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Current-induced torques are commonly used to manipulate noncollinear magnetization configurations. In
this paper we discuss current-induced torques present in a certain class of collinear magnetic systems, relating
them to current-induced changes in magnetic anisotropy energy. We present a quantitative estimate of their
characteristics in uniform strained ferromagnetic �Ga,Mn�As.
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I. INTRODUCTION

The interplay between transport currents and magnetiza-
tion dynamics continues to be a major research topic in fer-
romagnetic metal spintronics.1 The current understanding of
this class of phenomena has been derived mainly from nu-
merous studies of spin-transfer torques �STTs�, which arise
when spin polarized currents traverse noncollinear magnetic
systems. STTs can be exploited to achieve current-induced
magnetization reversal and current-induced domain-wall mo-
tion, both of which have potentially important technological
applications.

There have been comparatively few studies of the influ-
ence of transport currents on magnetization in uniform ferro-
magnets, presumably because spin transfer torques vanish in
these systems. Yet, as pointed out independently by several
researchers,2–4 current-induced reorientation of magnetiza-
tion does occur in some uniform ferromagnets. The first ex-
perimental fingerprint of this phenomenon was uncovered by
Chernyshov et al.3 who demonstrated that an electric current
alters magnetization reversal characteristics in strained
�Ga,Mn�As films with a single magnetic domain.

STTs can be considered to be one member of a family of
current-induced torque �CIT� effects by which transport cur-
rents influence magnetization in ferromagnetic or
antiferromagnetic5 systems. The aim of this paper is to con-
tribute to the theoretical analysis of current-induced torques
in uniformly magnetized ferromagnets.

In Sec. II we study the effect responsible for this type of
torque, which we refer to as the ferromagnetic inverse spin-
galvanic effect.6,7 In nonmagnetic conductors the inverse
spin-galvanic effect �ISGE� refers to current-induced spin
density. Since a nonzero spin-density already appears in the
equilibrium state of a ferromagnet, the ferromagnetic inverse
spin-galvanic effect has a distinct experimental signature.
Specifically, we find that in gyrotropic ferromagnets the
magnetization direction is altered by a steady-state transport
current. At a conceptual level, we associate this reorientation
with a change in magnetic anisotropy in the presence of a
transport current. An important implication of this connec-
tion is that the magnetic anisotropy energy in the transport
steady state of a ferromagnet which exhibits the ISGE is not
invariant under magnetization reversal, essentially because
the applied current breaks time reversal invariance. At a
practical level, we provide a concise analytical expression
for the current-induced change in the magnetic anisotropy.

This expression is suitable for evaluation from first prin-
ciples because it requires knowledge of only the band struc-
ture of the ferromagnet and the lifetime of the Bloch states.
At a technical level, our theory allows for the spatial inho-
mogeneities that inevitably occur in the magnitude of the
ferromagnet’s exchange field at atomic lengthscales.

In Sec. III we carry out quantitative calculations for the
ISGE of strained �Ga,Mn�As using a four-band Kohn-
Luttinger model. This calculation directly addresses the ex-
periment by Chernyshov et al.3 and corroborates their inter-
pretation of the data. By computing the anisotropy field both
in the absence and in the presence of an electric current, we
find that in �Ga,Mn�As magnetization reversal may in prin-
ciple be achieved solely by electric means: the required criti-
cal current densities are in the order of 106–107 A /cm2 and
depend on the strain, Mn concentration and hole density.
Section IV contains a brief summary and presents our con-
clusions.

The main conclusions of our work coincide with those
reached by Manchon and Zhang in their independent and
previously published work described in Ref. 2. Yet, our
analysis highlights aspects that have not been emphasized
previously. First, we assert that in ferromagnets with inver-
sion symmetry, the current-induced spin-density vanishes to
all orders in the strength of the spin-orbit interaction. Sec-
ond, when evaluating the current-induced spin polarization
we include a contribution from interband coherence which
can become quantitatively important in disordered ferromag-
nets such as �Ga,Mn�As. Third, we identify the current-
induced transverse spin-density associated with the ISGE in
ferromagnets as a consequence of a change in magnetic an-
isotropy in the presence of an electric current. We thus pro-
mote transport currents to the same status as temperature,8

gate voltages,9–11 strain,12,13 and chemical processes,14 all of
which are well-established control parameters for the tuning
of magnetic anisotropy.

