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We describe neutron-scattering experiments performed to investigate the magnetic order and dynamics of
half-doped La1.5Sr0.5CoO4. This layered perovskite exhibits a near-ideal checkerboard pattern of Co2+ /Co3+

charge order at temperatures below �800 K. Magnetic correlations are observed at temperatures below
�60 K but the magnetic order only becomes established at 31 K, a temperature at which a kink is observed
in the susceptibility. On warming above 31 K we observed a change in the magnetic correlations which we
attribute either to a spin canting or to a change in the proportion of inequivalent magnetic domains. The
magnetic excitation spectrum is dominated by an intense band extending above a gap of approximately 3 meV
up to a maximum energy of 16 meV. A weaker band exists in the energy range of 20–30 meV. We show that
the excitation spectrum is in excellent quantitative agreement with the predictions of a spin-wave theory
generalized to include the full magnetic degrees of freedom of high-spin Co2+ ions in an axially distorted
crystal field, coupled by Heisenberg exchange interactions. The magnetic order is found to be stabilized by
dominant antiferromagnetic Co2+–Co2+ interactions acting in a straight line through Co3+. No evidence is
found for magnetic scattering from the Co3+ ions, supporting the view that Co3+ is in the S=0 state in this
material.
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I. INTRODUCTION

Hole-doped transition-metal oxide antiferromagnets ex-
hibit a range of intriguing phenomena, including unconven-
tional superconductivity, metal–insulator transitions, mag-
netoelectric behavior, and extreme sensitivity to external
stimuli. Their more unusual properties are often found in
association with electronically ordered states with nanoscale
periodicity arising from competition between electronic,
magnetic, and structural degrees of freedom. As well as be-
ing of fundamental interest, these highly correlated phases
offer the possibility to tune the macroscopic properties of a
material via selective control of its microscopic states.

At low doping levels, holes introduced into layered anti-
ferromagnet insulators have a tendency to segregate into
stripes, as observed, for example, in layered cuprates,1

nickelates,2–4 and most recently in layered cobaltates.5

Stripes are a form of complex electronic order in which the
antiferromagnetic structure is modulated by periodic arrays
of hole-rich antiphase boundaries. With increasing doping,
stripe-ordered systems can evolve into metallic or charge-
ordered insulating states depending on the relative impor-
tance of the electron kinetic energy, Coulomb interactions,
and associated lattice strain.

At half-doping, many transition-metal oxides exhibit an
insulating charge-ordered phase, the stability of which is
generally assisted by cooperative Jahn-Teller distortions. For
layered systems the charge order naturally takes the form of

a checkerboard pattern. This ordering pattern has been re-
ported in the isostructural “214” compounds La1/2Sr3/2MnO4
�Ref. 6�, La3/2Sr1/2CoO4 �Ref. 7�, and La3/2Sr1/2NiO4
�Ref. 2�. Previous investigations have revealed a number of
interesting features in the order of these compounds. For
instance, electronic structure calculations for La1/2Sr3/2MnO4
suggest that there is almost no charge separation between the
two inequivalent Mn sites.8 In the half-doped nickelate, the
checkerboard charge order rearranges itself spontaneously
into a stripelike phase at low temperatures due to spin–
charge coupling.9,10 Finally, in La3/2Sr1/2CoO4, there exists
the possibility of spin-state transitions11 due to the near de-
generacy of different terms of the d electron configuration in
octahedrally coordinated Co3+. In short, these canonical half-
doped perovskites with checkerboard order may not be as
simple as they first appear.

In this paper, we report the results of neutron-scattering
experiments carried out to study the static and dynamic mag-
netic properties of the half-doped cobaltate La3/2Sr1/2CoO4.
The measurements extend over the entire spectrum of coop-
erative magnetic excitations throughout the Brillouin zone
�BZ�, which enables us to characterize the magnetic excita-
tions fully and to quantify the exchange interactions that sta-
bilize the magnetic ground state. The work also sought to
establish from the excitation spectrum whether both of the
Co sites are magnetically active, or just one. To this end, we
carried out a rather detailed analysis of the data in terms of a
generalized spin-wave model that includes the complete set
of spin and orbital degrees of freedom. We find that the mea-
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sured magnetic excitation spectrum is in excellent agreement
with the spectrum calculated for the Co2+ site alone. There is
no discernible signal in the spectrum from the Co3+ site.

The crystal structure of La3/2Sr1/2CoO4 is described by the
space group I4 /mmm, with tetragonal unit-cell constants
a=3.84 Å and c=12.5 Å �see Fig. 1�a��. The parent phase
La2CoO4 is a Mott insulator, which orders antiferromagneti-
cally below TN=275 K.12 Doping with Sr introduces holes
into the CoO2 layers, and at half-doping the 50:50 mixture of
Co2+ and Co3+ ions crystallizes at Tco�825 K into a check-
erboard charge-ordering pattern,7,13 illustrated in Fig. 1�b�.
The signature of checkerboard charge order in neutron-
diffraction data is a set of peaks at wave vectors
Qco= �h+0.5,k+0.5, l�, with h, k, and l integers �although in
the l direction the peaks are very broad�. Since neutrons do
not couple directly to charge order, these peaks actually
originate from associated modulations in the shape of the
oxygen octahedra.7,13

Magnetic order occurs in La3/2Sr1/2CoO4 at a temperature
well below the charge-ordering temperature. Magnetic-
susceptibility measurements �Ref. 11, see also Fig. 4� re-
vealed a broad maximum in the in-plane susceptibility at
�60 K indicative of a buildup of magnetic correlations. The
data also show a large difference between the in-plane ��ab�
and out-of-plane ��c� susceptibilities, with �ab greater than
�c by at least a factor two, revealing strong planar aniso-
tropy. Assuming the Co2+ ions are in the high-spin �HS� state
with effective spin S=3 /2, as found12 in La2CoO4, Moritomo
et al.11 concluded from the measured effective moment per
Co that the Co3+ ions in La3/2Sr1/2CoO4 are also in the HS
state �S=2� and must, therefore, carry a moment. However,
this analysis did not take into account the considerable un-
quenched orbital moment of Co2+ in the distorted octahedral
field. Two recent studies, one in which the magnetic suscep-
tibility was analyzed with a full atomic multiplet
calculation14 and the other employing soft x-ray absorption
spectroscopy to probe the atomic levels directly,15 have con-
firmed that the Co2+ ions are in the HS state �S=3 /2� but
concluded that the Co3+ ions are in the low-spin �LS� state

with S=0, as found, for example, in LaCoO3.16 If we accept
the weight of evidence in favor of the LS state then we can
assume that the Co3+ ions are nonmagnetic apart perhaps
from a small Van-Vleck moment induced by the exchange
field from Co2+ in the ordered phase.

Neutron-diffraction measurements performed by Zal-
iznyak et al.7 confirmed the presence of magnetic order with
a gradual onset starting around 60 K. The magnetic
order is characterized by a fourfold group of magnetic
diffraction peaks with slightly incommensurate wave
vectors Qm= �h+0.5,k+0.5, l1�� �0.25−� ,0.25−� ,0� and
�h+0.5,k+0.5, l2�� �−0.25+� ,0.25−� ,0�, where h and k
are integers, l1 �l2� is an odd �even� integer, and
�=0.005–0.008 depending on sample preparation.17 If the
small incommensurability � is neglected then the simplest
magnetic structure consistent with the diffraction data would
be a collinear antiferromagnet with ordered moments on the
Co2+ ions and propagation vector �0.25,0.25� within the ab
plane, as shown in Fig. 1�b�. The in-plane orientation of the
moments ��� will be addressed later in this paper. It has been
proposed that the observed incommensurability is caused by
stacking faults.18 The ideal ordering pattern in Fig. 1�b� gives
rise to magnetic Bragg peaks at in-plane wave vectors
�h+0.5,k+0.5�� �0.25,0.25�. The observed fourfold pattern
of peaks arises because in tetragonal symmetry a 90° rotation
generates an equivalent magnetic structure with propagation
vector �−0.25,0.25�, and in a real sample both wave-vector
domains are expected to be present in equal proportion.

A preliminary report of a subset of the data presented here
was given in Ref. 19, and as far as we are aware no other
measurements of the magnetic excitations in La3/2Sr1/2CoO4
have been published. Recently, however, there appeared a
brief account of the magnetic excitation spectrum of
La3/2Ca1/2CoO4.20 The data indicate that the energy scale of
the magnetic excitations in the Sr-doped and Ca-doped co-
baltates is very similar, but an important difference is that in
La3/2Ca1/2CoO4 there are ordered magnetic moments on both
Co2+ the Co3+ sites.21 This increases the number of magnetic
modes in the excitation spectrum and makes it harder to
analyze. We also mention that the magnetic excitations have
been studied in the isostructural half-doped compounds
La3/2Sr1/2NiO4 �Ref. 22� and La1/2Sr3/2MnO4 �Ref. 23�.

