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Theory of vortex states in magnetic nanodisks with induced Dzyaloshinskii-Moriya interactions
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Broken inversion symmetry in magnetic nanostructures induces Dzyaloshinskii-Moriya couplings. In the
presence of surfaces/interfaces the magnetism of magnetic nanodisks can be essentially affected by these chiral
couplings. Within a micromagnetic approach we calculate the equilibrium sizes and shape of the vortices as
functions of magnetic field, the material, and the geometrical parameters of nanodisks. It was found that the
Dzyaloshinskii-Moriya coupling can considerably increase sizes of vortices with “right” chirality and suppress
vortices with opposite chirality. This allows to form a bistable system of vortices with the same chirality as a

basic element for storage applications.
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I. INTRODUCTION

Physics of magnetism at nanometer and submicrometer
scales is an object of broad and intensive scientific investi-
gations stimulated by various possible applications including
magnetic random access memory, high-density magnetic re-
cording media, and magnetic sensors.! Nanoscale magnetic
dots with vortex states>™* are considered as promising com-
ponents for such spintronic devices.”~’ Experimental obser-
vations show that such vortices consist of a narrow core with
a perpendicular magnetization surrounded by an extended
area with in-plane magnetization curling around the center
(Fig. 1).8° It has been proposed to use both the up and down
polarities, i.e., the perpendicular magnetization of a vortex,
or the rotation sense of the curling in-plane magnetization as
switchable bit elements in memory devices.>™’

The vortex state in thin-film elements results from the
necessity to reduce the demagnetization energy in competi-
tion with the exchange coupling.'®!' In a broad range of
circular disks sizes (diameters and thickness) the axisymmet-
ric vortex states correspond to the ground states of the
system.'? Within the usual micromagnetic calculations the
shape and size of the vortices are determined by the compe-
tition between exchange and stray-field energy.'? In particu-
lar, the vortices with different chirality are degenerate: the
four possible vortex ground states differentiated by their
handedness and polarity all have the same energy within
these standard micromagnetic models.

The broken inversion symmetry at surfaces or interfaces
of thin magnetic layers is an important source of chiral
Dzyaloshinskii-Moriya (DM) interactions.'*~1® These anti-
symmetric DM exchange couplings arise due to spin-orbit
effects on the electronic structure due to the inversion-
asymmetric crystal fields near the surface. Therefore,
surface-induced DM interactions should generically exist in
magnetic nanostructures, similarly to the DM interactions in
magnetic crystals from noncentrosymmetric crystal classes.!”
The chiral DM interactions destabilize collinear magnetic
states and are able to create a large variety of helical and
Skyrmionic spin textures.'®~>" The mechanism and phenom-
enological models of the surface-induced DM couplings,
along with possible observable effects in magnetic films,
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have been discussed earlier.>!¢ These theories now are sup-
ported by modern quantitative ab initio calculations for mag-
netic nanostructures.?’>* Recent experiments>2° provide
clear evidence for these surface-induced DM interactions, as
they display long-period modulated noncollinear magnetic
states, which can be identified as chiral Dzyaloshinskii
spirals.'” Chiral effects observed for magnetization processes
in vortex states of magnetic nanodisks?’ may also belong to
this class of phenomena. From general principles, one ex-
pects that the DM coupling is the leading spin-orbit effect in
all cases where it can exist due to broken inversion symme-
try, i.e., it can become stronger than usual magnetic anisotro-
pies, in particular, in materials with highly symmetric lattice
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FIG. 1. (Color online) (a) Vortex states in a circular magnetic
nanodisk of radius R; with axisymmetric magnetization structure.
(b) Geometry and definition of variables of the problem. (c) The
four possible vortex states are characterized by the indices (polarity
p==1; chirality ¢==1) Dzyaloshinskii-Moriya couplings with
chirality ¢=1 (D>0) widen vortices with the same chirality, c=1,
and squeeze vortices with opposite chirality, c=—1.
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structure. Still, information on the relevance and magnitude
of surface-induced DM interactions in magnetic layers is
scarce.