II. THEORY OF THE FERROMAGNETIC INVERSE
SPIN-GALVANIC EFFECT

In nonmagnetic metals or semiconductors that are gyro-
tropic, a dc charge current is generically accompanied by a
nonzero spin polarization.6 This phenomenon is sometimes
referred to as the inverse spin-galvanic effect.7 Since spin is
an axial vector and current is a polar vector, they can be
coupled only by an axial tensor of second rank. The matrix
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elements of this tensor are constrained by the symmetry of
the underlying crystal. For instance, Neumann’s principle15

can be used to show that ISGE vanishes for all centrosym-
metric crystals as well as for some noncentrosymmetric crys-
tals. This analysis leaves us with 18 point groups which al-
low a nonzero ISGE; the crystals containing these
symmetries are called gyrotropic. In essence all gyrotropic
crystals exhibit optical activity, and “gyrotropic” is often em-
ployed as a synonym of “optically active.16” In crystals that
are not gyrotropic per se, gyrotropy may still be induced via
uniaxial deformation of a single crystal or size quantization
in a structure with quantum wells or a periodic potential
forming minibands in a superlattice.17

Because of the advent of spintronics and subsequent at-
tempts to control spin polarization by electric means, even in
paramagnetic materials, the ISGE has received widespread
experimental18 and theoretical19 attention. The ISGE is
purely a consequence of symmetry since �i� current, which is
odd under time reversal, is the dissipative response of a con-
ductor to a dc electric field, �ii� spin is also odd under time
reversal and therefore allowed as part of the dissipative re-
sponse, and �iii� axial vectors and polar vectors are coupled
in gyrotropic materials. The direction of the carriers’ spin is
determined by the direction of the electric field as well as by
the axis along which inversion symmetry is broken. For
paramagnetic metals in particular it is relatively straightfor-
ward to deduce the relative orientation between the applied
electric field and the induced spin polarization from symme-
try arguments. For instance, the Hamiltonian for a 2DEG
with Rashba spin-orbit interaction is invariant under a 90°
rotation around the ẑ direction �normal to the 2DEG� as well
as under a reflection with respect to the plane perpendicular
to ŷ. According to Neumann’s principle, the tensor relating
the electric field and the spin polarization must be invariant
under the above-mentioned symmetry operations. From this
requirement it follows that the spin polarization in this ex-
ample must be perpendicular to the current and to the ẑ di-
rection.

The ISGE is sometimes viewed as a possible route toward
the development of spintronics effects in paramagnetic ma-
terials that are as robust as effects like giant magnetoresis-
tance that occur only in ferromagnetic materials. Partly be-
cause spin-orbit interactions tend to be fairly weak, it appears
to be difficult to make spin-galvanic effects in normal metals
useful. In this section we turn the tables on this strategy by
concentrating on the inverse spin-galvanic effect in magnetic
conductors.

In uniformly magnetized ferromagnets the transport cur-
rent is spin polarized because the conductivities of majority
and minority spin channels are different. This familiar fact is
unrelated to the ISGE. Since spin polarization is already
present in the thermodynamic equilibrium state of a ferro-
magnet, the ferromagnetic ISGE is manifested not by the
presence of a nonzero spin density but instead by a change in
magnetization direction in the nonequilibrium steady state
which is dependent on the magnitude and direction of the
electric field. In this paper we formulate a theory of the ISGE
in ferromagnets by evaluating the torque which acts on the
collective magnetization of a magnetic conductor due to
spin-orbit interactions in the presence of a transport current.

When the current is set to zero, the torque we evaluate van-
ishes along easy �and hard� magnetization directions and is
normally viewed20 as a precessional torque due to magneto-
crystalline anisotropy fields. These torques are in turn asso-
ciated with the magnetization-direction dependence of the
magnetocrystalline anisotropy energy. At zero current, the
anisotropy torques must change sign when the magnetization
direction is reversed because time reversal symmetry re-
quires that the anisotropy energy be invariant under reversal.
The ferromagnetic ISGE in gyrotropic crystals may be
viewed as a change in anisotropy torque due to a transport
current. Significantly, the ISGE torques are not odd under
magnetization reversal.