The paper is organized as follows. After giving detail of
the experimental methodology and sample characterization
we describe the results of polarized-neutron-diffraction mea-
surements designed to refine the magnetic structure of
La3/2Sr1/2CoO4. We then present our inelastic-neutron-
scattering measurements, which represent the main body of
this paper. This is followed by an analysis of the magnetic
spectrum in terms of a generalized spin-wave model. The
paper ends with a discussion of the results and a summary of
the main conclusions from the work.

II. EXPERIMENTAL DETAILS

Single crystals of La3/2Sr1/2CoO4 were grown in Oxford
by the optical floating-zone method in a four-mirror image
furnace. The growth took place in a mixed Ar /O2 atmo-
sphere at a pressure of 7–9 bar. The feed and seed rods were

FIG. 1. �Color online� �a� Tetragonal unit cell of La2−xSrxCoO4.
�b� Model for the charge and magnetic orders within the ab plane of
La3/2Sr1/2CoO4. The shaded rectangle is the magnetic unit cell. � is
the angle of the moments to the a axis, with positive � representing
an anticlockwise rotation. The large �yellow� arrow represents the
projection of the stacking vector t= �1.5,0.5,0.5� for the spin–
charge order.
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scanned at a rate of 3–4 mm hr−1 and counter-rotated at
30 rpm. Detail of the preparation and crystal-growth proce-
dure are very similar to those used for La1−xSrxCoO3+� de-
scribed in Ref. 24. Two large crystals were prepared for the
experiments. These were in the form of rods, approximately
10 mm in diameter and up to 80 mm in length. Several
smaller crystals prepared under the same conditions were
ground up into a fine powder and used for structural analysis
by neutron powder diffraction. The general materials �GEM�
diffractometer at the ISIS Facility was used to obtain the
powder-diffraction data. Basic information on the magnetic
response of the crystals was obtained from magnetization
measurements, which were performed on a superconducting
quantum interference device �SQUID� magnetometer �Quan-
tum Design�.

Unpolarized-neutron-scattering measurements were made
on the MAPS spectrometer at the ISIS Facility. MAPS is a
time-of-flight chopper spectrometer with a large bank of pix-
elated detectors. The energy of the incident neutrons is se-
lected by a Fermi chopper, which transmits pulses of neu-
trons with an energy bandwidth of typically 3–5%. All the
data presented here were obtained with an incident energy Ei
of 50 meV and a chopper frequency of 350 Hz, giving an
elastic energy resolution of 2 meV. The crystal used on
MAPS was a single rod with a total mass of 35.5 g. Of this
mass an estimated 24 g was in the neutron beam �which was
smaller than the size of the crystal�. The crystal was mounted
with the rod axis approximately vertical, and aligned such
that the tetragonal c axis was parallel to the incident-beam
direction. Spectra were recorded at temperatures of 10, 60,
and 300 K. Measurements of a standard vanadium sample
were used to normalize the spectra and place them on an
absolute intensity scale.

Polarized-neutron-scattering measurements were made on
the IN20 and IN22 triple-axis spectrometers at the Institut
Laue-Langevin. On IN20, two crystals of masses 6.5 and
5.5 g cut from the same rod were co-aligned with their rod
axes parallel. Two settings of the sample were used, giving
access to the �h ,k ,0� and �h ,h , l� planes in reciprocal space
�we refer crystallographic notation to the tetragonal unit cell
shown in Fig. 1�a��. For the IN22 experiment we used the
6.5 g crystal on its own and measured in just the second
orientation. On both IN20 and IN22 we used the �111� Bragg
reflection of Heusler alloy as both monochromator and ana-
lyzer and worked with a fixed final energy Ef of 14.7 meV. A
graphite filter was placed after the sample to suppress higher
harmonics in the scattered beam. Measurements employed
uniaxial polarization analysis,25 and were made with three
configurations of the neutron spin polarization P relative to
the scattering vector Q: �a� P �Q, �b� P�Q with P in the
scattering plane, and �c� P�Q with P perpendicular to the
scattering plane. Data were collected in both the spin-flip
�SF� and non-spin-flip �NSF� channels. Details of how the
six measurements ��a� , �b� , �c�	� �SF,NSF	 can be used to
separate the components of a magnetic structure are given in
Ref. 10.

III. RESULTS

A. Structural characterization

Neutron-powder-diffraction data collected on GEM at
several temperatures were analyzed by Rietveld refinement

using the GSAS suite of programs.26 Data from the three de-
tector banks at highest scattering angle were refined simulta-
neously. Refinements were made in the space group I4 /mmm
for the parent structure whose unit cell is shown in Fig. 1�a�.
Attempts to refine the structure in the Fmmm space group to
allow the possibility of an orthorhombic distortion did not
lead to any statistically significant improvements in the qual-
ity of the fits. In addition to the atomic positions shown in
Fig. 1�a�, we also allowed for the possibility of interstitial
oxygen at site �0.5,0,0.25�, where excess oxygen has previ-
ously been found27 in La2CoO4+�. In order to achieve con-
vergence it was necessary to fix the thermal parameter �Uiso�
of this third oxygen site to be the same as that of the second
oxygen site.

As an example, Fig. 2 shows the neutron-powder-
diffraction pattern and refined profile fit for the data recorded
in the highest angle detector bank with the sample at a tem-
perature of 60 K. The parameters for the refinement are listed
in Table I together with those for the other temperatures at
which measurements were made. The data at 2 K will have
contained magnetic Bragg peaks, which were not allowed for
in the refinement. This probably explains the slightly higher
value of Rwp for this temperature. Values for the lattice con-
stants and atomic positions are in good agreement with pre-
vious data.13 To within experimental accuracy the refine-
ments show no deviation from stoichiometry in the oxygen
content �i.e., �=0�, and no evidence for any deviation from
the nominal La:Sr ratio of 3:1.

B. Magnetic structure

We first review the main characteristics of the magnetic
and charge order in La1.5Sr0.5CoO4 with the aid of the
polarized-neutron-diffraction measurements presented in
Fig. 3. All the scans shown in this figure contain raw data
recorded at 2 K on IN20 with the neutron polarization par-
allel to the scattering vector �P �Q�. In this configuration the

FIG. 2. �Color online� Part of the Rietveld refinement for tetrag-
onal La1.5Sr0.5CoO4+� at 60 K. Circles are data measured in the
backscattering detector bank �
2��=154.5°� on GEM at ISIS. The
solid �red� line shows the calculated profile fit. Tick marks show the
positions of allowed reflections, and the solid �blue� line below the
data shows the difference between the data and fit. The background
fitted in the refinement was subtracted prior to plotting. The fit
parameters are given in Table I.
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spin-flip scattering is entirely magnetic and the non-spin-flip
scattering is entirely nonmagnetic �i.e., structural�. Since the
neutron polarization is not perfect �the flipping ratio was
�20� there is a small amount of leakage from one channel to
the other.

Figure 3�a� is a diagram of part of the �h ,k ,0� plane in
reciprocal space showing the in-plane wave vectors
corresponding to the magnetic and charge order.
Representative scans along various in-plane and
out-of-plane directions are shown in Figs. 3�b�–3�e�.
These data confirm that the charge-order scattering
is peaked at wave vectors Qco= �h+0.5,k+0.5, l�,
with h, k, and l integers, and that the magnetic order
is characterized by four slightly incommensurate wave
vectors Qm= �h+0.5,k+0.5, l�� �0.25−� ,0.25−� ,0� and
�h+0.5,k+0.5, l�� �−0.25+� ,0.25−� ,0�, where h and k are
integers and l is an odd integer for the first pair of Qm and an
even integer for the second pair. In our crystal
�=0.005�0.001. The peaks are considerably sharper in
scans parallel to the ab plane �e.g., Figs. 3�c� and 3�d�� than
in scans made in the out-of-plane direction �Figs. 3�b� and
3�e��, but in all directions the peak widths are broader than
the resolution. The correlation lengths for the charge and
magnetic orders estimated from �=1 /	, where 	 is the half-
width at half maximum, are �co

ab=23�2 Å, �co
c =8�1 Å,

�m
ab=52�2 Å, and �m

c =12�1 Å. These values are consis-
tent with those reported by Zaliznyak et al.7 apart from �m

ab,
which we find to be �30% smaller. This could be because

we did not attempt to correct the peak width for experimental
resolution.