In this work, we describe the chiral symmetry breaking in
the vortex ground states of circular thin-film elements within
a basic micromagnetic approach. As the vortex states are
chiral themselves, the effect of the chiral DM is less obvious.
However, in the presence of DM interactions the chiral de-
generacy of the left- and right-handed vortices is lifted. The
simplicity of the circular vortex structure makes them ame-
nable to detailed theoretical investigations. Here, we calcu-
late the differences between the core shapes and sizes of left-
and right-handed vortices in the presence of DM couplings.
These differences of core structure may be observable in
experiments, e.g., as differences in core diameter or net po-
larity of vortices, when switching their chirality. We suggest
that such experiments can be used to determine the magni-
tude of surface-induced DM couplings in ultrathin magnetic
films/film elements.

II. EQUATIONS AND METHODS

The energy density of a uniaxial ferromagnet with chiral
interactions can be written in the following form:?°

am; \? 1 )
w=AY, | —L -M-H-_M-H,+K,m-2)+w),
.. X;

(1)

where m is the unity vector along the magnetization M
=M m and M is the saturation magnetization. The couplings
are given by the exchange stiffness A. The anisotropy axis a
is taken perpendicularly to the disk surface, and K, is the
anisotropy constant which must be positive in easy-plane
materials. H is the external magnetic field, and H,, is the
stray field. The Dzyaloshinskii-Moriya energy wp is de-
scribed by so-called Lifshitz invariants,'” energy terms linear
in first spatial derivatives of the magnetization,

LEJI-‘) = mia—ml - mj%. (2)

5)(7]( &Xk

The functional form of this energy is determined by the sym-
metry of the surface/interfaces.'> In this paper we use wp
terms in the following form:

wp=D(LY) - LY)), (3)

which gives the allowed Lifshitz invariants of the magneti-
zation in symmetries from Laue classes 32, 42, and 62. This
wp term favors the curling mode of the magnetization, where
the rotation sense is determined by the sign of the Dzy-
aloshinskii constant D. Depending on crystallographic sym-
metry, other types of Lifshitz invariants may occur which
may favor differently twisted noncollinear magnetization
structures. For example, Lifshitz invariants (Lg)+Lg)), pos-
sible in Laue classes 3m, 4m, and 6m, induce a cycloidal
rotation of the magnetization vector.?? The various possibili-
ties can be deduced from the corresponding list of Lifshitz
invariants for three-dimensional Laue classes in Ref. 18,
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where also the structures of the corresponding Dzyaloshin-
skii spirals and circular vortexlike Skyrmions have been pre-
sented. For simplicity, we restrict discussion here to the form
of Eq. (2).

The equilibrium configurations of m are derived by solv-
ing the equations minimizing the energy [Eq. (1)] together
with equations of magnetostatics. To describe vortex states in
a disk of radius R; and with zero or perpendicular applied
field, we consider axisymmetric distributions of the magne-
tization and express the magnetization vector m in terms of
spherical coordinates and the spatial variables in cylindrical
coordinates: m=(sin 6 cos i;sin 6 sin ¢r;cos 6), r
=(p cos ¢;p sin ¢;z) [Fig. 1(b)]. The vortices are character-
ized by the magnetization direction in the center, polarity p
==*1, and the chirality of the magnetization structure,
chirality ¢==*1. Four different vortex states can be de-
scribed by the indices (p;c) [Fig. 1(c)]. One can introduce
the chirality of the Dzyaloshinskii-Moriya coupling as D
=|DI|C. Then the Dzyaloshinskii-Moriya interactions favors
states with ¢=c¢ and suppresses those with opposite chirality
c=—c. In this paper we assume for definiteness that the vor-
tices have positive chirality, c=1, and study their properties
for D=0. Thus, positive DM couplings favor these vortices,
while they are suppressed in the opposite case, D <0.

