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The static and dynamic magnetic properties of samples consisting of two soft magnetic layers with in-plane
easy axes at right angles are studied by micromagnetics and experiments. A one-dimensional micromagnetic
model is developed, and solved quasianalytically for statics and dynamics. In particular, it is shown that the
magnetic permeability arises from a set of eigenmodes, each with a macrospin �or gyromagnetic� response, that
are excited differently depending on ac field orientation. Experiments �magnetization curves, permeability
under field and in several directions� on cobalt-based amorphous alloy bilayers are well reproduced by the
model with a single set of parameters. Such samples are therefore model one-dimensional nonuniform mag-
netic systems, simple yet with a rich behavior, for statics and dynamics.
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I. INTRODUCTION

Magnetization fast dynamics, by precession around the
total magnetic field, is an old1,2 but still vivid subject.3–5 In
nanostructures, it has lead to a very efficient magnetization
switching strategy, called precessional switching.6 Preces-
sional dynamics is rich and complex, as the total field is the
sum of the applied field and the anisotropy field, the latter
changing as magnetization rotates. But this can be analyti-
cally handled,7,8 and the same tools can also be applied to
magnetization dynamics under spin transfer torque.9

One of the main assumptions underlying this analytical
modeling is the macrospin approximation, according to
which the sample moments stay always parallel during their
motion. In the frequency domain, the macrospin model trans-
lates into the existence of a single resonance frequency with
a lineshape fixed by energy relaxation �damping�, a dynamic
analog of the Stoner-Wohlfarth model sometimes termed the
gyromagnetic model. When the macrospin approximation
does not hold, the complexity of the dynamics increases
greatly, and several resonance peaks can be expected.

In the case of a soft magnetic thin film consisting of
grains with dipolar and exchange coupling, spin wave hamil-
tonian diagonalization has indeed shown resonance peak
broadening and splitting, depending on the size of the
grains.10 Such grain to grain fluctuations give rise to static
magnetization patterns with characteristic local deviations,
called the ripple structure.11 Moreover, when going down to
patterned strips or nanostructures where dipolar fields are
nonuniform, modes with well separated frequencies have
been observed even under high fields.12

In this work, we investigate magnetization dynamics in
amorphous films, where no ripple is expected. It has been
shown earlier that, as the thickness of the film increases, the
permeability spectra differ more and more from the gyro-
magnetic model.13–15 As a first interpretation, it was noticed

that above the so-called critical thickness, stripe domains
form due to the presence of a �small� growth-induced per-
pendicular anisotropy.11 The micromagnetic calculation of
magnetization dynamics in such a structure indeed showed
several peaks, related to different regions, that reproduced
the experimental permeability spectra.16,17 But, on the other
hand, experiments show that, even without stripe domains,
the spectra display wider peaks with sometimes subpeaks.13

Magnetic domains at the sample edges have been shown to
lead to some low frequency subpeaks,18 but cannot account
for higher frequency subpeaks. An inhomogeneity in the film
thickness is one possible cause of this behavior. For example,
stress can accumulate during film growth, leading to a varia-
tion of anisotropy across the thickness �through magneto-
striction�.

In order to systematically investigate the effect of such an
anisotropy variation, we will consider in this paper two-layer
films with different magnetic anisotropies in each layer. Sec-
tion II is devoted to the calculation of this case, first for
statics and then for dynamics. We propose to call such kind
of magnetic structure a one-dimensional �1D� spiral. A semi-
analytic solution for the 1D spiral is derived, that for statics
goes beyond previous work by establishing the boundaries in
parameter space of the strictly uniform magnetization situa-
tions. In addition, an extensive description of the magnetiza-
tion dynamics for this 1D nonuniform state is obtained by
the introduction of a complete set of eigenmodes. Section III
presents the results of experiments performed with specially
fabricated two-layer samples, both in static and dynamic
conditions �permeability spectra�. Using a single set of pa-
rameters, the comparison between model and experiments is
rather good, and the spectra as well as their evolution under
static field bear some similarity to measurements on single
layer samples. Thus, variation of anisotropy across the
sample thickness is a simple yet sufficiently rich case of
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magnetization nonuniformity, that can apply to measure-
ments on magnetic “thick” films.

II. MODEL SYSTEM OF TWO LAYERS WITH
CROSSED ANISOTROPIES

A. Definitions

In this paper, we study in depth the case of a thin film
sample, magnetically soft with in-plane anisotropy. As
source of nonuniformity, it is assumed that only the aniso-
tropy changes across the sample thickness. The simplest such
case is afforded by a two-layer film �Fig. 1�, the bottom layer
�thickness t1� having an easy axis along the x direction
��K1=0� with anisotropy constant K1, whereas the top layer
�thickness t2� has an easy axis along the orthogonal direction
�y ,�K2=� /2� with anisotropy constant K2. The anisotropy
imbalance between the two layers will be expressed by the
ratio k1=K1 / �K1+K2� and k2=K2 / �K1+K2�=1−k1. This may
be called the crossed anisotropies situation. All other mag-
netic parameters, such as the magnetization Ms and the ex-
change energy constant A, are constant.

The magnetic softness of the sample is expressed by the
conditions HK1, HK2�Ms, where the anisotropy field in each
layer is defined by HKi=2Ki / ��0Ms� �i=1,2�. We will study
here the low field processes, where the static applied field H0
is also much lower than the magnetization Ms, and applied in
the sample plane �angle �H�.

B. Statics

In static conditions, as both easy axes and the applied
field are in the xy sample plane, magnetization is also con-
fined to that plane. It can therefore be described by one
angle, � �Fig. 1�, a function of the position z to be deter-
mined. This angle is pulled toward orthogonal directions in
each layer, a tendency counterbalanced by the exchange in-
teraction. Micromagnetics allows treating this problem
analytically,19 as a more complex version of the calculation
of the Bloch wall profile. The total micromagnetic energy per
unit surface, and in the presence of an applied field, reads

E = �
−t1

t2 �A�d�

dz
�2

+ K sin2�� − �K�

− �0MsH0 cos�� − �H��dz , �1�

where K and �K are step functions of z �K�z�=K1 and �K

=0 for −t1�z�0; K�z�=K2 and �K=� /2 for 0�z� t2	.
From the competition of exchange and anisotropy energies,
two lengths can be defined by �i=
A /Ki �the Bloch wall
width parameter in each layer�. It is important to remark that,
as Ki��0Ms

2, these lengths are large, �100 nm with the
parameters considered.