The two in-plane scans shown in Fig. 3�c� are at l=0,
which is a minimum of the intensity modulation along
�0,0,l�—see Fig. 3�e�. The widths of the peaks in Fig. 3�c�
are roughly twice those in Fig. 3�d� which are at a maximum
of the �0,0,l� intensity modulation. This suggests that in ad-
dition to the dominant magnetic order there also exists a
small volume fraction of magnetically ordered regions with
an average size of �25 Å in the ab plane which are not
correlated to the magnetic order on the adjacent layers.

It is reasonable to assume that the short correlation
lengths in the c direction are caused by the existence of
different stacking sequences with similar energy. Since both
the charge and magnetic diffraction peaks are found at
integer l the majority stacking is periodic in the lattice.
However, there are several ways in which the structure
on adjacent layers can be related. To distinguish these
experimentally let us consider the case where the magnetic
structure is collinear, so that the spin charge order on
one layer �say z=0� can be related to that on the adjacent
layer �z= 1

2 � by a translation t. The structure factor for the
spin and charge diffraction peaks then contains a factor
1+exp�iQ · t�=1+exp�2
i�htx+kty + ltz��, where tx , ty , tz are
the components of t written as fractional coordinates along
the crystallographic a, b, and c axes.

We consider first the case t= �−0.5,0.5,0.5�. For the struc-
ture shown in Fig. 1�b� this stacking leads to systematic ab-

TABLE I. Structural parameters for La1.5Sr0.5CoO4+� at temperatures between 2 and 300 K refined from neutron-powder-diffraction data.
The refinements were performed in the tetragonal space group I4 /mmm of the parent structure with atomic positions La /Sr 4e �0,0 ,zLa�,
Co 2a �0,0 ,0�, O�1� 4c �0.5,0 ,0�, O�2� 4e �0,0 ,zO2�, and O�3� 4d �0.5,0 ,0.25� in lattice units. The O�3� position is an interstitial site. n is
the occupancy of each site per formula unit �f.u.� and Uiso is the isotropic temperature factor. The occupancy of the Co site was not refined
�n=1�, and La/Sr site was constrained such that nLa+nSr=2. The numbers in parentheses are statistical errors in the last digit of the refined
parameters. Rwp is the weighted profile residual function.

Temperature
�K�

2 60 100 150 200 300

a=b �Å� 3.83495�2� 3.83537�2� 3.83665�2� 3.83693�2� 3.83959�2� 3.84080�2�
c �Å� 12.5235�1� 12.5239�1� 12.5277�1� 12.5287�1� 12.5413�1� 12.5481�1�
V=abc �Å3� 184.181�2� 184.227�2� 184.406�2� 184.448�2� 184.890�2� 185.107�2�
La/Sr zLa 0.36216�2� 0.36214�2� 0.36216�2� 0.36215�2� 0.36217�3� 0.36216�3�

nLa 1.55�7� 1.59�7� 1.52�7� 1.51�7� 1.49�7� 1.47�7�
nSr 0.45�7� 0.41�7� 0.48�7� 0.49�7� 0.51�7� 0.53�7�

Uiso�100 �Å2� 0.219�7� 0.244�7� 0.300�7� 0.307�7� 0.419�8� 0.480�8�
Co Uiso�100 �Å2� 0.24�3� 0.24�3� 0.30�3� 0.29�3� 0.42�3� 0.43�4�
O�1� n 2.01�1� 2.01�1� 2.00�1� 2.00�1� 2.00�1� 1.99�1�

Uiso�100 �Å2� 0.50�1� 0.52�1� 0.56�1� 0.57�1� 0.70�1� 0.75�1�
O�2� zO2 0.16967�4� 0.16968�4� 0.16968�3� 0.16967�4� 0.16977�4� 0.16981�4�

n 1.98�1� 1.99�1� 1.98�1� 1.98�1� 1.98�1� 1.97�1�
Uiso�100 �Å2� 1.02�1� 1.06�1� 1.11�1� 1.12�1� 1.29�1� 1.37�2�

O�3� n 0.012�2� 0.008�2� 0.008�2� 0.006�2� 0.004�2� 0.004�2�
Uiso�100 �Å2� 1.02�1� 1.06�1� 1.11�1� 1.12�1� 1.29�1� 1.37�2�

� 0.00�2� 0.00�2� −0.01�2� −0.02�2� −0.02�2� −0.03�2�
Rwp �%� 3.11 3.04 2.85 2.96 2.88 2.85
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sence at magnetic ordering wave vectors of the type
�0.25,0.25, l�, �0.75,0.75, l�, etc., when l is odd and for mag-
netic wave vectors of the type �0.25,0.75, l�, �0.75,0.25, l�,
etc. �associated with the twin obtained by rotating the struc-
ture in Fig. 1�b� by 90°—see Fig. 3�a��, when l is even.
These predictions are inconsistent with experiment—see Fig.
3�e�. We next consider t= �0.5,0.5,0.5�. In this case there are
no magnetic absences, again inconsistent with experiment.
We finally consider t= �1.5,0.5,0.5�. For this case the sys-
tematic absences are at �0.25,0.25, l�, etc., when l is even,
and at �0.25,0.75, l�, etc., when l is odd. This is consistent

with the observation. The twinning ensures that there are no
absences in the charge-order peaks, again consistent with
experiment.7 We conclude, therefore, that the most likely
stacking vector is t= �1.5,0.5,0.5� �or its equivalent�. This
vector is shown in Fig. 1�b�. With this stacking, spins in the
z= 1

2 layer are antiparallel to the closest spins in the z=0 and
z=1 layers.

The fact that the magnetic and charge correlation lengths
along the c axis are so short suggests that the majority stack-
ing is only slightly more favorable energetically than other
possible stacking sequences. Therefore, the propagation of
the structure along the c axis is presumably interrupted fre-
quently by stacking faults in which adjacent layers are re-
lated by different t vectors.

Let us now turn to the temperature evolution of the mag-
netic order. In Fig. 4 we show the magnetization of
La1.5Sr0.5CoO4 as a function of temperature recorded with a
relatively low measuring field H of 100 Oe. The data are in
very good quantitative agreement with the measurements re-
ported in Refs. 11 and 14, both of which employed a signifi-
cantly higher measuring field. The magnetization exhibits
strong XY-like anisotropy, as shown in the inset of Fig. 4,
and there is a broad maximum in the in-plane response cen-
tered at about 60 K. At lower temperatures there is a splitting
between the field-cooled �FC� and zero-field-cooled �ZFC�
data. The splitting is largest for H �ab.

Our measurements, however, reveal an additional feature.
At approximately 31 K there is a sharp kink in the data. This
kink marks the temperature below which the FC–ZFC split-
ting begins to open up most rapidly. The observation of this
kink prompted us to perform polarized-neutron-diffraction
measurements to investigate whether there might be a
change in the magnetic structure at 31 K.

We followed the approach described in Ref. 10 �see also
Ref. 28�. SF and NSF intensities were recorded at two mag-
netic Bragg peaks using three orthogonal directions of the
neutron polarization P. Measurements were made on both
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FIG. 4. �Color online� Temperature dependence of the magneti-
zation of La1.5Sr0.5CoO4. The main frame shows measurements
made with the applied field H of strength 100 Oe ��0H=0.01 T�
applied parallel to the ab plane. Red filled circles and blue open
squares show data from FC and ZFC measurements, respectively.
Inset: data up to T=350 K showing measurements with both H �ab
and H �c.
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IN20 and IN22, and corrections were applied to the mea-
sured intensities to compensate for the imperfect po-
larization. The two Bragg peaks used were
Q1= �0.25+� ,0.25+� ,7� and Q2= �1.25+� ,1.25+� ,1�.
These were chosen because they make small angles �less
than 10°� to the c axis and �110� direction, respectively,
which reduces the uncertainty in the values of the spin com-
ponents derived by this method. For example, if Q1 could be
chosen exactly parallel to c then the Bragg-peak intensities
measured at Q1 would be independent of the magnetic com-
ponent along the c axis.

Because Q1 and Q2 lie in the �h ,h , l� plane the magnetic
scattering at these wave vectors is naturally described in
terms of the intensities scattered by the projection of the
ordered moments along the orthogonal directions �110�,
�110�, and �001�. We call these intensities I110, I11̄0, and Ic,
respectively. The expressions in Table I of Ref. 10 can be
used to determine the ratios I110 / I11̄0 and Ic / �I110+ I11̄0� from
the sets of measurements at Q1 and Q2. The latter ratio was
found to be less than 0.01 at all temperatures. The assump-
tion that the intensities are proportional to the squares of the
ordered moments constrains the angle of the moments to the
ab plane to �5°. Given the strong planar anisotropy it is safe
to assume that the moments lie in the ab plane.