The ferromagnetic ISGE is reminiscent of the magneto-
electric phenomena that have been extensively studied in
multiferroic materials,21 i.e., materials in which magnetism
coexists with ferroelectricity. A common characteristic of
multiferroic perovskites is the presence of canted magnetism
that stems from the Dzyaloshinskii-Moriya interaction. Since
the direction of canting is determined by the symmetry of the
crystal, one can envisage22 scenarios in which an electric-
field-mediated reversal of the ferroelectric polarization
causes a simultaneous reversal of the canting angle or of the
magnetization. Another interesting property of multiferroic
materials is the coupling between ferroelectricity and
antiferromagnetism.23 This coupling makes it possible to
switch the magnetization of an exchange-biased ferromagnet
by the application of an electric field. In spite of the contex-
tual similarities, there are fundamental differences between
the aforementioned phenomena and the ferromagnetic ISGE.
For one thing, ferroelectricity occurs only in insulators while
the ISGE occurs only in conductors.

We evaluate the ferromagnetic ISGE microscopically
within the framework of linear response theory �Fig. 1�a��,

�si = �S,E
i,j Ej , �1�

where �si is the current-induced spin density �i� �x ,y ,z��, E
is the applied electric field, and � the dissipative spin-current
response function,

�S,E
i,j =

1

2�
Re �

k,a,b
sa,b

i �k�vb,a
j �k��Gk,a

R Gk,b
A − Gk,a

R Gk,b
R � . �2�

This linear response theory expression applies for time-
independent uniform applied electric fields, and may be de-
rived in the standard way25 by analytically continuing the
imaginary part of lim�→0 �̃S,E

i,j /�, where

S v.A(a)

a

b

FIG. 1. Feynman diagram that encodes the transverse spin den-
sity induced by a current �ferromagnetic ISGE effect� which results
in a change in the steady-state magnetization direction. a and b are
band labels for the quasiparticle and the quasihole.
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�̃S,E
i,j = − T �

i�nk,a,b
sa,b

i �k�vb,a
j �k�Gk,a�i�n�Gk,b�i�n + i�� ,

�3�

�n= �2n+1��T is the Matsubara frequency at temperature T
and � is the frequency of the external field. In the zero fre-
quency limit the real part of �̃ is cancelled out by the dia-
magnetic response, which reflects the fact that in nonsuper-
conducting metals the current induced spin density is
dissipative. In Eq. �2� sa,b

i �k� and vb,a
j �k� are the k-dependent

matrix elements of the spin and velocity operators �Oa,b�k�
�	a ,k
O
b ,k�� between Bloch states �
a ,k�� in bands a and
b. Note that the Bloch states are in general spinors in which
orbital and spin degrees of freedom are entangled. Gk,a

R�A�

=1 / ��F−�k,a+ �−�i /2�k,a� is the retarded �advanced� Green’s
function evaluated at the Fermi energy �F, and �k,a is the
quasiparticle lifetime. For simplicity we have ignored disor-
der vertex corrections to both velocity and spin operators. In
the numerical calculations discussed in Sec. III we will in
addition take the quasiparticle lifetime to be a phenomeno-
logical parameter which is independent of momentum and
band labels.

As we discuss below, the transverse components of the
spin-density �i.e., the components that are perpendicular to
the direction of the ferromagnet’s exchange field� are directly
related to the anisotropy field, which exerts a torque on the
macrospin. On the same footing, the current-induced contri-
bution to the transverse spin density is directly related to the
current-induced contribution to the anisotropy field.

For a ferromagnet with inversion symmetry �S,E=0 irre-
spective of spin-orbit interaction strength, for essentially the
same reasons as the ISGE vanishes in normal conductors
with inversion symmetry.26 This property can be verified by
recognizing that in presence of inversion symmetry the
Hamiltonian of the ferromagnet is invariant under k→−k,
which implies that Gk=G−k, sa,b�k�=sa,b�−k� and va,b�k�
=−va,b�−k�. Consequently, the right-hand side of Eq. �2�
vanishes after summing over all k. From a crystal symmetry
classification standpoint there are 21 noncentrosymmetric
crystal classes, among which three �Td, C3h, and D3h� are not
gyrotropic. The occurrence of the ISGE is therefore re-
stricted to 18 crystal classes.7

The main objective of this section is to relate the ferro-
magnetic ISGE to a current-induced change in the magnetic
anisotropy field, yet before we do so it is beneficial to pave
the way by reviewing the nuances of magnetic anisotropy in
electric equilibrium. In the absence of currents, magnetic an-
isotropy describes the dependence of the free energy of a
ferromagnet on the direction of its magnetization.27 Magnetic
anisotropy originates from28 magnetic dipolar interactions
and spin-orbit interactions. The former lead to shape aniso-
tropy in nonspherical samples while the latter produce mag-
netocrystalline anisotropy by communicating the lack of ro-
tational symmetry in the crystalline lattice to the spin degrees
of freedom. In practice, magnetic anisotropy reveals itself in
dynamical processes such as ferromagnetic resonance
through an anisotropy field that forces the magnetization to
precess unless it is along an easy or hard axis, i.e., along a
direction in which the anisotropy energy is minimized or

maximized. This precessional magnetization dynamics is
properly characterized by the Landau-Lifshitz equation,