The Euler-Lagrange equation for E to be an extremum is
best written separately in each layer

− 2A
d2�

dz2 + K1 sin 2� + �0MsH0 sin�� − �H� = 0

for

− t1 � z � 0;

− 2A
d2�

dz2 − K2 sin 2� + �0MsH0 sin�� − �H� = 0

for

0 � z � t2. �2�

The boundary conditions are free at the outer surfaces �we
assume free surfaces for all this paper, for simplicity, al-
though the methods could be extended to surfaces with non-
zero pinning�

d�

dz
= 0 with z = − t1,t2; �3�

and express continuity at the internal interface

�,
d�

dz
continuous at z = 0. �4�

As for the Bloch wall profile calculation, the Euler-Lagrange
equation possesses a first integral

− A�d�

dz
�2

+ K1 sin2 � − �0MsH0 cos�� − �H� = Cst

= K1 sin2 �1 − �0MsH0 cos��1 − �H� for − t1 � z � 0,

�5�

where �1���z=−t1� was inserted and the outer boundary
condition �3� was used. Similarly, for the second layer, one
gets

− A�d�

dz
�2

+ K2 cos2 � − �0MsH0 cos�� − �H�

= K2 cos2 �2 − �0MsH0 cos��2 − �H� �6�

for

0 � z � t2,

with �2���z= t2�. From these first integrals, by separation of
variables, z can be expressed as an �elliptic� function of �,
with �1 and �2 as parameters. These two parameters are de-
termined by the two continuity conditions �4� at z=0. This
completes formally the analytical solution of the static prob-
lem. Of course, the problem considered here, as well as more
complex variants where more parameters vary and in a more

0

z = - t1

z = t2

x

y
z m

θ

FIG. 1. �Color online� Geometry and definitions for a sample
constituted of two layers with crossed anisotropies. The angle ��z , t�
defines the orientation of the magnetization in the xy plane. The
in-plane angles of the static and dynamic magnetic fields are
denoted by �H and �h, respectively.
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complex manner, can also be solved numerically with little
effort �see for example Ref. 20�. However, for the simple
situation considered here, the analytic solution exists, allows
for a general understanding at once, and is well adapted to
study the limiting cases, as shown later.

1. Zero field case

In order to solve completely the problem, we define aux-
iliary angles: in the first layer −t1�z�0 we write cos �
=cos �1 sin � so that ��−t1�=� /2 and ��0���0; whereas in
the second layer 0�z� t2 the definition is sin �
=sin �2 sin 	 so that 	�t2�=� /2 and 	�0��	0. The conti-
nuity conditions at z=0 Eq. �4� provide the values of �0 and
	0, once �1 and �2 are known, as

sin2 �0 = k1 + k2
cos2 �2

cos2 �1
,

sin2 	0 = k2 + k1
sin2 �1

sin2 �2
. �7�

The values of �1 and �2 are determined by solving the
following implicit system:

t1

�1
= �

�0

�/2 d



1 − cos2 �1 sin2 

,

t2

�2
= �

	0

�/2 d



1 − sin2 �2 sin2 

. �8�

Throughout this section, numerical values will be shown
for a material having Ms=700 kA /m, A=1�10−11 J /m,
HK1=20 Oe ��0HK1=2 mT, K1=700 J /m3� and HK2
=40 Oe ��0HK2=4 mT, K2=1400 J /m3�, �=2.21
�105 m / �A.s� and 
=0.02 for dynamics. These parameters
are representative of the soft cobalt-based alloys used in the
experiments described in Sec. III. Numerically, the Bloch
wall width parameters amount here to �1=119.52 nm and
�2=84.52 nm, and k1=1 /3. Two “samples” will be consid-
ered, one “thin” with t1=120 nm and t2=80 nm �so that
t1 /�1 , t2 /�21�, and the other “thick” with t1=600 nm and
t2=400 nm. The results shown below were obtained by solv-
ing numerically the system �8� through an iterative adjust-

ment of �1 and �2. For this, we start from a guess for �1 and
�2, compute 	0 and �0 from Eq. �7�, evaluate numerically
the integrals on the rhs of Eq. �8� and compare them to the
lhs; the values of �1 and �2 are then iteratively modified
according to a Newton procedure until Eq. �8� is satisfied to
a given precision �typically 10−4�. Once these values are
found, the ��z� profiles are obtained by replacing, in Eq. �8�,
�0 by values � between 0 and �0 and computing the associ-
ated depths �−z� between 0 and t1 �and similarly for the
profile in the second layer�.

Figure 2 shows the ��z� profiles for the two films. For the
thin sample �Fig. 2�a�	 one has �1=46.46° and �2=69.56° so
that the variation of � across the thickness is moderate, as the
thicknesses are comparable to the characteristic lengths �i
�we give precise values as the solution depends sensitively
on these angles in that case, see Fig. 3�. For the thick film
�Fig. 2�b�	, the end values are much closer to the easy axes
��1=0.78° , �2=89.36°�, as expected. The angle of the av-
erage moment of the sample is �M =57.46° and 39.11°, re-
spectively. An alternative definition of this angle, through the
rms averages of mx and my �Ref. 21� �see also the Appendix
on this subject�, gives rather close values: 56.89° and 37.65°,
respectively.

In order to depict all solutions of the problem at once, a
“phase diagram” is constructed in Fig. 3. From the Eqs. �7�
and �8�, it results that the problem is fully determined by the
nondimensional quantities t1 /�1, t2 /�2 and k1. This phase
space consists of three regions: a �largest� region with a non-
uniform �, bounded by two regions, one in which ��z�=0
everywhere and another one where ��z�=� /2 everywhere.
By expansion around the �=0 solution of the equations, it is
possible to obtain the definition of the first region �magneti-
zation uniformly along the x direction� as

t1

�1
 ln�
k2�a2 − 1� + 
1 + k2�a2 − 1�	 ,

t2

�2
� A cos
k2 +

k1

a2 , �9�

where the parameter a�1 is the ratio �2 /�1 of the devia-
tions. The boundary of the ��z�=� /2 region is given by the
same equation where the roles of 1 and 2 are exchanged. At
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FIG. 2. �Color online� Profile of the magnetization angle across the sample thickness for the �a� thin sample and the �b� thick sample. The
right scale depicts in addition the “potential” associated to the static solution, a quantity relevant for the calculation of the magnetization
oscillation modes.
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the origin, both boundaries have the same tangent, namely,

t2/�2

t1/�1
=
k1

k2
i . e . t1K1 = t2K2. �10�

Therefore, this line is also the solution of the problem in the
single spin approximation, where the nonuniform region is
absent by construction. These results bear some similarity
with the solution for the magnetization profile in a thin film
with perpendicular surface anisotropy.22

In Fig. 3�a�, the boundaries of the uniform regions are
drawn for the three cases k1=0.1, 0.5 and 0.9. The dots rep-
resenting the thick and thin films �with k1=1 /3� are also
indicated. In Fig. 3�b�, specialized to the case k1=0.5, some
lines with constant difference �2−�1 are drawn.

2. Nonzero field

The solution found in zero field is obviously fourfold de-
generate, with one variant in each quadrant of the plane. This
degeneracy is lifted by an applied field, fully for a nonspecial
angle ��H not a multiple of � /2�. As we will compare later to
measurements on macroscopic samples, only the case where
the field is applied in the quadrant of the solution will be
relevant. Indeed, domain wall motion eliminates the other
variants as soon as the field exceeds coercivity, typically
�0Hc=0.2 mT �2 Oe, 160 A/m� for the samples experimen-
tally investigated in this study. Of course, from a mathemati-
cal point of view, the magnetization curves can be followed
in the unstable regime, down to the end of metastability.