In Fig. 5�a� we plot the ratio I110 / I11̄0 as a function of
temperature. At temperatures below 30 K, I110 / I11̄0 is ap-
proximately constant with a value of 0.4. On warming above
30 K this ratio gradually increases until at �50 K it ap-
proaches 1. This indicates one of two things. Either �i� there
are two �or more� spin domains, which contribute to each
magnetic Bragg peak, and on cooling one of these domains
becomes preferentially populated or �ii� there is a spin-
canting transition reminiscent of that proposed to occur in
the isostructural layered nickelates.10,29–31 We consider these
possibilities further in Sec. V.

Figure 5�b� shows the temperature dependence of the in-
tensity of the �0.75−� ,0.75−� ,1� magnetic peak. The slow

increase in intensity on cooling starts in the vicinity of the
broad hump in the magnetization at �60 K, confirming that
the hump is associated with the buildup of magnetic correla-
tions. We have indicated in Figs. 5�a� and 5�b� the tempera-
ture at which the kink is observed in the magnetization.
There is no obvious anomaly in the magnetic peak intensity
at this temperature, but the data in Fig. 5�a� indicate that the
31 K kink marks the temperature below which the magnetic
structure stops changing.

C. Magnetic excitations

Figure 6 provides an overview of the magnetic spectrum.
The intensity map presented in Fig. 6�a� is a slice from a
MAPS data volume, averaged over the energy range of
7–11 meV and projected onto the �h ,k� plane. The image
shows dispersive magnetic excitations emerging from the
magnetic ordering wave vectors. The rings of scattering cor-
respond to the intersection of the constant-energy slice plane
with the spin-wave cones. Figure 6�b� is an energy-wave-
vector slice through the same data volume showing the dis-
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FIG. 5. �Color online� Development of magnetic order in
La1.5Sr0.5CoO4. �a� Ratio of the intensities scattered by the projec-

tion of the ordered moments along the �110� and �11̄0� directions.
Data are from IN20 �filled red circles� and IN22 �filled blue
squares�. �b� Intensity of the �0.75−� ,0.75−� ,1� magnetic Bragg
peak. The broken gray line marks the position of the kink in the
magnetization �see Fig. 4�.

FIG. 6. �Color online� Spin excitation spectrum of
La1.5Sr0.5CoO4. �a� Map of the intensity within the �h ,k� plane av-
eraged over the energy range of 7–11 meV, measured with a sample
temperature of T=10 K. The circles centered on the magnetic or-
dering wave vectors are due to scattering from dispersive magnetic
excitations. �b� Energy–Q slice showing the dispersion along the
line Y in �a�. �c� Energy scan at the magnetic ordering wave vector
�0.75−� ,0.25+� ,0� with neutron-polarization analysis to separate
the magnetic scattering in the SF channel from the nonmagnetic
scattering in the NSF channel. The data were obtained on IN20 at
T=2 K and reveal an energy gap of �3 meV in the magnetic
spectrum. �d� Scans along the line X in �a� at temperatures of 10
and 300 K averaged over the energy range of 28–32 meV confirm-
ing the existence of magnetic modes at this energy. The data in �a�,
�b�, and �d� were recorded on MAPS, and the intensity is in units of
mb sr−1 meV−1 f.u.−1, where “f.u.” stands for “formula unit” �of
La1.5Sr0.5CoO4�.
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persion along a line parallel to �h ,h ,0�. The spectrum is
dominated by an intense band of scattering extending up to
16 meV. There is also a weaker band of scattering in the
range of 20–30 meV, which is more diffuse than that of the
lower band but which disperses with the same period.

Figure 6�c� is an energy scan performed on IN20 with the
wave vector fixed at the magnetic ordering wave vector
Qm= �0.75−� ,0.25+� ,0�. The two sets of points are the neu-
tron spin-flip and non-spin-flip signals. In the P �Q configu-
ration used for this measurement the SF channel contains
only magnetic scattering, so the large signal in the SF data is
scattering from magnetic excitations and reveals a gap of
approximately 3 meV in the low-energy spin-wave band.
Having observed the gap we performed constant-energy
scans �not shown� along �0.75−� ,0.75−� , l� from l=0 to 2 at
energies of 2 and 4 meV, i.e., just below and just above the
gap. At 2 meV there remained a modulation in the magnetic
scattering along the scan with a broad maximum at the mag-
netic Bragg-peak position �0.75−� ,0.75−� ,1�, whereas at
4 meV the scan was featureless to within the experimental
precision of �5%. This implies that for energies above
4 meV the magnetic dynamics is completely uncorrelated
along the c axis and the spectrum can be considered as two
dimensional �2D�.

To help understand the origin of the gap we performed
neutron polarization analysis at energies of 2 and 4 meV. For
each energy we recorded the signal in the same three polar-
ization channels and at the same two wave vectors
Q1= �0.25+� ,0.25+� ,7� and Q2= �1.25+� ,1.25+� ,1� as
used to analyze the magnetic order �see Sec. III B�. The sig-
nal in each polarization channel can be written in terms of

the response functions S110�Q j ,�, S11̄0�Q j ,�, and
Szz�Q j ,� for magnetic fluctuation components parallel to

�110� and �11̄0�, and parallel to the c axis �z direction�, re-
spectively. Here,  is the neutron energy transfer and
j=1,2 indexes the two magnetic wave vectors. Applying the
same analysis as used to separate diffraction from different
components of the ordered moments10,28 we find at T=2 K

Szz�Q j,2 meV�/S11̄0�Q j,2 meV� = − 0.04 � 0.06,

Szz�Q j,4 meV�/S11̄0�Q j,4 meV� = − 0.02 � 0.04,

S110�Q j,2 meV�/S11̄0�Q j,2 meV� = 1.19 � 0.07,

S110�Q j,4 meV�/S11̄0�Q j,4 meV� = 1.00 � 0.05.

The first two ratios show that the spin fluctuations at both 2
and 4 meV are restricted to the ab plane. This is consistent
with the strong XY-like anisotropy of this system and implies
that the gap is due to a small single-ion or exchange aniso-
tropy within the ab plane. The third and fourth ratios show

that the strengths of the fluctuations in the �110� and �11̄0�
directions are roughly equal in this energy range.

In Fig. 6�d� we show cuts through the MAPS data aver-
aged over the energy range of 28–32 meV, which is near the
top of the weak upper band of excitations. The scan at 10 K
shows a sinusoidal intensity modulation along the cut direc-

tion �line X in Fig. 6�a��, whereas the scan at 300 K is flat
and always below the 10 K data. The observation that the
signal goes away on raising the temperature from 10 to
300 K shows conclusively that it is magnetic in origin, be-
cause the scattering from phonons would increase in inten-
sity.

To give a more comprehensive picture of the magnetic
excitation spectrum we present in Fig. 7 a further series of
slices through the MAPS data. The data have been averaged
over symmetry-equivalent directions to improve the statis-
tics, and are plotted with respect to the two-dimensional re-
ciprocal lattice of the CoO2 layers indexed by �h ,k�. In the
time-of-flight method the out-of-plane wave-vector compo-
nent l varies with energy and also varies across the detector
for a fixed energy. However, because the magnetic dynamics
is two dimensional �for energies greater than �4 meV� the
magnetic dispersion does not depend on l and the intensity of
the spectrum varies only slowly with l. The l dependence of
the intensities of the modes is correctly taken into account in
the models presented in Sec. IV.

Figures 7�a�–7�c� are constant-energy slices averaged
over a 2 meV interval centered on 5, 9, and 13 meV. These
illustrate how the lower spin-wave band disperses away from
the magnetic zone centers. Figures 7�g�–7�i� display three
energy-wave-vector slices taken along different symmetry
directions in the Brillouin zone. The intense lower band and
weak upper band are clearly seen in each of these slices.

To facilitate comparison with models we took cuts
through the MAPS data set along several symmetry direc-
tions and extracted points describing the dispersion. The
magnetic dispersion obtained from the MAPS data is dis-
played in the upper panel of Fig. 8. The points are obtained
either from wave-vector cuts at fixed energy, or from energy
cuts at fixed wave vector. Peaks in the cuts were fitted with
Lorentzian functions on a linear background. The points rep-
resenting the energy gap at the magnetic zone centers were
estimated from the data in Fig. 6�c�.

