���,
and the inelastic relaxation time due to phonon anharmonic-
ity, �ph-ph���. If for all relevant phonon energies �ph-ph
��ph-e then the equilibrium phonon distribution �Eq. �2�� is
formed. However, the phonon temperature, Tph, can exceed
the temperature T0 of the substrate. In this case, Tph is deter-
mined by the balance between the dissipated power and heat
release into the substrate. The latter is not well known for
tunneling structures. The case when �ph-ph is comparable with
�ph-e is even more complicated since the phonon distribution
turns out to be essentially nonequilibrium.

It is this complex character of phonon kinetics in general
case that motivates us to restrict ourselves to the simplest
case of thin clean films and large electron heating, Te�Tph
�TL ,T0. Under these assumptions we can derive a linear
equation for the distribution function and solve it exactly for
the most relevant situations.

III. KINETIC EQUATION

We consider a symmetric structure with voltages at the
leads VL1

=−VL2
=V /2 such that the chemical potential of the

island 
i=0 by symmetry while for the leads 
L1
=−
L2

�
L=−eV /2. It is convenient to write kinetic equations for
odd and even components of the distribution function n���
defined as f1���=n�−��−n��� and f2���=1−n���−n�−��. If
the leads are in thermal equilibrium at temperature TL, we
have f1

�L1�= f1
�L2�� f1

�L� and f2
�L1�=−f2

�L2�� f2
�L�, where

f1,2
�L� =

1

2
�tanh

� − eV/2
2TL

� tanh
� + eV/2

2TL
	 .

One can check that the even component of the distribution in
the island vanishes by symmetry, f2���=0. The kinetic equa-
tion for the odd component is

J1
T + J1

�e� + J1
�ph� = 0, �3�

where J1
T, J1

�e�, and J1
�ph� are, respectively, the tunnel, e-e, and

e-ph collision integrals in the island. The latter describe re-
laxation of the distribution driven out of equilibrium by the
tunnel source21

J1
T = − 4��f1 − f1

�L�� �4�

that contains the distribution in the leads, f1
�L�, and in the

island, f1. The �identical� tunneling contacts are character-
ized by an effective tunneling rate �= �4�e2�RT�−1, where
����EF� is the normal density of states in the island and �
is its volume. In what follows we consider high-contact re-
sistances, i.e., small � �the estimate will be given later�.

A. Electron-phonon relaxation

For small �, the distribution function determined by Eq.
�3� is close to the thermal, f1���
 tanh�� /2Te�, with a certain
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electronic temperature Te. For energies ��Te the deviation
from quasiequilibrium is negligible. However, at ��Te,
where tanh�� /2Te�
sign���, the injection-induced deviation
becomes essential. We put f1���=tanh�� /2Te�+�f���, where
��f ��1. At Tph=0, the e-ph collision integral22 in the island
vanishes for f1���=sign���. Therefore, neglecting exponen-
tially small terms we get for energies ��� , ��+���Te and �
�0 �see also Ref. 23�

J1
�ph� = −

�e-ph�Te�
Te

3 � �3�f���
3

− �
0

�

d��2�f�� + ��	 , �5�

where �e-ph�Te�=��e-phTe
3 /2
�spF�2 is the e-ph relaxation

rate at the electronic temperature Te while �e-ph is the inter-
action constant. We use Te simply as a convenient energy
scale. In fact, the ratio �e-ph�Te� /Te

3 is independent of Te.

B. Electron-electron interaction

The e-e collision integral satisfies the energy conservation
law, 
−�

� �J1
�e����d�=0.22 For large energies ��� , ��1� , ��2� , ��3�

�Te and ��0 it has the form

J1
�e� = −

�e-e�Te�
Te

2 � �2�f���
2

− 3�
0

�

d���f�� + ��	 . �6�

Here �e-e�Te�=��e-eTe
2 /8
EF is the e-e relaxation rate at Te

and �e-e is the interaction constant.