3. Analytical results

Some results concerning the boundaries of the uniform
regions, under field, can be obtained analytically. First, the
�=0 uniform region exists only when �H=0 �and the �
=� /2 region exists only when �H=� /2�. Indeed, an oblique

field causes a rotation of magnetization, which is nonuniform
as the restoring forces are different in each layer. The bound-
ary of the �=0 uniform region under field is obtained, simi-
larly to the zero field case, as

t1

�1


1

1 + h1

ln�
1 + �k2 − k1h1��a2 − 1�

+ 
�k2 − k1h1��a2 − 1�	 ,

t2

�2

�
1


1 − h2

A cos�
 1

a2
+ �k2 − k1h1��1 −

1

a2
�� ,

�11�

where h1=Hx /HK1 and h2=Hx /HK2=h1�k1 /k2� are the two
reduced forms of the applied field, in each layer. Comparing
to the zero field case �9�, we can remark that the lower limit
for t1 decreases, and the upper limit for t2 increases when the
field is larger, as expected. Strangely at first sight, the for-
mula above applies only to the case k2−k1h1�0, i.e., h2
�1. This is no surprise however, as for h2�1 the sample is
saturated along the x axis whatever the thickness, as the field
for layer 2 is in the hard direction and larger than the aniso-
tropy field.

4. Magnetization curves

The calculated magnetization curves �projection of the to-
tal moment of the sample along the field direction� for the
thin sample are shown in Fig. 4�a�, for fields oriented along
the x axis, the y axis and along the direction of the average
magnetization. The thick sample case is illustrated, similarly,
in Fig. 4�b�. These curves were obtained by a numerical
solution of the problem.

In the thick sample case, the saturation field in the x di-
rection is a little smaller than HK2, and similarly for the y
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FIG. 3. �Color online� Representation, in the plane spanned by t1 /�1 and t2 /�2, of the different phases of the solution, with k1 as a
parameter. The three phases are: uniform along x, uniform along y and, in between, nonuniform. The straight lines through the origin show
the one spin solution of the problem. The dots indicate the two cases considered throughout this section. For panel �a� three values of k1 are
shown. Panel �b� applies to k1=1 /2 only and plots several contour lines for the difference �2−�1.
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direction and HK1. The equality should be perfect if there
were no exchange coupling between both parts of the film or,
equivalently, if they were much thicker than the correspond-
ing domain wall widths. In such a case, the curves would be
hard axis curves of the Stoner-Wohlfarth model, hence per-
fectly linear and start from initial values given by t2 / t �t1 / t�.
This is indeed not far from the calculation results. But in
fact, we already have an analytic calculation of the saturation
field in the x direction by the solution of Eq. �11� in terms of
h1 and the parameter a �and similarly for the y saturation
field�. These values are indicated in Fig. 4. On the other
hand, the curve for a field applied along the average magne-
tization shows a progressive saturation, as the field is applied
in a nonspecial direction for both layers.

In comparison, for the thin sample �Fig. 4�a�	, the calcu-
lated behavior differs strongly from a model with no ex-
change between both layers: more curvature is present and
the apparent saturation fields are much reduced �but still
agree with the analytical relation�. These small apparent an-
isotropy fields are close to the limiting value obtained in the
macrospin model, namely �0HK=0.4 mT here with an easy
axis along y.

In order to show how much the saturation fields can be
affected by the magnetization nonuniformity in the sample,
the curves of constant saturation field in the x and y direc-
tions were constructed from the analytical relations �11�.
They are displayed in Fig. 5, in the �t1 /�1 , t2 /�2� plane. At
low thickness, the curves are straight lines that correspond to
the macrospin solution, which is, in the case of an x field

t2/�2

t1/�1
=

1 + h1

1 − h2

k1

k2
. �12�

However, still for an x field for the sake of definiteness, as
soon as t1 /�1�1, roughly, the limiting t2 value becomes
independent of t1. More precisely, the figure shows that the
departure from the macrospin model begins at t1 /�1�0.5.

Some profiles of angle versus depth corresponding to
these data are shown in Fig. 6, for the case of the thick
sample. The evolution toward �=0 �for �H=0� and toward
�=� /2 �for �H=� /2� is illustrated in Fig. 6�a�, whereas Fig.
6�b� shows how the profiles straighten for a field oriented
along the average zero field magnetization.
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FIG. 4. �Color online� Magnetization curves �stable branch only� for �a� the thin sample and �b� the thick sample. For each case, the field
is applied in the x and y directions, as well as along the average magnetization orientation in zero field. The vertical lines mark the saturation
fields computed from the analytical formulas giving the boundaries of the uniform regions. Note the different horizontal scales. In the thin
sample case, the inset shows the different approaches to saturation.
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FIG. 5. �Color online� Curves of constant saturation field, for a field applied in the �a� x direction, and in �b� the y direction, in the case
where k1=1 /3. Field values are given by h1=H /HK1. In the x field case, saturation is reached whatever the thicknesses at Hx=HK2, i.e., h1=2
here. In the y field case, this becomes Hy =HK1, thus h1=1. The slopes at the origin in �a� conform to Eq. �12�.
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Thus, we have now a complete description of the statics
of this model film with a two layers structure. Except for
special cases, the magnetization of the sample is not uniform
across the thickness, with a structure similar to a finite angle
domain wall: the 1D spiral. The width of this structure is,
because soft materials are considered, of the order of 100 nm
typically.

C. Linear dynamics without skin effect

We now turn to the calculation of the magnetization dy-
namics, under an infinitesimally small ac field, of this non-
uniform structure. Specifically, we want to evaluate the dy-
namic magnetic susceptibility of such a sample, in the
frequency range that encompasses ferromagnetic resonance,
from the MHz to a few tens of GHz, typically.

1. Hypotheses

As the sample is supposed to be excited by a uniform ac
field, only uniform modes in the x-y plane will be calculated.
This leaves aside all spin wave modes propagating in the
sample plane. Moreover, in the permeability measurements
described later that average over a large sample surface, such
modes should not be visible. The time dependent magnetiza-
tion will be written as

m� = �cos � cos v,sin � cos v,sin v� �13�

with ��z , t�=�0�z�+u�z , t� where �0�z� denotes the static so-
lution. The deviations u �in-plane rotation angle� and v �out-
of-plane rotation angle� are infinitesimally small in the linear
regime: �u�z , t��, �v�z , t���1.