IV. ANALYSIS

The essential physics governing the magnetic properties
of La1.5Sr0.5CoO4 can be understood with reference to Fig. 9,
which is an energy-level diagram for the high-spin state of
Co2+�3d7 , L=3, S=3 /2� in an axially distorted octahedral
crystal field. A perfect octahedral field splits the orbital levels
into two triplets and a singlet, and the small axial elongation
of the octahedron splits each triplet into a singlet and a
higher-lying doublet. Inclusion of spin-orbit coupling lifts
the fourfold spin degeneracy of each of the orbital levels,
splitting the ground state into two doublets. For realistic
crystal-field and spin-orbit interactions the two doublets are
separated by approximately 25 meV, as we show later. Be-
cause the orbital ground state in the main octahedral field is
a quasitriplet it contains significant unquenched orbital angu-
lar momentum, which is responsible for the strong planar
anisotropy. As we shall see, the magnetic spectrum in the
energy range probed in this study involves the lowest two
doublets and is strongly influenced by the in-plane aniso-
tropy and the unquenched orbital angular momentum.
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The neutron-scattering cross section for spin-only scatter-
ing, or for spin and orbital scattering in the dipole approxi-
mation may be written as32

d2�

d�dEf
=

kf

ki
��r0

2
2

f2�Q�exp�− 2W�

� �
��

���� − Q̂�Q̂��S���Q,� , �1�

where ��r0 /2�2=72.8 mb, f�Q� is the magnetic form factor
of Co2+, exp�−2W� is the Debye-Waller factor, which is close

to unity at low temperatures, Q̂� is the � component of a unit
vector in the direction of Q, and S���Q ,� is the response
function describing �� magnetic correlations. In calculating
the cross section we average over an assumed 50:50 ratio of
the two magnetic domains related to one another by a 90°
rotation.

Putting the orbital angular momentum to one side for a
moment, we can as a first approximation follow the standard
route and attempt to describe the low-energy magnetic dy-
namics in the antiferromagnetic phase in terms of linear spin-
wave excitations of an effective spin-1

2 model for the ground-
state doublet. We assume the collinear magnetic structure
shown in Fig. 1 with spins along the a axis ��=0�. We con-
sider a spin-only Hamiltonian and incorporate the magnetic

anisotropy via anisotropic exchange interactions between ef-
fective S= 1

2 spins. The Hamiltonian may be written as

H = �

jk�

�
�

Jjk
� Sj

�Sk
�. �2�

The first summation is over Co2+–Co2+ pairs with each pair
counted only once, and the second summation is over the
spin components �=x ,y ,z. The Jjk

� are the exchange param-
eters. We include only J, J1, and J2 as defined in Fig. 1. J
acts in a straight line through the Co3+ site, whereas J1 and J2
have 90° paths. As we shall see, J1 and J2 are very much
smaller than J, and so as a simplification we take J1 and J2 to
be isotropic. For later convenience we write the anisotropy in
J in the form Jx=J�1+��, Jy =J, and Jz=J�1−�� so that � and
� parameterize the degree of in-plane and out-of-plane aniso-
tropy.

The theoretical expressions for the spin-wave dispersion
and response functions are given in the Appendix, Eqs.
�A1�–�A3�. For each wave vector there are two modes,
which are degenerate in the absence of anisotropy. Inclusion
of easy-plane anisotropy lifts the degeneracy so that one
mode �1� is associated with in-plane fluctuations and the
other mode �2� is associated with out-of-plane fluctuations.
At the magnetic Bragg-peak wave vectors �0.25,0.25�,
�0.75,0.75�, etc. the out-of-plane mode is gapped while the

FIG. 7. �Color online� Intensity maps of measured and simulated neutron scattering from La1.5Sr0.5CoO4. The data are from MAPS, and
the simulations are obtained from the many-level spin-wave model discussed in the text with Co2+–Co2+ exchange interactions
J=1.4 meV and J1=J2=0 �see Fig. 1�b��. �a�–�f� Constant-energy slices averaged over the energy ranges indicated. �g�–�l� Energy–Q slices
showing the dispersion along the three symmetry directions indicated. The intensity scale is in units of mb sr−1 meV−1 f.u.−1.

HELME et al. PHYSICAL REVIEW B 80, 134414 �2009�

134414-8



in-plane mode is gapless. The addition of a small in-plane
anisotropy gaps the in-plane mode too. In our case we re-
quire a large out-of-plane anisotropy to describe the data. To
see this we refer to the scattering intensity maps, e.g., Fig.
7�g�, and the dispersion data in Fig. 8. If the anisotropy were
small then the dispersion would reach a maximum at, or very
close to, the magnetic zone boundaries �0.125,0.125�,
�0.375,0.375�, etc. However, the measured dispersion

reaches a maximum not at these positions but at the zone
centers �0,0�, �0.5,0.5�, etc. This behavior can be reproduced
in the linear spin-wave model only if there is substantial
easy-plane anisotropy, i.e., if Jz is significantly less than Jx

and Jy.
We found that the observed dispersion for the lower-

energy modes can be described very well throughout the
Brillouin zone by the effective spin-1

2 spin-wave model with
parameters SJ=3.3 meV, J1=J2=0, �=0.65, and �=0.03.
The zero values of the 90° exchange parameters J1 and J2
means that the magnetic structure consists of two uncoupled,
interpenetrating, square-lattice antiferromagnets with spacing
2a on the CoO2 layers. This is surprising and has important
implications for the stability of the magnetic structure, so let
us examine the evidence for this finding carefully.

First of all we show in Fig. 10 the measured dispersion
along the �h ,0� line in reciprocal space. If the tetragonal
symmetry is preserved in the charge-ordered phase then one
expects J1=J2, which will tend to frustrate the magnetic or-
der. If J1 and J2 are both antiferromagnetic then the effect on
the dispersion relation is to soften the in-plane mode at the
zone boundaries along the �h ,0� and �0,k� directions. If J1
and J2 are both ferromagnetic then the softening is instead at
the reciprocal-lattice vectors. In both cases, therefore, we
should observe a difference between the magnon energy at
�0.5,0� and at �1,0�. It can be seen from the data points in
Fig. 10 that if such a difference exists then it is very small.
To be more quantitative we plot in Fig. 10 the dispersion
curves calculated from linear spin-wave theory for the
cases J1=J2=J /2 �J , J1 , J2 all antiferromagnetic� and
J1=J2=−J /2 �J antiferromagnetic and J1 , J2 ferromagnetic�,
adjusting the value of J to accord with the data at �1,0�.
These curves fall, respectively, well below and well above
the experimental data, showing that the magnitudes of J1 and
J2 must be considerably less than half that of J. The third

FIG. 8. �Color online� Dispersion of magnetic excitations in
La1.5Sr0.5CoO4. The diagram at the top shows the path in reciprocal
space along which the dispersion is plotted. The middle figure
shows the measured and calculated dispersion. Symbols are from
fits to the experimental data. Circles are from constant-energy cuts,
squares and diamonds are from constant wave-vector cuts. The lines
are calculated from the many-level spin-orbital model with
Co2+–Co2+ exchange interactions J=1.4 meV and J1=J2=0 �see
Fig. 1�b��. The lower figure displays the calculated response func-
tions S���Q ,� for each mode shown in the dispersion plot. The
labels on the curves give the �� components for the case in which
the ordered moments point along x.
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La1.5Sr0.5CoO4, showing how the term splits when successively
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0=13 meV,
B4

0=−1.4 meV, and B4
4=−8 meV for the Stevens operator equiva-

lents O2
0, O4

0, and O4
4. These values are approximately twice those

calculated from the point-charge model. The right-most scheme in-
cludes spin-orbit coupling and shows the splitting of the lowest
orbital quasitriplet on an expanded vertical scale. The spin-orbit
coupling parameter is �=−18.7 meV.
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curve plotted in Fig. 10 is obtained with the parameters
SJ=3.23 meV, SJ1=SJ2=−0.15 meV, and with �=0.65 and
�=0.03 as found earlier. This set of parameters gives the best
fit to the data given the constraints, but is only a marginal
improvement on the case J1=J2=0.

In the more general case where charge order leads to
orthorhombic symmetry, J1 and J2 could be different. Let us,
therefore, consider the case where J and J1 are antiferromag-
netic and J2 is ferromagnetic, consistent with the structure in
Fig. 1�b�. This also creates differences between the magnon
energies at �0.5,0� and at �1,0�, and in addition, increases the
energy of the in-plane mode at wave vectors such as
�0.25,0.75� and �0.75,0.25�. Neither of these effects is ob-
served experimentally.

The spin-wave model just described succeeds in giving a
good description of the dispersion of the lowest energy
branches of the magnetic excitation spectrum and provides
compelling evidence that the magnetism in La1.5Sr0.5CoO4 is
dominated by 180° Co2+–Co2+ exchange interactions. How-
ever, this model fails in two respects. First, it does not ac-
count for the band of magnetic scattering observed in the
range of 20–30 meV, and second it cannot predict the correct
intensities of the modes because it ignores orbital angular
momentum.