�t�̂=�̂�Heff, where �̂ is the direction of the ferromagnet’s
collective dynamical variable �which may be chosen to be
either the magnetization or the ferromagnetic exchange field�
and Heff is an effective magnetic field, taken here to include
reactive as well as dissipative processes.24,29 The anisotropy
field may then be defined as the contribution to the nondis-
sipative part of the effective magnetic field which survives in
the absence of true magnetic fields

Han = −
1

S0

�EGS

��̂
, �4�

where EGS is the ground state energy of the ferromagnet in
equilibrium �we take zero temperature throughout� and S0 is
the total spin �product of the magnitude of the magnetization
and the volume of the sample� of the ferromagnet.

When we discuss �Ga,Mn�As in the following section, we
will use spherical coordinates �Fig. 2� in which the aniso-
tropy field may be written as

Han = H		̂ + H

̂ , �5�

where 	̂ and 
̂ are the azimuthal and the polar unit vectors,
respectively. The longitudinal component of the anisotropy

field is irrelevant because �̂��̂=0.
In order to elaborate on the microscopic theory of the

anisotropy field in a concrete way we work within the spin-
density-functional theory of a magnetic material, in which
the effective Hamiltonian that describes the theory’s Kohn-
Sham quasiparticles can be expressed as

H = Hkin + Hso − � · s . �6�

In Eq. �6� �=�0�r��̂ is the exchange effective magnetic

field of the ferromagnet, �̂ is the direction of the exchange
field, s is the quasiparticle spin operator, Hso captures spin-
orbit interactions, and Hkin collects all spin-independent
terms in the Kohn-Sham Hamiltonian. In this work we char-
acterize the macrostate of a ferromagnet by specifying the

direction of the exchange field. �̂ is assumed to be uniform
in space but the magnitude �0�r� of the exchange field
is allowed to have spatial dependence at the atomic

� � � � � � � � � �� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

θ

φ

∆

[010]

[100]

[001]

FIG. 2. Cartoon of a magnetic thin film �shaded area�. The ex-
change field � is an effective magnetic field which is parallel to the
magnetization only when it points along easy or hard crystalline
directions. The orientation of � can be specified by the polar and
azimuthal angles 
 and 	. The relationship between the direction of
� and the direction of magnetization is altered by an electric current
in gyrotropic ferromagnets.
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lengthscale.24 We treat �̂ as an external parameter. For each

value of �̂, one must evaluate the ground state energy of the
ferromagnet by solving the Kohn-Sham equations self-

consistently. The dependence of this energy on �̂ then de-
fines an anisotropy field. We neglect dipolar interactions
since they are not directly influenced by currents and can
normally be cleanly separated from magnetocrystalline an-
isotropy.

It follows that the zero-temperature anisotropy field is
given by

Han = −
1

S0
�
k,a

��k,a

��̂
fk,a. �7�

In Eq. �7� we have used EGS=�k,a�k,afk,a, where �k,a is the
energy of the Bloch state quasiparticles and fk,a=���F
−�k,a� is the equilibrium occupation factor at zero tempera-
ture. Admittedly, the sum of the single-particle Kohn-Sham
eigenvalues does not yield the actual ground state energy of
the ferromagnet because it neglects the double-counted Har-
tree and exchange-correlation contributions. However, we
have invoked the force theorem which states that the extra
terms will cancel when one takes the difference in total en-
ergies between two macrostates with noncollinear exchange
fields.30 Furthermore in Eq. �7� we have exploited the fact
that

� �k,a
� fk,a

��̂
= �F�

k,a

� fk,a

��̂
= 0, �8�

since the number of electrons in the ferromagnet is invariant
under rotations of the magnetization. This implies a

�̂-dependence of the Fermi energy,31,32 which is taken into
account in the calculations of Sec. III.