The energy of the sample under a time independent field
H� 0 �angle �H and magnitude H0� and an in-plane ac field
�hx�t� ,hy�t� ,0	 reads now

E = �
−t1

t2 �A�cos2 v�d�

dz
�2

+ �dv
dz
�2� − K cos2�� − �K�cos2 v

+
�0Ms

2

2
sin2 v − �0MsH0 cos v cos�� − �H�

− �0Ms cos v�hx cos � + hy sin ���dz . �14�

Note that, as the magnetization varies only in the z direction,
the magnetostatic energy density is very simple. The dynam-
ics of the magnetization under the Landau-Lifshitz-Gilbert
�LLG� equation requires the calculation of the effective field,
defined by the energy differential

dE = − �0Ms�
−t1

t2

�Hudu + Hvdv�dz . �15�

2. Case with no static field

In the limit of vanishing u, v, hx, and hy �all of the same
order� we have to first order

Hu =
1

�0Ms
�2A

d2u

dz2 − 2uK cos 2��0 − �K�

+ �0Ms�− hx sin �0 + hy cos �0�� ,

Hv =
1

�0Ms
�2A

d2v
dz2 + 2v�A�d�0

dz
�2

− K cos2��0 − �K� −
�0Ms

2

2
�� . �16�

The LLG equation is then simply �with �0=�0���, � being
the gyromagnetic ratio�

du

dt
= �0Hv − 


dv
dt

,

dv
dt

= − �0Hu + 

du

dt
. �17�

This linear system �from Eq. �16�	 can be solved in the har-
monic decomposition. For that, we define

hx � Xe−i�t, hy � Ye−i�t, u�z,t� � U�z�e−i�t,

v�z,t� � V�z�e−i�t. �18�

We first look for a solution of the problem in the quasi-
static approximation, where electromagnetic effects, that lead
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FIG. 6. �Color online� Profiles of the magnetization angle across the sample thickness for the thick sample, under field �the thick black
curve is the zero field profile�. Graph �a� contains the profiles for a field in the x orientation �red lines below the zero field profile, from 0.4
to 3.6 mT with a step of 0.4 mT� and in the y orientation �blue lines above the zero field profile, from 0.2 to 1.8 mT with a step of 0.2 mT�.
Panel �b� is for a field along the direction of the average magnetization in zero field �from 0.5 to 8 mT with a step of 0.5 mT�.
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to eddy currents and limit the external ac field penetration in
the sample thickness by the skin depth effect, can be ne-
glected. In that case, X and Y do not depend on z, and are
given by the incoming field. The LLG equation in terms of
the functions U�z� and V�z� is linear, with a source term
given by the applied ac field. However, the linear operators
acting on U and V are differential. The operator contained in
Hu is the same as the hamiltonian of a 1D Schrödinger equa-
tion, with a kinetic term and a potential term. Therefore, it
can be diagonalized by solving the eigenvalue equation

− 2A
d2U

dz2 + 2K cos 2��0 − �K�U = �0Ms
2�U , �19�

where �0, �K, and K depend on z �the latter two being step
functions�. The resulting potentials have been plotted in Fig.
2 for the two cases considered in this section. The potential
goes to constant values at the sample boundaries �different in
both layers when their anisotropies differ�, and has a dip in
the vicinity of the interface, with a jump at the interface in
this simplest model. By this procedure, a series of eigenfunc-
tions Un�z� corresponding to eigenvalues �n will be found
�note that, with this definition, �n has no dimensions�. From
the general properties of the Schrödinger equation, we know
that the eigenfunctions are orthogonal

�
−t1

t2

Um�z�Un�z�dz = �t1 + t2��mn, �20�

and that they form a complete basis for the functions in the
interval �−t1 , t2	. Thus, without loss of generality, we can
expand

U�z� = �n=1
� anUn�z� . �21�

Another operator is contained in Hv, also of the Schrödinger
type, but with a different potential that reads �0Ms

2

+2K cos2��0−�K�−2A�d�0 /dz�2 instead of 2K cos 2
��0−�K�. Therefore its eigenfunctions are different. How-
ever, we remark that this second potential is dominated by
the large value �0Ms

2: the anisotropy is small and the char-
acteristic scale for the variation of �0 is large compared to

the exchange length ��i��=
2A / ��0Ms
2�	. Thus, in an

approximation valid for the modes with the lowest frequen-
cies, we can replace this operator by the constant �0Ms

2. This
allows using the eigenfunctions of the operator on U to solve
the full problem. Developing the other variables on the
eigenmodes Un�z�

V�z� = �nbnUn�z� , �22�

X sin �0 − Y cos �0 = �nhnUn�z� , �23�

the LLG equation projected on the eigenmodes reads

− i�an = − �0Msbn + 
i�bn,

− i�bn = �0Ms�nan − 
i�an + �0hn, �24�

whose solution is

an = �0hn
�0Ms − 
i�

�2�1 + 
2� + 
i��0Ms�1 + �n� − ��0Ms�2�n
,

�25�

bn =
i�

�0Ms − 
i�
an. �26�

This solution is the same as that of a thin film sample de-
scribed in the macrospin approximation with an anisotropy
in the plane �anisotropy field �Ms� and a perpendicular mag-
netostatic shape anisotropy �anisotropy field Ms�. The reso-
nance frequency of mode n is

�n = �0Ms
 �n

1 + 
2 � �0Ms

�n. �27�

For the calculation of the susceptibility, the magnetization
expanded to first order reads

m� �z,t� = m� 0�z� + e−i�t�n�Un�z�

��− an���sin �0�z�,an���cos �0�z�,bn���	� .

�28�

The response has to be averaged over the sample thickness
�in the quasistatic approximation� and projected along the
applied ac field orientation in order to get the longitudinal
susceptibility. This results into

� = �0Ms�npn
�0Ms − 
i�

�2�1 + 
2� + 
i��0Ms�1 + �n� − ��0Ms�2�n

= � − 1, �29�

where � is the magnetic permeability. The factor pn
= �hn /H�2 is the weight of mode n in the spectrum, given by

hn

H
= −

�sin��0�z� − �h�Un�z�dz

t1 + t2
, �30�

where the ac field components X and Y are X=H cos �h and
Y =H sin �h. This means that the susceptibility in the nonuni-
form ground state is the sum of macrospinlike susceptibility
curves, one for each mode n, with a weight that depends on
the mode z profile and on the angle �h of the ac field.

The profiles of the first modes are shown in Fig. 7 for the
thin sample �Fig. 7�a�	 and the thick sample �Fig. 7�b�	. One
observes, for the low index modes �n�2 for the thin sample,
but n�5 for the thick sample�, the influence of the shape of
the potential �it was plotted in Fig. 2� on the mode profile.
For higher indices, the influence of the potential shape dis-
appears as the mode energy increases, and the mode tends to
a sine wave as expected for a dominant kinetic term. Such
modes are well known as �exchange dominated� perpendicu-
lar standing spin waves.3

The eigenvalues �n are plotted in Fig. 8 as a function of
the index n, for both samples. At high index, the dominance
of the exchange term leads to expect a variation according to
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�n  C + � n��

t1 + t2
�2

, �31�

where C is the average value of the potential, in units of the
magnetostatic energy density �0Ms

2. Thus, the mode reso-
nance frequency should increase linearly with n at large in-
dices. This is quantitatively verified in Fig. 8. In addition,
Eq. �31� and Fig. 8 show that ��1 for the low mode indices,
justifying the approximation made.