Due to the nonlocal character of stray-field interactions
the micromagnetic problem [Eq. (1)] constitutes a set of in-
tegrodifferential equations.'' In order to simplify this prob-
lem we consider the limit of a thin film where the magneto-
dipole energy has a local character and reduces to a “shape”
anisotropy K,,=27M>.?® This can be added to the uniaxial
anisotropy K|, yielding a redefinition of the anisotropy energy
in Eq. (1) by an effective anisotropy constant K. We also
introduce the characteristic (exchange) length [,, the aniso-
tropy field H,, and a critical value of the Dzyaloshinskii
constant Dy

I,=JA/K, H,=2K/M,,

Dy=VAK, K=K,+27M>>0, )

as proper material parameters of the problem. They establish
important relations between vortex solutions and magnetic
states in laterally infinite magnetic nanolayers. The aniso-
tropy field determines the equilibrium magnetization of ho-
mogeneously magnetized layers in an applied perpendicular
field H,

cos 6,=H/H,. (5)

The constant D, gives a threshold “strength” of the DM cou-
pling in comparison with the exchange and anisotropy: for
|D|/Dy>4/mw=1.273 the magnetization of a layer transforms
into a modulated state.'”?° The exchange length gives a char-
acteristic radius of the vortex core. Most experimentally in-
vestigated nanodisks have radii much larger than the ex-
change length, R;>1,. In this case vortices consist of a
strongly localized core encircled by a wide ring with a con-
stant polar angle 6= 6, [Fig. 1(a)].
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The variational problem for functional Eq. (1) has rota-
tionally symmetric solutions =@ = 7/2, 6=6(p). By substi-
tuting the solution for ¢ into Eq. (1) and integrating with
respect to ¢ the vortex energy can be reduced to the follow-
ing form E=2m[Fw(p)pdp, where

o\ 1 s
w(p)=A||—| +—sin” 6|+ K cos” §— HM, cos
dp/ p

de 1 .
—D|—+ —cos Osin 0], (6)
dp p

where the magnetic field H is assumed to be perpendicular to
the disk plane.
The Euler equation for 6(p)

0 1d6 1 . D,
Al ——5+—————sin fcos 0] — —sin” 6
dp~ pdp p p
+ K sin 6 cos 80— HM sin 6/2=0 (7)
with the boundary conditions
6(0)=0, (d6/dp),-r,=g(6.R,) (8)

yield the equilibrium vortex profiles. g(6,R,;) describes the
pinning effect imposed by the surface energy at the lateral
disk edge. In concrete examples, the function g(6,R,) has to
be derived from surface anisotropies or similar effects (see,
e.g., a detailed model for surface anisotropies in cylinders in
Ref. 29). For D=H=g(0,R;)=0 and infinite radius, Eq. (7) is
related to the differential equation introduced by Ginzburg
and Pitaevskii in their theory of superfluid vortices in liquid
helium. Similar equations describe vortex excitations in
different bosonic systems including Bose-Einstein conden-
sates (see, e.g., Ref. 31) and easy-plane magnets.?

As a first step in solving the boundary value problem
[Egs. (7) and (8)] we consider an auxiliary Cauchy problem
for Eq. (7) with initial conditions

0(0)=0, (dOldp),-o=a 9)