C. Distribution function

The e-e relaxation dominates at very low energies, where
the distribution has a thermal form with an electronic tem-
perature Te. At higher energies, a deviation from thermal
behavior develops due to the reduced role of the e-e interac-
tion. Consider ��0. Since f1���
1 for ��Te the tunnel
collision integral Eq. �4� becomes J1

T=−4���eV /2−��. This
form of the injection term suggests that at ��Te, �f���=
−������eV /2−��. Equation �3� becomes

1

�ph
3 � �3

3
���� − �

0

eV/2−�

d��2��� + ��	
+

1

�e
2� �2

2
���� − 3�

0

eV/2−�

d����� + ��	 = 1. �7�

Here �ph
3 =4�Te

3 /�e-ph�Te� and �e
2=4�Te

2 /�e-e�Te�. Equation
�7� has a characteristic energy scale

�� = �ph
3 /�e

2 � Te��e-e�Te�/�e-ph�Te�� , �8�

such that �e-ph����=�e-e����. Therefore, the e-e interaction
dominates for ���� while the e-ph interaction takes over for
����. As explained earlier, we consider here the situation
when �e-e�Te���e-ph�Te�, thus ���Te.

Calculating triple derivative over energy the integral Eq.
�7� can be transformed into a differential one, which can then
be easily analyzed and solved numerically. The boundary
conditions are obtained by putting �=eV /2 at each step. In
the situations of dominant e-e relaxation, �e-ph→0 �i.e., �ph
→��, it can be reduced to the second-order differential equa-

tion for a function �e determined entirely by the e-e interac-
tion

d2

d�2 ��2�e���� = 6�e��� , �9�

with the boundary conditions �2�e���=2�e
2 and

�d /d����2�e����=0 at �=eV /2. Solution of Eq. �9� with
these boundary conditions is

�e =
4�e

2

5
�3

2

�eV/2�2

�4 +
�

�eV/2�3	 . �10�

Fast e-ph relaxation, �e-ph→�, leads to

d3

d�3 ��3�ph���� + 6�ph��� = 0 �11�

with the conditions �3�ph���=3�ph
3 and �d /d����3�ph����

= �d2 /d�2���3�ph����=0 at �=eV /2. The solution is

�ph��� =
18

11
� �ph

�
�3

F� eV

2�
� , �12�

where F�x��x+ 1
x2 � 5

6cos��2 ln x�+
�2
3 sin��2 ln x��. It was ob-

tained in Ref. 23 �see also Ref. 24� and used in Ref. 25 for
analysis of electron distribution created by absorption of a
high-energy photon.

At comparatively low voltages, eV���, the e-e interac-
tion dominates in the entire energy range 0���eV /2 and
the distribution function obeys Eq. �10�. At high voltages,
eV���, one can discriminate between two regions with dif-
ferent relaxation mechanisms with a crossover between them
at ����. For 0����� the e-e interaction dominates. For
�����eV /2 the e-ph interaction wins and the distribution
function approaches Eq. �12�. In both cases the distribution
has a long power-law nonequilibrium tail �������̃ /��4 at
energies Te���eV. For eV���, one has �̃= ��eeV�1/2 while
�̃= ��ph

3 eV�1/4 for eV���. The deviation from equilibrium be-
comes of the order unity for �	�̃. Thus the low-energy dis-
tribution can be thermal only if �̃�Te. This requires

eV/�� � � · max��,1�, � � Te
2/�e�

�. �13�

Therefore, one can interpret the data inferred from the ex-
periment in terms of a quasiequilibrium electronic tempera-
ture Te only if the condition �13� is fulfilled. Otherwise, the
distribution is not thermal even at small �; instead, the scale
of its variation, and thus the apparent “temperature,” is de-
termined by �̃.

IV. ENERGY BALANCE

Even if the quasiequilibrium condition �13� holds, the
long power-law tail in the distribution can strongly influence
electronic processes at a much lower temperature Te. An im-
portant example is the e-ph energy relaxation. Using Eq. �3�
one finds the energy balance per unit volume of the island

2��
0

eV/2

�J1
Td� + 2��

0

eV/2

�J1
�ph�d� = 0. �14�

The e-e collision integral vanishes due to the energy conser-
vation. With Eq. �5� this gives
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Peq�Te� + Pneq = PV. �15�

Equation �15� determines Te as a function of the injected
power PV=V2 /4RT�. The latter is obtained from the first
integral in Eq. �14� under the assumption that eV�Te. This
is the power �per unit volume� deposited into the island in a
setup with two contacts of total resistance 2RT under the total
voltage bias V. It is half of the total input energy, the other
half of which goes into the leads. The left-hand side of Eq.
�15� comes from the second integral in Eq. �14� and consists
of the energy transfers, Peq and Pneq, to zero-temperature
phonon bath by thermalized and by nonequilibrium elec-
trons, respectively. The energy transferred by thermal elec-
trons, Peq�Te�, is determined by the e-ph interaction inte-
grated over the low-energy domain ��Te with f1
=tanh�� /2Te� neglecting the nonequilibrium correction. For
a clean normal metal, Peq�Te�=�Te

5, where �

78�� / �spF�2
9. For clean superconductors, Peq�Te� was
calculated in Ref. 13.