The frequency-dependent permeabilities calculated for the
two samples are shown in Figs. 9 and 10, respectively �as the
imaginary part is displayed, this is the same as the suscepti-
bility�. For each sample, different orientations of the ac field
are shown: along x �a�, along y �b�, along the average mag-
netization �angle �M� �c� and orthogonal to this angle �d�.
From Eq. �29�, it is easy to see that each mode contributes by
pn /�n to the initial susceptibility ���=0�, and has an absorp-
tion maximum �max,n� � pn / �

�n�. The weights vary as the
field orientation changes �see Table I�, so that the spectral
shape of the susceptibility changes also.

In the case of the thin sample, the spectra appear to be
very simple, with a single peak at a fixed frequency, except
when the ac field is along the average magnetization. More-
over, the ratio of ���0� or �max� to the case where the ac field
is perpendicular to the average magnetization are very close
to cos2 �M and sin2 �M �0.690 and 0.688 compared to 0.710
for �h=0°, 0.312 and 0.313 compared to 0.290 for �h=90°;
in fact the susceptibility data would be much better repro-
duced with �M =56°�. Therefore, except when pumped along
the average moment, the thin sample behaves like a mac-
rospin, oriented at �M. Its resonance frequency �650 MHz
from ��=0, 603 MHz from the maximum of ��� corre-
sponds, for an unchanged magnetization, to an anisotropy
field �0HK,eff=0.61 or 0.53 mT. This is much below the an-
isotropy fields of the two layers �2, respectively, 4 mT�, but
close to the anisotropy field for the total anisotropy of the
sample �0.4 mT�, and also close to the apparent saturation
field �Fig. 4�. This is a clear signature of a nonuniform mag-
netization state: a macrospin would always show the same
resonance frequency.

For the thick sample, the angular region where the spec-
trum obviously contains several peaks is wider, and a mac-

rospinlike behavior is obtained only when the ac field is
perpendicular �to �50°� to the average magnetization. The
breakdown of the global susceptibility into the modes �Figs.
10�a� and 10�c�	 shows that the indices n=1, 2, and 3 are
involved, whose frequencies are 1145, 1342, and 1696 MHz.
It is worthwhile at this point to remark that the two layers, if
isolated, would resonate at frequencies f1=1174 MHz and
f2=1660 MHz. Therefore, in the limit of large thicknesses, a
“double macrospin” model could apply. In order to check
this, the computed permeabilities for this double macrospin
model are included in the spectra �thin lines labeled 2 MS�.
As expected, this model predicts only one peak when the ac
field is applied along the x and y axes, which is very different
from the results of the full model �mostly for an x field, as
the average angle is small�. The double macrospin model
also overestimates the permeability in the parallel orientation
and underestimates it in the perpendicular orientation. Both
failures are linked to the transition region where the magne-
tization lies close to the average orientation. Thus, for the
double macrospin model to quantitatively apply, still larger
thicknesses are needed.

3. Dynamics under a static field

The application of a static field transforms the spiral con-
figuration as shown earlier, by a reduction of the spiral span
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and by a change of the average angle of the spiral. The last
feature, that is the only one appearing in the case of a mac-
rospin, gives rise to a well known evolution of the resonance
frequency. For the two cases considered, the evolution with

static field of the resonance frequencies is plotted in Fig. 11.
These frequencies were obtained from the calculated spectra
by looking for the absolute maximum of the imaginary per-
meability �even when the spectrum shows several peaks, this
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procedure sorts out the principal absorption�. For compari-
son, the frequency variations with field expected for one or
two macrospins are also shown, in the cases where the field
is applied along the easy and hard directions.

For the thin sample �Figs. 11�a� and 11�b�	, the same fre-
quency is seen whatever the ac field orientation, as it is not
applied along the average moment �see Fig. 9�. In each case,
this frequency changes with applied field similarly to that of
a macrospin subjected to a hard axis field, with a zero fre-
quency at H=HK. The values of the corresponding aniso-
tropy fields are �0HK=1.4 and 0.4 mT, when the field is
applied along the x and y axes, respectively. They correspond
to the saturation fields of the magnetization curves �see Fig.
4�a�	. This shows that, even if the sample is thin, its dynamic

behavior under static field differs from that of a macrospin,
that would show a hard axis frequency variation only for one
orientation of the field. In addition, for the x orientation of
the static field, the frequency starts from a low value and
begins to increase, thus mimicking a macrospin magnetized
by a field in the easy direction �with �0HK=0.6 mT here�.
Such a frequency variation is also absent for a macrospin.

For the thick sample �Figs. 11�c� and 11�d�	, the frequen-
cies where absorption is maximum differ for x and y excita-
tions, when the applied field is small. The thin curves drawn
correspond here to the two macrospins of the two layers
�with the curves expected to be followed for each static field
orientation drawn continuous�. These curves correspond well
to the main peak at low fields, and at higher fields the per-

TABLE I. Values of the amplitudes of the low-lying modes in the response of the thin sample to ac fields
of various orientations. The eigenvalues and their corresponding frequencies are also given.

ac field n=1 n=2 n=3 n=4 n=5

�h �n 6.95�10−4 9.70�10−3 3.27�10−2 7.32�10−2 0.129

fn

�MHz� 649.09 2425.21 4454.57 6663.27 8845.98

0 �x� hn /H 0.810 −0.211 0.024 0.005 −0.004

� /2 �y� hn /H −0.546 −0.035 0.003 0.001 −0.001

�M hn /H −0.002 −0.143 0.015 0.003 0.003

�M +� /2 hn /H −0.976 0.159 −0.019 −0.003 −0.003
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FIG. 11. �Color online� Variation of the resonance frequency �defined as the—single—value where the imaginary permeability is
maximum� versus field for the �a,b� thin and �c,d� thick sample. The static field is applied along the �a,c� x axis and the �b,d� y axis. The ac
field is, for each panel, applied along the x direction �big red symbols� and along the y direction �small black symbols�. The thin curves show
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static field applied in the other orientation.
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meability of the layer with easy axis normal to the static field
dominates. Thus, for a thick sample, the difference with the
double macrospin model is mainly apparent on the shape of
the permeability spectrum �see Fig. 10�.

D. Introduction of the skin effect

For quantitative comparison to experiments, the influence
of the skin depth effect cannot be neglected as the samples
are not thin compared to the skin depth. In such a case how-
ever, the ac magnetic field is no longer uniform across the
thickness of the sample. Writing Maxwell’s equations in the
quasistatic approximation where the propagation wavelength
in the sample plane is much larger than the domain size, we
get the following equations for the ac fields

hz + mz = 0,

d2hy

dz2 + �2�0�0��hy + my� = 0,

d2hx

dz2 + �2�0�0��hx + mx� = 0. �32�

In these formulas, �=1+ i� / ���0� is the total relative permit-
tivity of the metal with �r=1 and including conductivity ���.
The first equation �z components� does not change compared
to the previous section, but now the in-plane magnetization
and field components are coupled. The coupled system �17�
and �32� was solved numerically for a set of the angular
frequencies � in order to compute the permeability spectra.