for different values of @>0. The trajectories 6(p; «) for this
initial value problem with 0 < a <<% define a family of solu-
tions parametrized by a. Any solution #(p) of the boundary
problem [Egs. (7) and (8)] is member of this family for a
certain value of a. A qualitative analysis of possible trajec-
tories in the phase space, df/dp= 6, vs 6, makes it possible
to single out the desired solution among other trajectories.
Typical trajectories 6,(6) for the Cauchy problem are pre-
sented in the phase space portrait shown in Fig. 2. For arbi-
trary values of « the lines 6,(6) usually end by spiraling
around one of the attractors (7n,0), n=*1, *2,... But for
a certain value @ the line 6,(6) ends in the point (6,,0).
Thus, variation in parameter 0 <a<<cc [Eq. (9)] allows to
select the solutions of the boundary problem [Egs. (7) and
(8)]. The trajectories #(p) have arrowlike shape. Their core
sizes can be introduced in a manner commonly used for
magnetic domain walls'' and Skyrmions:?° as the point R,
where the tangent at the origin point intersects the line 6
= 0]’[’
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FIG. 2. (Color online) (a) Typical phase space trajectories for
the solutions of the auxiliary Cauchy problem [Egs. (7) and (9)]. (b)
Corresponding profiles 6(p). The shown trajectories pertains to the
case H=0, 6,=m/2. Due to the localized character of the vortex
states the equilibrium solutions 6(p) of the boundary problem [Egs.
(7) and (8)] are close to the localized profiles given by the (dashed)
separatrix lines in the phase portrait. [In (b) the values of the initial
slope, Eq. (9), are a=1.3(1), 1.25 (2), 1.193 (3) 1.923 (4, separa-
trix), 1.19 (5), 1.1 (6), and 1.05 (7).]

Ry = 0,(d6ldp);Ly= 6,/a. (10)

The solution of the boundary value problem [Egs. (7) and
(8)] can be readily found from a set of solutions of the
Cauchy problem 6(p;a). Namely, the solution is given by
the profile 6(p) which crosses line p=R; at the angle B
=arctan[g(0,R,)] [Fig. 2(b)]. The family of the solutions
0(p; @) of the Cauchy problem establishes the connections
between the equilibrium vortex size (Ryo 1/a), the disk ra-
dius R, and the anchoring energy g(6,R;). The trajectories
6(p; «) in Fig. 2(b) visually demonstrate how the vortex-core
size depends on the disk radius R; and the boundary anchor-
ing at the edges. This dependence should be noticeable in
small disks with radii comparable to the exchange length [,.
In real magnetic nanodisks one usually has R,>[..% In this
case the solutions of Egs. (7) and (8) are very close to sepa-
ratrix lines and the equilibrium core retains a fixed shape and
size almost identical to the separatrix solutions @& and 6,
largely independent from the radius R, and the anchoring
energy. In this connection see an interesting discussion on
vortex-core sizes in Ref. 33.

The independence of the core structure on boundary con-
ditions allows to neglect effects imposed by the anchoring
energy at the edges. Thus, we consider here the problem with
free boundary conditions, g(6,R,;)=0. Equations (7) and (8)
include two independent material parameters, D/D, and
H/H,. For fixed values of these control parameters the solu-
tions of the vortex profile have been derived by using the
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FIG. 3. (Color online) Typical solutions é(p) for different values
of D in zero applied field. The vortices widen when their chirality
c=1 coincides with the chirality of the DM interaction, D>0. In
the opposite case, D<<0, the vortex cores shrink, and the local
chirality x(p) changes its sign outside the vortex core (inset). The
core with unfavorable chirality is encircled by a ring with negative
local polarization and favorable chirality. For strong negative DM
coupling (D/Dy=-1.5) the circulation of the projected magnetiza-
tion in the plane changes the sense of rotation from positive in the
core to negative at the edge, §——m/2 at R,;.

following numerical procedure. The Cauchy problem Eqgs.
(7) and (9) was solved by the Runge-Kutta method. Through
repeated calculations for varying values «, the correct trajec-
tory was searched by ‘“shooting” at the boundary condition
value (8). After that the profiles have been improved by a
relaxation calculation using a finite-difference method for the
boundary value problem, for details see Ref. 20.