The effective spin-1
2 model takes for its basis the eigen-

functions of Sx, where x is the spin-quantization direction.
When single-ion anisotropy is strong and the true spin is
greater than 1

2 , as we have here, there can be significant
admixing of the basis states. This means that excitations to
higher single-ion levels can propagate and can be observed
by neutron scattering. Moreover, when the single-ion states
contain a non-negligible orbital component this needs to be
included for an accurate calculation of the neutron cross sec-
tion, because the neutron couples to both the spin and the
orbital angular momentum.

To achieve a more complete description of the magnetic
spectrum we use a more realistic linear spin-wave formula-

tion, which takes as its basis the product states �LxSx� and
determines the single-ion states self-consistently through the
action of the crystal and exchange fields and the spin-orbit
coupling. The method follows closely the approach described
in Ref. 33 in connection with the dispersive magnetic exci-
tations of antiferromagnetic KCoF3. Similar calculations
have been done for CoO �Refs. 34 and 35� and for CoF2
�Ref. 36�, the latter though without explicit inclusion of the
orbital angular momentum.

The Hamiltonian for the coupled 3d states of
Co2+ �3d7 , L=3, S=3 /2� in the distorted octahedral ligand
field in La1.5Sr0.5CoO4 is taken to be

H = �

jk�

JjkS j · Sk + �
j
��

l,m
Bl

mOl
m�L j� + �L j · S j� . �3�

The first term is an isotropic Heisenberg superexchange in-
teraction between true spins S= 3

2 , and the second and third
terms describe the single-ion crystal �ligand� field and spin-
orbit interactions, respectively. The crystal-field interaction is
assumed to be the source of magnetic anisotropy, and any
anisotropy in the exchange interactions is neglected. The Ol

m

are Stevens operator-equivalents with Bl
m the corresponding

crystal-field parameters, and � is the spin-orbit coupling pa-
rameter. We used the value �=−18.7 meV recently obtained
from optical spectroscopy of CoO.37 The axially distorted
octahedral crystal field is represented by the Stevens opera-
tors O2

0, O4
0, and O4

4, where the quantization direction is taken
along the tetragonal axis. We used the point-charge model38

to make a first estimate of the crystal-field parameters, using
the data in Table I for the average Co–O bond lengths and
the results of Ref. 13 for the oxygen displacements due to
charge order, which slightly reduces the axial distortion of
the octahedron surrounding the Co2+ site. This predicted a
total splitting of the 3d7 4F term of about 800 meV �the small
admixture of higher terms was neglected�. The crystal-field
splitting in La1.5Sr0.5CoO4 has not been measured, but optical
measurements of several compounds containing octahedrally
coordinated CoO6 complexes show a typical splitting of
about 2 eV.39,40 This indicates that the point-charge param-
eters are about a factor 2 too small, so for an initial estimate
we doubled the point-charge values, giving B2

0=9.3 meV,
B4

0=−1.35 meV, and B4
4=−8.0 meV. We note that with this

crystal field the ground state has XY-like anisotropy, as ob-
served experimentally. The ground to first-excited doublet-
doublet splitting is not very sensitive to the B4

0 and B4
4 pa-

rameters, but varies strongly with B2
0. We, therefore, adjusted

B2
0 to obtain a good fit to the experimental data.

The method for diagonalizing �Eq. �3�� is described in the
Appendix. To compare the many-level spin-orbital model
with the data we fixed J1=J2=0, since we have already es-
tablished that these parameters are very small, and allowed
only the parameters J and B2

0 to vary. The best agreement
was obtained with B2

0=13.0 meV and J=1.4 meV. A small
anisotropy-field term Ha ·S with Ha directed along the x axis
and of magnitude 0.22 meV was added to Eq. �3� to fix the
direction of the ordered moments and to reproduce the ob-
served in-plane spin gap of �3 meV. The dispersion rela-
tions and response functions calculated with these param-
eters are shown in Fig. 8. The calculated dispersion for the
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FIG. 10. �Color online� Magnetic dispersion parallel to the �h ,0�
direction in La1.5Sr0.5CoO4. The symbols are points determined
from energy cuts at constant wave vector through the MAPS data.
Full and broken lines are in-plane and out-of-plane modes of the
effective spin-1

2 ground-state doublet calculated from Eq. �2� by
linear spin-wave theory with the following exchange parameters:
�i� SJ=3.68 meV and J1=J2=−J /2; �ii� SJ=3.23 meV and
SJ1=SJ2=−0.15 meV; and �iii� SJ=2.85 meV and J1=J2=J /2.
The parameters in �ii� have been adjusted to give the best fit to the
data. In each case the exchange-anisotropy parameters were
�=0.03 and �=0.65.
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low-energy branches is virtually indistinguishable from that
calculated from the effective spin-1

2 model described earlier
and agrees very well with the experimental data. We note
that when J1=J2=0 the magnetic dispersion is the same for
the two twins of the assumed magnetic structure �Fig. 1�b��
whose propagation vectors are related by a 90° rotation. This
means that the analysis of the magnetic excitation spectrum
is not affected by the twinning.

The many-level spin-orbital model allows us to go beyond
the lowest two magnon branches and examine the modes
derived from the upper doublet in the single-ion spectrum
�Fig. 9�. The model predicts two pairs of dispersive bands
between 25 and 30 meV as shown in the middle panel of
Fig. 8. In the lower panel of Fig. 8 it can be seen that two out
of these four modes have non-negligible response functions.
Interestingly, the mode with strongest intensity is a longitu-
dinal excitation, labeled xx in Fig. 8, and is, therefore, very
different in character to a conventional spin precession wave.

In Fig. 7 we show neutron-scattering intensity maps cal-
culated with the many-level spin-orbital model alongside the
corresponding experimental data. The presented intensity is
�ki /kf�d2� /d�dEf, i.e., the scattering cross section in abso-
lute units as defined in Eq. �1� multiplied by the factor ki /kf.
The simulations properly take into account the variation in
the scattering vector Q with position on the detector and with
energy, and the intensity has been averaged over equivalent
90° magnetic domains. The simulated spectra were convo-
luted with a Lorentzian broadening function with a full width
at half maximum of 4 meV to take into account the spec-
trometer resolution ��2 meV� and intrinsic broadening, and
have been multiplied by a constant scale factor of 0.3 to
obtain quantitative agreement with the experimental data. We
estimate that absorption and self-shielding in the sample ac-
counts for a factor of about 0.5, and a further reduction on
the order of 10% may be expected due to zero-point mag-
netic fluctuations not included in the model. Therefore, the
known corrections account for a scale factor of about 0.45,
which is somewhat larger than the applied scale factor of 0.3.

Overall, the simulations from the many-level spin-orbital
model provides an excellent description of the observed
magnetic excitation spectrum in the measured energy range.
With a realistic crystal field and only two free parameters in
the Hamiltonian �J and B2

0� plus an overall scale factor the
simulations reproduce the dispersion and intensities of the all
the observed modes in the spectrum extremely well.

V. DISCUSSION

The experiments presented here have shown that both the
magnetic order and the magnetic excitation spectrum of
charge-ordered La1.5Sr0.5CoO4 can be understood in terms of
a square, two-sublattice, collinear antiferromagnet with or-
dered moments localized on the Co2+ ions and pointing in the
CoO2 layers. The two lowest frequency branches of the mag-
netic excitation spectrum are conventional spin precession
waves, but higher-frequency dispersive modes are of differ-
ent character. In particular, a branch observed at �25 meV
is found to correspond to propagating magnetic fluctuations,
which are longitudinal relative to the ordered moment direc-
tion.

To arrive at this point, proper account has had to be taken
of the orbital component in the ground state, which is not
negligible. For example, from the self-consistent solution of
the mean field �Eq. �A5�� we calculate the spin and orbital
components of the ordered moment to be 2.69 and 1.12�B,
respectively. The unquenched orbital component has also
been shown to be important for achieving a quantitative un-
derstanding of the bulk susceptibility.14 The total ordered
moment in the model of 3.8�B is rather larger than the ex-
perimentally determined ordered moment of 2.9�B �Ref. 7�.
It is not clear why these values should differ, but if confirmed
then this difference could be the reason why the calculated
spectrum has a higher overall intensity than the measured
spectrum.