For the thick sample �Fig. 12�, the numerical results are
compared to the solution neglecting skin depth effects and, in
addition, to the classical calculation where the coupling be-
tween Eqs. �17� and �32� is neglected. In the latter case, the
apparent permeability �a is given as a function of the intrin-
sic permeability �i obtained from Eq. �17� by

�a = �i

tan��

c

��i t/2�

�

c

��i t/2

. �33�

For the resistivity value chosen �that corresponds to the
experimental samples�, the spectrum change is mainly a peak
broadening with a significant decrease of the amplitude.
Most of the change is captured by the classical correction, in
agreement with previous results.14 In this situation at least,
no new modes are excited by the inhomogeneous ac field. In
the next part, where the 1D spiral model will be compared
with experiments, the full skin depth correction will be al-
ways applied.

III. EXPERIMENTS

In order to experimentally test the predictions of this
model, that we will refer to as 1D spiral model, samples in
the form of bilayers with crossed anisotropies were deposited
by magnetron sputtering. First, we will describe the experi-
mental details and how the static and dynamic magnetic
properties were measured. In a second part, the experimental
results will be compared to the 1D spiral model and also to
simpler models as the macrospin model or the two �un-
coupled� macrospins model.

A. Experimental details

Amorphous ferromagnetic bilayers were deposited by
magnetron sputtering from a CoNb target. The base pressure
before the deposition was less than 5�10−6 mbar. During
the process, the pressure was maintained at 5�10−3 mbar
and the sputtering power at 14 W /cm2. The bilayers were
grown using an in situ rotatable sample holder. A first layer
with nominal thickness t1=250 nm was deposited on a glass
square substrate of 9 mm width whose the uniaxial magnetic
anisotropy in the film plane is induced by the residual mag-
netron field. With the sputtering still taking place, the sample
was then rotated by � /2 in a few milliseconds, leading to the
growth of the second layer. In this way, the magnetic
anisotropies are expected to be perpendicular to each other
so that a bilayer with crossed anisotropies is produced.
Moreover, as the growth was not interrupted, the exchange
coupling between the two layers should be intact. As the
deposition time is the same for each layer, the thickness of
the top layer is expected to be equal to the thickness of the
first. The whole thickness of the bilayer �t=500 nm� was
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FIG. 12. �Color online� Imaginary part of the permeability for the thick sample, taking into account a resistivity 1 /�=1.3�10−6 � m.
The ac field is applied along the �a� x direction and the �b� y direction. The result without skin effect �see Fig. 10, thin line� is compared to
the classical skin effect correction �Eq. �33�, black circles	 and also to the full numerical solution �red squares�.
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measured using a Dektak profilometer. Due to the amorphous
nature of the material �checked by x-ray diffraction�, the
value of the electrical resistivity measured with a four-probe
method is rather large �about 1.4 �� . m� in accordance to
prior results.23 Thus, the skin depth effect should be taken
into account for the calculation of the permeability.

Regarding static magnetic properties, the saturation mag-
netization Ms and the anisotropy fields were determined from
the hysteresis loops at room temperature measured with a
standard vibrating sample magnetometer. High frequency
permeability spectra from 100 MHz to 6 GHz were measured
with a permeameter based on a single coil device,24,25 under
a static magnetic field H0 up to 12 kA/m �150 Oe�. This field
can be applied either parallel or perpendicular to the dynamic
field h of the single coil, and the square sample can be posi-
tioned with its x axis or y axis along the dynamic field.
Therefore, in the following, the measurement configurations
will be referred to as �Hx ,hx�, �Hx ,hy�, etc. We define �i� as
the real part of the permeability at 100 MHz and �max� as the
maximum value of the imaginary part of the permeability.
From the permeability spectra, the resonance frequency fr
was defined as the frequency where either the real permeabil-
ity is equal to 1 ���=1�, or where the imaginary part �� is
maximum. Although several thicknesses of the two layers
were fabricated, only the nominally symmetric bilayer will
be presented, as it is the most significant sample.

B. Static magnetic properties

Several normalized magnetization curves of the bilayer
are shown in Fig. 13. The static field H0 is applied along the

x �a� and y �b� axes corresponding to the easy axis of the first
and second layer, respectively. First, the saturation magneti-
zation of the sample is found to be 690�35 kA /m whereas
the coercivity is weak �Hc�80 A /m�. Second, we can ob-
serve that the magnetization curves show a shape that is dif-
ferent from the typical one for samples with uniaxial mag-
netic anisotropy, where the fast change of the magnetization
at low applied fields is attributed to wall displacements. The
magnetization values at the remanence Mr for each curves
differ, indicating that the bilayer is slightly dissymmetric. It
is worth noting that the two layers may present different
magnetic properties because their growth takes place on dif-
ferent substrates �glass and metal, respectively�. From such
hysteresis loops, no suitable anisotropy fields but only satu-
ration fields can be accurately estimated. The magnetization
curves generated from the numerical solution of the 1D spi-
ral model detailed in Sec. II B 2 are superposed to the data.

The appropriate numerical values, taken for all static and
dynamic simulations of this sample, differ a little from those
of the first part and read: Ms=690 kA /m, A=0.7
�10−11 J /m, HK1=1.3 kA /m �17 Oe�, HK2=1.9 kA /m �24
Oe�, t1=230 nm, t2=270 nm, and 
=0.016. The figure
shows that the model is able to generate a realistic descrip-
tion of the magnetization rotation in the nonuniform state,
regarding the remanence and the saturation field. The marked
curvature of the magnetization curves, not reproduced by the
model, should be investigated in more details �it is attributed
to dispersion of anisotropy or field misalignment�. Obvi-
ously, the coercivity related to wall displacements cannot be
described within this model that neglects any in-plane varia-
tion of magnetization.

FIG. 13. �Color online� Experimental magnetization curves of the bilayer with crossed anisotropies along the �a� x, �b� y axes and at �c�
45°. Blue curves, corresponding to the magnetization curves computed with 1D spiral model described in Sec. II B with the parameters given
in Sec. III B, are superposed to the data. For �c�, the calculation was performed for a static field along the average magnetization,
corresponding to an angle �M =53.16°. Panel �d� plots the computed profile of the magnetization angle of for this bilayer �the dynamic
potential is also drawn�.
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In order to illustrate the expected depth dependence of the
magnetization orientation, the corresponding calculated ��z�
profile and the potential calculated from the zero field static
model are plotted in Fig. 13�d�. The end values �1=13.45°
and �2=85.69° are a little away from the easy axes, as the
thicknesses are moderately larger than the characteristic
lengths �i : t1 /�1=2.11 and t2 /�2=2.94. The angle of the
average magnetization is �M =53°. As the average magneti-
zation of the sample is oriented at roughly � /4 from the
axes, another hysteresis loop measured along this direction is
displayed in Fig. 13�c�. The remanence is close to 1 and the
agreement with the model rather good in the magnetization
rotation region.