The chirality of a noncollinear structure can be measured
from the strength of the twist or helical rotation of the mag-
netization, m-(V Xm). For the radial vortex structure, the
local twist is given by the expression

do 1 .
7=|—+ —cos #sin 0]. (11)
dp p

The sign of this expression measures the local and helical
chirality in the structure. The comparison with Eq. (7) shows
that the local twist is equivalent to the local density of the
DM energy. In particular, for 0= 6= /2 and 6,>0 the lo-
cal chirality of the helical structure is positive. Alternatively,
the local chirality can be measured by the pw=z component of
the chiral current jﬂ=(1/(8712) €,mm-(d,mX gym). The
evaluation for the vortices structure gives a chirality

x=[6,/(2mp)]sin 6. (12)

Both the sign of 7and y can be used to determine the local
handedness in the vortex structure. In particular, a change in
slope for the profile from 6,>0 to 6,<0 changes the chiral-

ity of the magnetization structure (Fig. 3, inset).
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FIG. 4. (Color online) (a) Schematic representation of vortex
states with unfavorable chirality D <0 with corresponding magne-
tization profile (b).

III. RESULTS

In this section we present the results for the vortex-core
structures first from exact numerical calculations. Then an
analytical ansatz is discussed which offers qualitative insight
on the dependence and mechanism by which DM couplings
influence the core structure of vortices. Finally the stability
and static distortion modes of the vortex solutions are inves-
tigated.

A. Vortex solutions and magnetization profiles

Typical solutions of Eq. (7) for different values of D in
zero field are shown in Figs. 3 and 4. The effect of applied
perpendicular fields on the core structure is demonstrated in
Fig. 5. All reported results from the numerical solution of the
boundary problem [Egs. (7) and (8)] are for a fixed disk

27t/34
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FIG. 5. (Color online) Typical solutions 6(p) for different values
of the applied field and the reduced values of the Dzyaloshinskii
constant: D/Dy=0 (solid lines), 0.5 (dashed lines), and —0.5 (dash-
dotted lines).
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FIG. 6. (Color online) Magnetization profiles m_(p/l.) for dif-
ferent values of D. For D> 0 the perpendicular magnetized central
spot broadens with increasing D. For negative D an increasing |D|
widens the ring with negative m_ and compresses a central spot with
positive m, (inset).

radius R;=30[,. As discussed, the solutions well represent
the vortex-core properties for any R;>1,.

Vortex profiles 6(p) have an arrowlike shape. For D>0
the angles # vary monotonically from zero at the vortex axis
to 6, Eq. (5). In this case the magnetization has everywhere
a local chirality favored by the Dzyaloshinskii-Moriya inter-
actions. The core size widens with increasing D.

For negative D the magnetization in the core has unfavor-
able chirality. As a result in a certain point p, with 6(p,)
> @, the profile 6(p) goes through a maximum, 6> /2 in
zero field, the slope 6, becomes negative, and the magneti-
zation structure changes its local chirality. After that, in the
range p,<p<R, the polar angle 6(p) monotonically ap-
proaches the limiting value 6,,. As the magnitude of the nega-
tive D increases these vortices transform into those with “re-
verse” rotation to —6, (profile with D=-1.5 in Fig. 3). For
D <0 the vortex core consists of a narrow internal part (p
< p,) and the adjacent ring with a reverse magnetization ro-
tation (Fig. 4).

Peculiarities of the vortex profiles for different sign of D
are reflected in their magnetization distribution (Fig. 6).
Positive D increases the width of the central spot with m,
>0 (Fig. 6). As a result the total perpendicular magnetization
of the disk (m.)=[tém.(p)pdp is larger in vortices of the
right positive chirality. Negative D squeezes the central mag-
netization core with m,> 0 and widens the adjacent ring with
negative perpendicular magnetization (m.<<0) (Fig. 6, inset).
The overall behavior of the vortex-core sizes is summarized
in Fig. 7 by displaying the dependence of the core radii R,
as defined in Eq. (10), on the external field for different zero,
positive, and negative values of D. This dependence is weak
and almost linear up to large fields H/H,— 1, where the
transition into the homogeneously magnetized state takes
place. The inset of Fig. 7 shows that the dependence of R, on
D is almost linear both for zero field and for not too large
positive and negative fields.