The energy transferred by nonthermal electrons is

Pneq =
8��

�ph
3 �

0

eV/2

�d�� �3����
3

− �
0

eV/2−�

d��2��� + ��	 .

�16�

The main contribution here comes from ��eV.
For voltages eV��� when the e-e interaction always

dominates, the nonthermal contribution can be calculated us-
ing Eq. �10�. The �−4 term in Eq. �16� is cancelled out lead-
ing to Pneq= �eV /3���PV, and Eq. �15� yields

Peq�Te� = PV�1 − eV/3��� . �17�

The second term in the brackets is a small correction. Almost
all the injected energy is absorbed and then transmitted to the
phonon bath by thermal electrons.

The situation is totally different at higher bias voltages,
eV���. In this case almost all the injected power is absorbed
by high-energy electrons and Te is less sensitive to V. Using
�ph��� from Eq. �12�, which satisfies the kinetic equation
without the e-e collision integral, the energy balance Eq. �15�
becomes

Peq�Te� =
8��

�ph
3 �

0

eV/2

�d�� �3

3
��ph��� − �����

− �
0

eV/2−�

�2d���ph�� + �� − ��� + ���� .

The function ���� satisfies the full kinetic Eq. �7�. The main
contribution to the integral comes from ��eV���, where
Eq. �7� coincides with that for small e-e interaction within
the accuracy �� /eV. Therefore ��ph−�� /�ph��� /eV. This
results in a slower dependence of Peq on the bias voltage,

Peq�Te� � PV���/eV� = ����eV. �18�

Expressions �17� and �18� are the main result of this paper.
They reveal a crossover from �V2 to �V behavior that occurs

at eV
��. This is confirmed by numerical solution of the
kinetic Eq. �7�.

V. DISCUSSION

The data for Al samples26 suggest that the inelastic relax-
ation at T�1 K is determined by e-e interaction, �e-e�Tc�
�108 s−1 while the e-ph rate is much slower.1 According to
Refs. 5 and 26, �e-ph�Tc��106−107 s−1. Therefore, the
crossover frequency �� /Tc appears to be rather high, �10
−102. In experiments of Ref. 13 the quasiequilibrium condi-
tions were found to be well satisfied even for voltages eV
	102Tc, which suggests that the e-e interaction in Al still
dominates at energies as high as 102Tc and seems to support
the above estimate of ��. We should note, however, that the
mentioned experimental data are obtained for dirty Al
samples. Since the crossover energy in dirty materials is in-
creased as compared to that in clean samples, our value for
�� may be overestimated.

However, the above situation is rather an exception to the
rule—it is in a sense unique to aluminum samples. In other
materials the e-ph relaxation rates for T�1 K are normally
considerably larger;1,27 they are higher or at least of the same
order as the e-e rates making the ratios �e-e /�e-ph not as high
as in Al. For example, in copper at 1 K the inelastic rate
�107 s−1 is mostly due to the e-ph interaction.28 Therefore,
the crossover from e-e to e-ph dominated relaxation in Cu
should occur already at much lower energies, �� /kB�1 K. It
is exactly the situation most favorable for observation of the
predicted crossover in the energy exchange between the elec-
tron and phonon subsystems as a function of bias voltage in
the range eV���. Although the deviation from the thermal
distribution could be still small within the low-energy range,
the high-energy tail of the distribution will be essential for
the energy relaxation between the electron and phonon sub-
systems since the injected power is mostly absorbed by high-
energy phonons.

To summarize, we have established the quasiequilibrium
condition Eq. �13�, and shown that the energy exchange rate
Peq�Te� between thermal electrons and the phonon bath ex-
periences a crossover from Eq. �17� to Eq. �18� as a function
of the bias voltage. The crossover energy provides additional
information on the relative strength of the e-e and e-ph in-
teractions. Combined with other measurements, for example,
of the dephasing rates, it will help to identify the two contri-
butions to the inelastic processes in various materials.
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