C. Dynamic magnetic properties

In addition to the magnetization measurements under
static fields, high frequency permeability measurements un-
der a static field were performed, and will be compared to the
results of the 1D spiral model. The four configurations of
both fields mentioned earlier should all be explored as the
two layers of the sample are different.

1. Zero field case

Figure 14 displays the permeability spectra from 100
MHz to 6 GHz, with no applied field. Large permeability
levels are measured along x �hx� and y �hy� axes, which are
mainly related to the response of the second layer and the
first layer, respectively. The resonance frequencies fr along
both axes, when defined by ���fr�=1, differ by 17%. This is
related to the existence of two resonance peaks under hx
excitation. On the contrary, the alternative definition through
the maximum of ���f� gives the same values �fr�1 GHz�.
It appears that the determination of fr for the sample consid-
ered here is more complex than for a single layer with
uniaxial magnetic anisotropy, since the permeability spectra
show several resonance peaks. Therefore, we will from now
define fr by the maximum of ��. Note that, for a monolayer

with t=500 nm and the same conditions of deposition, the
measured fr value is distinctly higher, close to 1.2 GHz.

A simple treatment of the data of Fig. 14 is to try to fit
them with a double macrospin model discussed above, i.e.,
assuming that the two layers are uncoupled and therefore
respond each as a macrospin. With the parameters Ms
=725 kA /m ��0Ms=0.91 T�, HK1=1100 A /m, HK2
=700 A /m, and 
=0.019, the thin curves superposed to the
data are obtained. The value of the damping thus obtained is
slightly large, the saturation magnetization is found larger
than the VSM value and the two peaks seen for the hx exci-
tation are evidently not reproduced, so that such a model is
not satisfactory. The comparison to the 1D spiral model will
be presented in the next section, when the spectra under field
are discussed.

2. Nonzero field

The measured frequency-dependent permeability is dis-
played in Fig. 15 as a function of static field for the two main
configurations �Hx ,hy� and �Hy ,hx�. Especially, the splitting
of the resonance peak for the �Hx ,hy� case under field is
related to the dynamic response tailored by both K1 and K2,
whereas this splitting is visible even without applied field for
the �Hy ,hx� case. The simulated permeability spectra for the
lower fields show a slight shift in frequency compared to the
experimental permeability whereas, for the two higher fields,
the model agrees fairly well with the measured permeability
peak positions. The agreement is extremely good in the
�Hy ,hx� case, corroborating what was already seen on the
magnetization curves �Fig. 13�. In both cases, it is remark-
able that, even if the applied fields are much above the ap-
parent saturation fields �1500 A/m for Hx, 1000 A/m for Hy�,
the spectra still show two clear peaks, a feature well repro-
duced by the 1D spiral model.

In order to be more quantitative, the two main character-
istics of the spectra will be studied, namely, the square reso-
nance frequency fr

2 and the value of the maximum imaginary
permeability �max� . Figure 16 displays the measured fr

2 as a

FIG. 14. �Color online� Real and imaginary parts of the permeability as a function of the frequency measured along the x �left� and y
�right� directions �red symbols�. The thin blue curves show the fit of the data by the double macrospin model.
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function of the static field applied up to 12 kA/m �150 Oe�
for the two configurations �Hx ,hy� and �Hy ,hx�. As the spec-
tra show two well separated peaks, the values will be given
for each. In the case �Hx ,hy�, the complex behavior of the
square resonance frequency of the first peak is striking com-
pared to what is expected for a macrospin. However, such a
behavior was already seen in Fig. 11, and the 1D spiral
model reproduces well the experiment.

In the case of a macrospin, the fr
2 dependence is described

by the Kittel’s equations,2 for a field H�HK oriented in the
plane, either perpendicular or parallel to the easy axis �see
also Fig. 11�

fr�
2 = � �0

2�
�2

�Ms . �H − HK�	 , �34�

(b)

(a)

FIG. 15. �Color online� Measured permeability spectra �red symbols�, under several static fields and for the ‘standard’ configurations �a�
�Hx ,hy� and �b� �Hy ,hx�. The results of the 1D spiral model are shown by the blue lines.
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fr�
2 = � �0

2�
�2

�Ms . �H + HK�	 . �35�

Effective dynamic anisotropy fields HK1 and HK2 can thus be
obtained as intercepts of the linear fits to fr

2=0. From the
data, we get HK1,� =770 A /m �9.7 Oe� and HK2,�
=1240 A /m �15.6 Oe� for the case �Hx ,hy�, and HK1,�
=420 A /m �5.3 Oe� and HK2,� =1650 A /m �20.7 Oe� for the
case �Hy ,hx�. For a perfect uniaxial anisotropy layer, the lin-
ear extrapolations should cross the H axis at the same values
�HK,� =HK,��, but here a strong difference between the two
values is observed. This is commonly attributed to magneti-
zation dispersion,26 which is verified here as the dispersion
was indeed created in the sample. The estimated anisotropy
fields, empirically derived from the average of HK,� and HK,�
calculated either from the linear relations or from the ex-
trapolations to the applied field axis, are HK1=595 A /m and
HK2=1445 A /m. Nevertheless, it is impossible to describe
the fr

2 dependence for the configurations �Hx ,hy� and �Hy ,hx�
with the same set of values of HK1

and HK2
.

On the other hand, the numerical results using the 1D
spiral model with full treatment of the exchange interaction
are also plotted in Fig. 16, and agree very well with the
applied field dependence of the experimental fr

2. We remark
that the anisotropy fields �HK1=1.3 kA /m and HK2
=1.9 kA /m� used for the simulation are larger than all those
deduced previously from the linear fr

2 dependence. To gen-
erate the dynamic response, the skin effect calculation �with
�=1.4 �� .m as deduced from electrical measurements�
was carried out on the basis of the relations detailed in Sec.
II D. The magnetic damping parameter 
 used is smaller
than that obtained by fitting the zero field results with the
permeability of a single macrospin. The model describes per-
fectly the emergence of the second peak for the configuration
�Hx ,hy� and the singular behavior associated to the first peak
for H�1.6 kA /m. However, the drop of the resonance fre-
quency, associated with the first peak behavior around the
anisotropy field HK1 is overestimated in the model. This fact

is also attributed to anisotropy dispersion or field misalign-
ment.

Experimental and numerical permeability maximum val-
ues, as a function of the static field are plotted in Fig. 17. The
overall agreement is good, but one may notice that the per-
meability associated with the first peak, for a field H�HK2
=1.9 kA /m, is overestimated. This feature results directly
from what was seen on the square resonance frequency. Sec-
ond, the model predicts systematically an underestimated
value for the second peak, but this again occurs for the
�Hx ,hy� configuration.