PHYSICAL REVIEW B 80, 134410 (2009)

20T A H/H =
S N, 0.25
oS
1
101
-1 0.5
0 fm—— :
-1 0 1

FIG. 7. (Color online) The equilibrium sizes of vortex core Ry
[Eq. (10)] as functions of reduced magnetic field H/H, for different
values of D/D,. Inset shows R, as functions of D/D,, for different
values of the applied magnetic fields.

B. Linear ansatz and analytical results for a vortex core

Vortex profiles with strongly localized arrowlike cores
(Fig. 3) can be described by a linear ansatz for the core and
a flat part,

0=0,(p/R), 0<p<R,

0= 0;1, R<p<Rd (13)

Integration of the energy functional Eq. (7) with the ansatz
6(p) [Eq. (13)] leads to the following expression for the vor-
tex energy as a function of R:

ER)=KR*- AInR-CDR, (14)
where K=mg)(H)K, D=4mg,(H)D, A=2mg,(H)A,
and go(H)=[6:(1+2 cos? 6,) -3, sin 26,~7 cos’ 6,

+8 cos 6,—1]/(26;), g,(H)=(sin> 6,— 6, sin 26,+6;)/(46,),
g,(H)=sin? 6, and 6), is the solution of Eq. (5). In Eq. (14)
we omit terms independent of parameter R. Minimization of
energy [Eq. (14)] yields the equilibrium radii of the core for
positive and negative D

2
Ri,= u(H)le{ \/ <§0) +v(H) + ElD%'] , (15)

where u(H)=g,(H)/g,(H), v(H)=Vgo(H)g,(H)/g,(H). Par-
ticularly, at zero field u(0)=1.856, v(0)=0.988.

Equations (14) and (15) offer an important insight into the
physical mechanism that underlies the formation of the vor-
tex states. The exchange energy of the vortex core does not
depend on its size. This reflects a general property of vortex
and two-dimensional Skyrmionic states.!®3* The exchange
energy of the adjacent ring («<—A In R) favors the extension
of the vortex cores while the magnetic anisotropy energy
« KR? tends to compress them. For D=0 the balance be-
tween these energy contributions yields the equilibrium core
sizes R \A/K, equal for the vortices of opposite chirality.
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Finite values of D violate chiral symmetry of the solutions
(15) stabilizing vortices with different sizes of the core. The
difference between core sizes in vortices with different
chirality can be readily derived from Eq. (15),
AR= IR, - Ry =21, 2
=|R, - R,|=2l,—u(H). (16)
D,
The numerical calculations of AR also reveal a linear relation
AR=a(D/D,), where the coefficient a depends on the ap-
plied field. Particularly a(H/Ha) has the following values:
a(0)=2.4, a(0.25)=2.66, and a(-0.25)=2.24.

C. Radial stability of the solutions

To study radial stability of vortices we consider a small
arbitrary radial distortion &(p) of the solutions 6(p) of Egs.
(7) and (8) with the boundary conditions &0)=£&(R,)=0. We
insert 6(p)=6(p)+&(p) into energy functional Eq. (7) and
keep only terms up to second order in &(p). Because 6(p) is
the solution of the boundary value problem the first-order
term must vanish, and one obtains E=E©+E®, where E©
is the equilibrium energy, and

R dg 2
E(2)=27-rf [A(d—p) +G(p)§2}pdp (17)

0

with
A 1 D
G(p) = —cos 20— K cos 20+ EHMS cos O+ —sin 26.
p p

(18)

The stability problem is reduced to the solution of the
spectral problem for functional Eq. (17) (for details see Ref.
20). By expanding &(p) in a Fourier series

&(p) = X by sin[akd(p)], (19)
k=1

where a=1r/ 6, the perturbation energy E® [Eq. (17)] can be
reduced to the following quadratic form:

oo

E® =X Aubb, (20)
kj=1

with
R
A= f [Aa*kj cos(ak6)cos(aj6)
0

+ G(p)sin(ak@)sin(aj0)]pdp. (21)

Radial stability of the solution is determined by the sign of
the smallest eigenvalue \; of matrix A: if A\; >0 the solution
0(p) is stable with respect to perturbations &(p), and the so-
lutions are radially unstable if \; is negative.