Equation �7� may be rewritten in a more informative man-
ner using the Feynman-Hellmann theorem, which implies
that

��k,a

��i
= 	a,k


�H
��i


a,k� = − 	a,k
�0�r�si
a,k� . �9�

Then,

Han =
1

S0
�
k,a

	a,k
�0�r�s
a,k�fk,a, �10�

where 	a ,k
�0�r�s
a ,k���dr�0�r�	a ,k 
r�s	r 
a ,k�. Note

that both �k,a and 
a ,k� depend on �̂. For the envelope-
function model we use in the next section, the magnitude of
the exchange field is a spatially constant �0 and the torque
exerted by the anisotropy field is simply equal to the �0
times the transverse spin-density divided by the total spin of
the ferromagnet. In ab initio calculations, the magnitude of
the exchange field always varies substantially on an atomic
scale and, as we have emphasized previously,24 this variation
must be accounted for. In this case the anisotropy field is
evaluated by integrating the product of the exchange field
magnitude and transverse spin density over space.

Equation �10� may be separated into azimuthal and polar
components

H	 =
1

S0
�
k,a

	a,k
ẑ · �� � s�
a,k� ,

H
 =
1

S0
�
k,a

	a,k
	̂ · �� � s�
a,k� . �11�

If we neglect spatial variations of �0�r�, Eqs. �10� and �11�
indicate that the torque created by the anisotropy field will
vanish when the �spin� magnetization �	s�f is parallel to the
exchange field. Conversely, whenever the direction of mag-
netization is misaligned with �, the anisotropy field will be
nonzero and will produce a torque on the magnetization. In
transition metals spin-orbit interactions produce a misalign-
ment between the exchange field and the magnetization, un-

less �̂ is pointing along some special crystalline direction
that corresponds �by definition� to an easy or hard axis. A
similar picture applies to local-moment ferromagnets as well,
where due to spin-orbit coupling the direction of the local
moments is generally misaligned with the direction of the
itinerant spin density.

One of the targets of this section is to present formulas
that are useful for researchers working on both model sys-
tems as well as ab initio electronic-structure calculations.
Therefore, we digress to explain that Eq. �10� is equivalent to
the alternative expressions found in ab initio studies. In first
principles magnetic anisotropy theory31,33 Eq. �9� has been
approached from a different perspective. In such approach it
is customary to choose the spin quantization axis along the
direction of magnetization, so that � ·s��0sz is independent

of �̂. When this choice is made, the spin-orbit term in the

Hamiltonian becomes explicitly �̂-dependent. Consequently,

��k,a

��̂
= 	a,k


�Hso

��̂

a,k� . �12�

The anisotropy field is then evaluated combining Eq. �12�
with the force theorem30 and a full-potential electronic-
structure calculation.33 Of course, the final result is invariant
with respect to the choice of the spin quantization axis.
In order to prove the equivalence of Eqs. �9� and �12�
it is convenient to rewrite34 Eq. �12� as �� /�	
= 	�	�exp�is · ẑ	�Hso exp�−is · ẑ	��� 
0 and �� /�


= 	�
�exp�is · 	̂
�Hso exp�−is · 	̂
��� 
0. To see that these ex-
pressions agree with Eq. �11� note that �Hso ,s�= �H−Hkin
+� ·s ,s�, that �Hkin ,s��0, and that 	a ,k
�H ,s�
a ,k�= ��k,a
−�k,a�	a ,k
s
a ,k�=0. In this way the derivative of energy
with respect to magnetization direction can be related to the
exchange term in the Kohn-Sham equation rather than to the
spin-orbit coupling term. Equations �10� and �11� are recov-
ered after using �si ,sj�= i�ijksk to simplify 	�� ·s ,s��.

We now show that the Green’s function expression we use
to evaluate the ferromagnetic ISGE �Eq. �3�� corresponds to
the current-induced change in Eq. �10�. We begin by men-
tioning that the application of an electric current can alter the
magnetic anisotropy field, which leads to a current-induced
torque on the magnetization. For an arbitrary orientation of
the exchange field, the change is given by
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�Han =
1

S0
�
k,a

��	a,k
�0�r�s
a,k��fk,a

+
1

S0
�
k,a

	a,k
�0�r�s
a,k��fk,a. �13�

Adopting the relaxation-time approximation, �f reads

�fk,a = E · va,a
� fk,a

��k,a
�k,a, �14�

and for the change in the matrix elements we use

��	a,k
�0s
a,k�� = 	a,k
�0s��
a,k�� + c.c. �15�

with

��
a,k�� =
ei�t

i�
�
b�a


b,k�
	b,k
v · E
a,k�
�k,a − �k,b + �

+ �� → − �� .