Perhaps the most surprising result to emerge from the
analysis of the spin excitation spectrum is the virtual absence
of the 90° Co2+–Co3+–Co2+ exchange couplings J1 and J2
relative to the 180° coupling J. This is dramatically counter
to the simplest estimate J1�J2�2J based on exchange paths
involving a single Co3+ bonding orbital,7 and implies that
frustration effects on the magnetic order are very small. One
consequence is that the magnetic structure can be regarded as
two interpenetrating, square-lattice antiferromagnets with
spacing 2a. In the complete absence of J1 and J2 the moment
directions for the two interpenetrating antiferromagnets
would be unrelated to one another, but quantum fluctuations
are expected to stabilize a collinear order of the global mag-
netic system via the order-by-disorder mechanism.41 A study
of the spin-wave spectrum of stripe-ordered La2−xSrxNiO4
similarly concluded that the 180° Ni2+–Ni2+ exchange was
significantly larger than the 90° coupling.42 Given the impor-
tance of exchange for the stability of spin- and charge-
ordered ground states it would be of interest to seek an un-
derstanding of the exchange interactions in these systems in
terms of the bonding orbitals involved.

There remain some details of the magnetic order to be
understood. In Fig. 5�a� we reported how the ratio I110 / I11̄0
increases from approximately 0.4 to almost 1.0 in the tem-
perature range of 30–50 K, and in Fig. 4 we see that the start
of this increase coincides with a kink in the magnetization
below which the field-cooled and zero-field-cooled magneti-
zation separate. To these observations we add a recent find-
ing from a muon-spin rotation �µSR� study43 that the kink
coincides with the temperature at which magnetic ordering
sets in on the muon timescale ��10−6 s�. Since µSR and bulk
magnetization probe much longer timescales than neutron
diffraction ��10−12 s� we can take 31 K to be the static
magnetic ordering temperature. Between 31 K and �60 K
magnetic Bragg peaks are still observed by neutron diffrac-
tion and so in this temperature range the magnetic order is
not static but fluctuates on a timescale between �10−6 and
�10−12 s.

For the assumed collinear magnetic structure there are
several possible ways to explain the behavior of I110 / I11̄0.
One is in terms of a canting of the moments. If the moments
point along the a or b direction then I110 / I11̄0=1, but if they
make an angle greater than 45° to �110� then I110 / I11̄0�1
�note that we are referring here to the domain in which
the modulation of the magnetic structure is along �110�—see
Fig. 1�b��. The observed low-temperature value of
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I110 / I11̄0=0.4 corresponds to a turn angle of 12°. According
to this model, therefore, the moments point along the a �or b�
direction when they first start to order, but gradually turn
toward the �11̄0� direction �i.e., away from the modulation
direction� on cooling. By �30 K the moments have turned
through an angle of about 12°, i.e., in Fig. 1�b� �=−12° or
+102°, and they remain at this angle at lower temperatures.
Although consistent with the data, this model requires an
explanation for what causes the rotation of the ordered mo-
ments and for why they fix on a canting angle of 12° from
the Co–O bond directions at low temperatures.

Another possible interpretation of the I110 / I11̄0 data is in
terms of a change in population of different inequivalent spin
domains. For example, if the easy magnetic direction within
the plane were at 45° to the Co–O bonds, i.e., �= �45° in
Fig. 1�b�, then in the ordered phase the moments could, in
principle, point either parallel or perpendicular to the in-
plane modulation direction of the structure. These longitudi-
nal and transverse structures are not related by symmetry so
their energies will in general differ. If the energy of the trans-
verse structure were the lower of the two then the transverse
structure would be present in greater proportion at the tem-
perature of �30 K when static order sets in, resulting in
I110 / I11̄0�1. With increasing temperature above �30 K
thermal fluctuations would tend to equalize the populations
of the two domains, consistent with the observed increase in
I110 / I11̄0. The difference between the field-cooled and zero-
field-cooled magnetization below 30 K may be caused by the
effect of the magnetic field favoring one domain over the
other.

Keeping these models for the magnetic order in mind let
us now consider the data on the orthogonal components of
the in-plane magnetic fluctuations at 2 and 4 meV �Sec.
III C�. Assuming transverse fluctuations of the moments
about an angle �=−12° with respect to the Co–O bonds we

expect to measure a ratio S110 /S11̄0=cot2�45°+��=2.4,
whereas experimentally we find ratios of 1.19�0.07 at
2 meV and 1.00�0.05 at 4 meV corresponding to an angle
of at most 1° or 2° away from the Co–O bond direction.
Because the scattering is proportional to the square of the
orthogonal components of the moments the model with
unequal domain population predicts the same ratio

S110 /S11̄0=2.4. Both models, therefore, are apparently at
odds with the data.

However, the elastic and inelastic-scattering data can be
reconciled through consideration of the particular form of the
magnetic order which, as discussed above, can be regarded
as two interpenetrating, square-lattice antiferromagnets with
spacing 2a. In isolation, each of these antiferromagnets
would have a magnetic dispersion with fourfold symmetry so
that, for example, there would be equivalent minima in the
dispersion at each of the in-plane wave vectors ��0.25,0.25�
and ��0.25,−0.25�. Weak coupling between the two antifer-
romagnets locks them into a single structure with two do-
mains each having a twofold pattern of magnetic Bragg
peaks, but the fourfold symmetry will remain in the excita-
tion spectrum above a crossover energy related to the cou-
pling between the two antiferromagnets. This has two conse-
quences for the data here. One is that after averaging the

excitation spectra from the two wave-vector domains the in-
plane fluctuations are isotropic above the crossover energy.

Therefore, the observation of S110 /S11̄0�1 at 2 and 4 meV
suggests that the crossover energy is below 2 meV and is a
further evidence that the magnetic order comprises two
weakly coupled, interpenetrating antiferromagnets. The other
consequence is that the magnon dispersion surface above the
crossover energy is the same for both wave-vector domains
and corresponds to a square-lattice collinear antiferromagnet
with spacing 2a. This means that domain averaging and the
fact that we do not have a unique model for the magnetic
order has no bearing on the interpretation of the spectra.

Finally, we note that we have not found any evidence for
magnetic degrees of freedom associated with the Co3+ site in
the magnetic spectrum probed here up to �50 meV. How-
ever, we cannot rule out the possibility of a small Van-Vleck
moment on the Co3+ sites induced by coupling to the Co2+

moments. If this were the case then such a coupling might be
able to cause a spin-canting transition, and this might be
another possible explanation for the I110 / I11̄0 data. In the
absence of experimental evidence to test this possibility we
do not attempt to speculate further, but since other spin-
charge-ordered systems exhibit similar changes in I110 / I11̄0
with temperature to that found here10,29–31 it would be of
interest to examine this behavior more closely.

VI. CONCLUSIONS

We have gained a rather complete understanding of the
nature of the magnetic excitations in what is a textbook
charge-ordered, two-dimensional antiferromagnet. The mag-
netic order is stabilized essentially by a single exchange in-
teraction acting along a straight-line path between the
charge-ordered Co2+ sites. We find no evidence for active
magnetic degrees of freedom on the Co3+ sites. Open ques-
tions include what is the precise nature of the magnetic order
and how to explain the exchange in terms of the bonding.
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APPENDIX: GENERALIZED LINEAR SPIN-WAVE
THEORY

1. Effective spin-1
2 model for ground-state doublet

Quantization of Eq. �2� by means of the Holstein-
Primakoff transformation, followed by diagonalization of the
resulting Hamiltonian by the standard method,44 leads to two
nondegenerate branches with in-plane dispersion

�1,2�Q� = ��AQ � BQ�2 − DQ
2 , �A1�

where 1�2� corresponds to the upper �lower� sign, and
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AQ = 2S�2J�1 + �� + J1 − J2 + J2 cos�Q · �a − b��	 ,

BQ = S�J� cos�2Q · a� + J� cos�2Q · b�� ,

DQ = 2S�J�1 − �/2��cos�2Q · a� + cos�2Q · b��

+ J1 cos�Q · �a + b��	 . �A2�

With the spins aligned along x, only the transverse correla-
tions yy and zz contribute to the linear spin-wave cross sec-
tion �Eq. �1��. The corresponding response functions �per
La1.5Sr0.5CoO4 f.u.� for magnon creation are given by

Syy�Q,� =
gy

2S

4

AQ + BQ − DQ

�1�Q�
�n�� + 1��� − 1�Q�� ,

Szz�Q,� =
gz

2S

4

AQ − BQ − DQ

�2�Q�
�n�� + 1��� − 2�Q�� ,

�A3�

where gy and gz are in-plane and out-of-plane g factors for
the effective spin-1

2 ground-state doublet of the Co2+ ion and
n�� is the boson occupation number. We neglect the correc-
tions, which are sometimes applied to the spin-wave disper-
sion and response functions to account for zero-point fluc-
tuations.