The comparison between the experimental and calculated
permeability was also performed for the two nonstandard
configurations where dc and ac fields are parallel, namely,
�Hx ,hx� and �Hy ,hy�. The static field values were chosen
from the magnetization curves shown in Fig. 13. The spectra
�Fig. 18� show the expected rapid decrease of permeability as
the field increases �beware that fields are much smaller than
in Fig. 15�, due to the fact that the susceptibility is measured
parallel to the static field. The agreement between 1D spiral
model and experiments is good for low fields, but deterio-
rates close to the computed saturation. This however reflects
the disagreement already seen on the magnetization curves.

IV. CONCLUSION

In this paper, we have studied in detail the statics and
dynamics of a model sample with nonuniform magnetic
structure, namely, a bilayer with crossed anisotropies. For
statics, we have established a general analytic solution that
predicts the magnetic profile, in zero field and under applied
field, from the key parameters of the system �the reduced
thicknesses, the anisotropy ratio, the reduced fields�. For the
linear dynamics under infinitesimal ac field, we have shown
that the low-lying modes are close to eigenmodes of a rel-
evant Schrödinger equation, with a potential that derives
from the static magnetization profile. These modes provide a
direct interpretation of the permeability spectra, and allow

FIG. 16. �Color online� Applied field dependence of the square resonance frequency �red symbols� for the standard configurations where
dc and ac fields are orthogonal �Hx ,hy� �left� and Hy ,hx �right�. The dependence of fr

2 is linear at higher field, as well known. Resonance
frequencies �blue lines� were calculated from the 1D spiral model with the parameters given in Sec. III B.
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generalizing a sum rule on the permeability previously de-
rived in the macrospin approximation �see Appendix�. This
analytic framework is however limited to insulating samples.
For conductive samples, a full numerical solution was con-
structed and compared to this analytic limit, with minor de-
viations for the parameters that were used.

In the second part of the paper, this 1D spiral model has
been compared to experiments performed on soft samples
designed to be of bilayer structure with crossed anisotropies.
For this, static and dynamic measurements have been made.
We have obtained good overall agreement with a single set
of thicknesses and anisotropies, qualitatively and quantita-
tively �some systematic deviations appear, attributed to mis-
alignment between the easy axes and the sample edges�.
Thus, we conclude that the nonmacrospin behavior often
seen in static and dynamic measurements of such soft and
thick samples can be attributed to structures that are inhomo-
geneous in the thickness.

The next step on this path could be to invert the approach:
starting from static and dynamic measurements, to find the
anisotropy distribution across the sample thickness.

APPENDIX: SUM RULES ON THE MAGNETIZATION
DYNAMICS FOR A 1D NONUNIFORM

MAGNETIZATION

From the permeability spectra of soft thin films, a dy-
namically coupled magnetization M� with components M�,x
and M�,y has been defined21 as

M�,x�F� =
2�

�0

 2

�
�

0

F

�x��f� . f . df , �36�

�and similarly for the y permeability�, with M�

=
M�,x
2 +M�,y

2 . In addition, a sum rule has been introduced,
stating that, for F=�, M� is equal to the saturation magne-
tization Ms. At the root of the sum rule lies the identification
of the dynamically coupled magnetizations to r.m.s. magne-
tizations according to

M�,x = Ms

�my

2� , �37�

and similarly for the y permeability �the average � � is over
space�.

These relations were first derived21 in the case of a col-
lection of macrospins that may interact magnetostatically but
not by exchange. Recently, estimates of the corrections to
apply to M� in order to remove the effect of a finite F, or of
the skin effect, were proposed,27 that widen the applicability
of this analysis. Moreover, the sum rule has been observed to
hold in more complex situations where the magnetization is
not uniform, such as bilayers similar to those considered
here.15 For example, from the spectra shown in Fig. 14, with-
out corrections and for F=6 GHz, we obtain M�,x=547 and
M�,y =394 kA /m, leading to M�=673 kA /m. This value,
close to the VSM value of Ms, becomes still closer �691
kA/m� with the corrections.

Therefore, an investigation of the validity of the sum rule
for a continuous but nonuniform magnetization, where ex-
change plays an important role, would be desirable. In this
section, using the expression of the susceptibility without
skin effect as a sum over modes, we will prove that the sum
rule holds.

The in-plane rf magnetization comes from the variation of
the angle � and reads

m� rf�z� = Ms�nanUn�z��− sin �0�z�,cos �0�z�,0	 . �38�

In order to get the susceptibility without skin depth effects,
this magnetization has to be projected along the ac field, and
averaged over z. Thus, the susceptibility for an a.c. field
applied at an in-plane angle �h reads

� =
cos �h�mx + sin �h�my

�t1 + t2�H

= −
Ms

�t1 + t2�H
�nan� Un�z�sin��0�z� − �h	dz . �39�

FIG. 17. �Color online� Maximum permeability �max� �red symbols� as a function of the static field applied for two standard configura-
tions of the fields: �Hx ,hy� �left� and �Hy ,hx� �right�. The calculated values with the 1D spiral model �same parameters as for Fig. 16� are
drawn by the blue lines.
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The demonstration of the sum rule rests on the evaluation
of the integral by contour integration in the complex fre-
quency plane.21 As a result, the integral of imaginary perme-
ability times frequency is proportional to the limit at �→�
of the product �2�, neglecting the Gilbert damping term that
causes the integral to diverge.27 From the expression �29� of
� we get here

�2� → ��0Ms�2�n
��Un�z�sin��0 − �h�dz	2

�t1 + t2�2 . �40�

By developing sin��0−�h� on the Un basis and evaluating its
norm, we also have

(b)

(a)

FIG. 18. �Color online� Measured permeability spectra �red symbols�, under several static fields and for the “nonstandard” configurations
�a� �Hx ,hx� and �b� �Hy ,hy�. The results of the 1D spiral model are shown by the blue lines. Note, for zero field, the better match of the data
with the 1D spiral than with the two macrospins model shown in Fig. 14.
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� sin2��0 − �h�dz =
1

t1 + t2
�n�� Un sin��0 − �h�dz�2

.

�41�

Thus, the limit of �2� can be rewritten as

�2� →
��0Ms�2

t1 + t2
� sin��0 − �h�2. �42�

Applying the ac field in the orthogonal direction amounts to
changing �h into �h+� /2. Therefore, the sum of the limits
for two orthogonal field directions �denoted by 1 and 2� is
simply

�2��1 + �2� → ��0Ms�2. �43�

This completes the proof of the sum rule �or, equivalently,
of the properties of the dynamically coupled magnetization�
in a situation where exchange plays an important role. The
calculation has shown that several assumptions underlie this
proof: �i� weak anisotropy field that allows a direct solution
for the ac magnetization in the direction normal to the film
plane; �ii� low frequencies ����0Ms� and �iii� absence of
skin effect �see Ref. 27 for a discussion of this point�. The
final result is not so surprising once it is realized that the
permeability is decomposed on orthogonal modes, each con-
tributing with a one macrospin form.
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