Numerical calculations demonstrate radial stability of vor-
tex solutions for positive D in the whole range of the mag-
netic fields where these solutions exist. For H=0.25, D
=0.5 the first three excitation modes &(p) and their eigenval-
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FIG. 8. (Color online) The first three excitation modes for
D/Dy=0.5 and H/H,=0.25 and corresponding eigenvalues: \;
=2.966, \,=8.428, and \;=15.685. The structure is radially stable
because the smallest eigenvalue \; is positive. Inset shows the first
eigenvalue as a function of the applied field and for different values
of D/D,.

ues are shown in Fig. 8. The variation in the first eigenfunc-
tions and eigenvalues under the influence of the applied field
and D >0 is shown in Fig. 9. The lowest perturbation eigen-
functions are connected with an expansion or compression of
the vortices. The eigenfunctions correspond to certain mag-
netic modes associated with radial deformations of the vor-
tex core, which lead to an increase in the energy with respect
to the equilibrium vortex state. The eigenvalue of a mode

FIG. 9. (Color online) The first excitation mode & (p) at zero
field and for different values of the Dzyaloshinskii constant. Inset
shows &,(p) for D=0 and different values of the applied field. Cor-
responding eigenvalues N;(H/H,): X\;(-0.5)=0.9556, X\;(0)
=1.7124, and \(0.5)=2.3644.
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yields its excitation energy. In principle, these deformation
modes could be observable as dynamical excitations of vor-
tex cores.

For D <0 radial stable solutions exist only below certain
critical strength of the Dzyaloshinskii constant |D|<|D,,|.
For |D|>|D,,| vortex solutions are radially unstable. De-
tailed investigations of vortex structures for D<<0 beyond
this threshold and their stability is beyond this contribution
restricted to axisymmetric simple vortex structures.

IV. CONCLUSIONS

We have investigated the influence of induced
Dzyaloshinskii-Moriya interactions on the equilibrium vor-
tex parameters in magnetic nanodisks. Both numerical and
analytical calculations demonstrate strong dependencies of
the vortex structures (Fig. 3), magnetization profiles (Fig. 6),
and core sizes (Fig. 7) on the strength and sign of the
Dzyaloshinskii-Moriya coupling. Thus, by switching the
chirality of a vortex a change in the vortex profile, core size,
and the perpendicular magnetization takes place in the pres-
ence of a surface-induced Dzyaloshinskii-Moriya coupling.
Existing experimental imaging techniques should already be
sufficient to investigate these differences in vortex states
with different chirality.>~*+8927-3335-37 The calculated rela-
tions between strength of the Dzyaloshinskii-Moriya interac-
tions and vortex-core sizes [Fig. 7 and Egs. (15) and (16)]
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provide a method for experimental determination of the
Dzyaloshinskii constant D.

From the theoretical side our results obtained within a
simplified micromagnetic model can be extended. The calcu-
lated dependence of the radial eigenfunctions in Fig. 8 on the
Dzyaloshinskii-Moriya interactions indicates that excitations
of the equilibrium structures may be greatly affected by these
chiral couplings. Analysis of dynamics for such structures
and the possibility to excite such modes in resonance re-
quires solutions on the magnetization dynamics in nanodisks
with chiral interactions. This remains as a task for the future.
Such dynamical effects may provide a route to investigate
chiral symmetry breaking in film elements with vortex states.
Many recent experimental’>3%3 and theoretical®*~*! studies
have been performed on vortex-core dynamics and magneti-
zation reversal in nanodisks under the influence of magnetic
fields or current pulses. Effects of surface-induced
Dzyaloshinskii-Moriya interactions have not been considered
yet for these nanomagnetic processes. Our investigation on
static vortex structures is a first step towards detection of
these chiral couplings in magnetic nanodisks.
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