2. Many-level spin-orbital model

We diagonalize Eq. �3� in two steps. First, we diagonalize
the single-ion terms, i.e., the crystal-field and spin-orbit
terms, plus the molecular-field part of the exchange energy.
This produces a set of self-consistent single-ion energy levels
and wave functions for each site. The second step is to write
the residual part of the exchange interaction in terms of
pseudoboson raising and lowering operators for the single-
ion states, retaining terms up to quadratic order. The result-
ing Hamiltonian is bilinear in the pseudoboson operators and
can be diagonalized by the standard procedure.

To be specific, let us assume the antiferromagnetic order
in La1.5Sr0.5CoO4 to be composed of two sublattices A and B,
with the A-sublattice moments along +x and the B-sublattice
moments along −x. The Hamiltonian is the sum of a single-
ion part H1 and a two-ion part H2. The single-ion Hamil-
tonian for one unit cell is given by

H1 = H1
A + H1

B, �A4�

where

H1
A = Hcf

A + Hso
A + SA · Hmf

A ,

H1
B = Hcf

B + Hso
B + SB · Hmf

B . �A5�

In the first of these equations Hcf
A , Hso

A , and Hmf
A are the

crystal-field, spin-orbit, and molecular-field interactions for
the A site. The latter is given by

Hmf
A = 
SB� �

��B	
J�B

+ 
SA� �
��A	

J�A
. �A6�

A and B are interchanged for the B site terms in Eq. �A5�. �A
and �B represent the displacements from an A site to other A

and B sites, and J�A
and J�B

are the corresponding exchange
parameters. In practice, we restrict the model to nearest-
neighboring sites, so the summations over the B-site and
A-site neighbors in Eq. �A6� amount to 4J+2J1 and 2J2,
respectively �see Fig. 1�. Note that 
SB�=−
SA�.

The mean-field Eqs. �A5� are solved self-consistently by
an iterative process until the values of 
SA� and −
SB� con-
verge to an acceptable level of precision �in our case one part
in 106�. This gives the set of single-ion energy levels
�n

A=�n
B=�n, where n takes values from 0 �ground state� to

�2L+1�� �2S+1�−1=27. From the corresponding single-ion
wave functions �n�, the matrix elements for spin

Sn�n = 
n��S�n� �A7�

and for the total magnetic moment

Mn�n = − 
n��L + 2S�n� �A8�

can be calculated for the A and the B sites.
We now consider the two-ion part of the Hamiltonian

which describes the residual exchange interactions. By sym-
metry, the interaction energy is the same for the two sites, so
we can write it as twice the energy for the A site,

H2 = �
��	

J�SA · S� − 2SA · Hmf
A

= �
��	

J��SA − 
SA�� · �S� − 
S��� − 
SA� · Hmf
A . �A9�

The summation is over all sites connected to the A site by
nonzero exchange interactions. The molecular-field part of
the exchange interaction is subtracted because this is in-
cluded in the single-ion terms—see Eq. �A5�.

To quantize the Hamiltonian we introduce pseudoboson
raising and lowering operators, which convert the ground
state into the excited states and vice-versa. For the A site,

an
†�0� = �n� and an�n� = �0� . �A10�

Operators bn
† and bn are defined similarly for the B site. If

the temperature is sufficiently low that the equilibrium popu-
lation of the ground state is close to one, then to a good
approximation these operators satisfy the Bose commutation
relations45

�an,an�
† � = �bn,bn�

† � = �nn�. �A11�

Operators on different sites commute. The single-ion Hamil-
tonian can now be written as

H1 = �
n�0

�n�an
†an + bn

†bn� . �A12�

For the two-ion Hamiltonian we start with the following
identity for the spin operator on the A site,

S = S00 + �
n�0

�Sn0an
† + S0nan + �Snn − S00�an

†an�

+ � �
n�n��0

Sn�nan�
† an. �A13�

At low temperatures S00�
S�, and we need only retain the
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linear terms in the operators if we are to neglect higher-than-
quadratic terms in the Hamiltonian. With these approxima-
tions Eq. �A13� simplifies to

S − 
S� = �
n�0

Sn0an
† + S0nan, �A14�

and the two-ion Hamiltonian �A9� becomes

H2 = − 
SA� · Hmf
A + �

n,n��0

�
�A

J�A
��Sn0

A · S0n�
A �an

†an�,�A

+ �Sn0
A · Sn�0

A �an
†an�,�A

† + h.c.�

+ �
n,n��0

�
�B

J�B
��Sn0

A · S0n�
B �an

†bn�,�B

+ �Sn0
A · Sn�0

B �an
†bn�,�B

† + h.c.� . �A15�

The Fourier transform operators are defined by

am+� =
1

�N
�
Q

exp�iQ · �m + ���aQ,

am+�
† =

1
�N

�
Q

exp�− iQ · �m + ���aQ
† , �A16�

where N is the total number of A sites �or B sites�. In Eq.
�A16� we explicitly show the position vectors for the opera-
tors: m is the position vector for the A site in the mth unit
cell, so, for example, am+�

† is the raising operator for the A
site that is displaced from m by �. The definitions of the
Fourier transform operators for the B site are the same as
those for the A site except b replaces a. After substitution of
the expressions in Eq. �A16� into Eqs. �A12� and �A15� and
summation over m the total Hamiltonian can be written in
the form

H = H0 +
1

2�
Q

�
n,n��0

Xn,Q
† Hnn�,QXn�,Q, �A17�

where H0 contains the constant terms, Xn,Q
† is the row matrix

�an,Q
† ,bn,Q

† ,an,−Q ,bn,−Q� for the excited level n, Xn�,Q is the
column matrix containing the Hermitian adjoint operators,
and

Hnn�,Q =�
Ann�,Q Bnn�,Q Cnn�,Q Dnn�,Q

Bn�n,Q
� Ann�,Q Dn�n,−Q Cnn�,Q

Cnn�,Q
� Dnn�,−Q

� An�n,Q Bnn�,−Q
�

Dn�n,Q
� Cnn�,Q

� Bnn�,−Q An�n,Q

� .

�A18�

The coefficients in the matrix are

Ann�,Q = �n�nn� + �Sn0
A · S0n�

A ��Q
A ,

Bnn�,Q = �Sn0
A · S0n�

B ��Q
B ,

Cnn�,Q = �Sn0
A · Sn�0

A ��Q
A ,

Dnn�,Q = �Sn0
A · Sn�0

B ��Q
B , �A19�

where

�Q
A = �

�A

J�A
exp�iQ · �A� ,

�Q
B = �

�B

J�B
exp�iQ · �B� . �A20�

In general, �−Q
A =�Q

A because all A sites are equivalent on the
magnetic lattice. For the present system,

�Q
A = 2J2 cos�Q · �a − b�� ,

�Q
B = 2J cos�2Q · a� + 2J cos�2Q · b� + 2J1 cos�Q · �a + b�� .

�A21�

The Hamiltonian �A17� can now be diagonalized by
the standard method.44 There are a total of
�2L+1�� �2S+1�−1=27 single-ion excited levels for Co2+

in La1.5Sr0.5CoO4 giving a total of 54 distinct modes in the
magnetic spectrum, two modes for each single-ion excited
level n. In our case we diagonalized the full Hamiltonian,
which is represented by a 108�108 matrix �since each mode
appears twice in the Hamiltonian�.

To evaluate the neutron-scattering cross section we em-
ploy the general form for the response function that takes
into account orbital as well as spin magnetization. For the
creation of one magnon in the �nj� mode �j=1,2� from the
fully ordered ground state via �� correlations the response
function �per La1.5Sr0.5CoO4 f.u.� is given by

S���Q,� =
1

4
�
nj�M��Q��0��2�� − nj

�Q�� . �A22�

By replacing S by M in Eq. �A14� and summing over the A
and B sites we obtain the following expression for the opera-
tor representing the Fourier transform of the magnetization

M��Q� = �
n�0

��Mn0
� �Aan,Q

† + �M0n
� �Aan,−Q + �Mn0

� �Bbn,Q
†

+ �M0n
� �Bbn,−Q� . �A23�

The an,Q
† , an,−Q, etc., operators are expressed as a linear com-

bination of creation and destruction operators for the magnon
modes via the Bogoliubov transformation matrix. From the
coefficients of the creation operator for the �nj� mode one can
calculate the matrix element in Eq. �A23�, and hence the
response function �Eq. �A22�� and scattering cross section
�Eq. �1�� for magnon creation in this mode. The resulting
scattering intensity and response functions for the lowest six
modes of La1.5Sr0.5CoO4 are shown in Figs. 7 and 8.
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