�16�

In Eq. �15� we have assumed that the magnitude of the ex-
change field is unaffected by the electric field. In Eq. �16� we
have once again appealed to linear response theory and have
used the fact that the electric field is uniform.

Equations �14� and �16� highlight the two ways in which a
current alters the magnetic anisotropy field. Equation �14�
captures the shift in the effective quasiparticle energies due
to acceleration by an electric field, while Eq. �15� describes
the modification of the quasiparticle wave functions. As will
become clear below the former is associated with intraband
contributions to the anisotropy field whereas the latter may
be traced to the interband contributions. Interband contribu-
tions are often neglected2,26 because they are parametrically
smaller by a factor of scattering rate �−1 in good conductors.
However, as we show in the next section they may become
quantitatively significant in disordered magnets like the �III,
Mn�V materials.35 Admittedly, other corrections with the
same parametric dependence on disorder strength could also
be present—but the description of these would require a de-
tailed characterization of the disorder potential and a more
sophisticated transport theory. The effect we retain is analo-
gous to the intrinsic contribution to the anomalous Hall
effect.36 Substituting Eqs. �14�–�16� in Eq. �13� we obtain

�Han = �Han
intra + �Han

inter,

where

�Han
intra =

1

S0
�

k,a=b

��0�r�s�a,b�vb,a · E�
� fk,a

��k,a
�k,a,

�Han
inter =

1

i�

1

S0
�

k,a�b

��0�r�s�a,b�vb,a · E�

�
fk,a − fk,b

�k,b − �k,a + � + i
. �17�

In the expression for �Han
inter we have selected the coefficient

of exp�i�t� in the perturbation expansion, have neglected
disorder scattering and have allowed for a small positive
imaginary part in the frequency.

Several remarks are pertinent in regards to our derivation
of the interband component. First, it should be noted that in
the zero frequency limit the imaginary part of �Han

inter gets
cancelled by the diamagnetic contribution, in such a way that
the anisotropy field induced by a dc current is finite and real.
Second, it is instructive to elaborate on the real part of
�Han

inter,

�Han
inter =

− �

S0�
�

k,a�b

Re���0s�a,b�vb,a · E���fk,a − fk,b����b,a

+ �� +
1

S0�
�

k,a�b

Im���0s�a,b�vb,a · E��fk,a
2�

�2 − �b,a
2 ,

�18�

where �b,a��k,b−�k,a. From Eq. �18� it is clear that �Han
inter

remains finite as �→0. When disorder is included in the
above expressions, the contribution from the second line in
Eq. �18� scales as �−1 and thus is unimportant when the
broadening of the energy bands due to impurity scattering is
small compared to the energy difference between states con-
nected by interband transitions. In contrast, the third line
scales as �0, and therefore it supplies the bulk of the inter-
band contribution in weakly disordered ferromagnets.

Recognizing the fact that the integration of equal-band
Green’s functions gives rise to a factor of �, �Han

intra yields the
intraband �a=b� piece of Eq. �2� modulo a factor of �0 /S0.
Similarly, �Han

inter brings in the interband �a�b� part of Eq.
�2� modulo a factor of �0 /S0; in order to verify this we
recall37 that

�
k

fk,a − fk,b

�k,b − �k,a + i�
= − T �

�n,k
Ga�i�n,k�Gb�i�n + i�,k� .

�19�

In sum, we find

��Han
i

�Ej =
1

2�S0
Re �

k,a,b
	a,k
�0�r�si
b,k�	b,k
v j
a,k��Gk,a

R Gk,b
A

− Gk,a
R Gk,b

R � , �20�

which agrees with the ISGE expression for the current-
induced spin density �Eq. �2�� except for an overall normal-
ization factor �1 /S0� and the fact that the spin-operator is
weighted by an spatially inhomogeneous magnitude of the
exchange field.

If the spatial dependence of �0�r� is negligible �as it will
be in the model studied in the next section�, Eq. �20� may be
rewritten in a more compact way,

�S,E
i,j =

S0

�0

��Han
i

�Ej . �21�

where �S,E is the spin-current susceptibility introduced in Eq.
�2�. Equation �21� proves that the ferromagnetic ISGE de-
scribes the change in the magnetic anisotropy field due to a
current. In other words, ferromagnetic ISGE determines how
an electric current changes the location of the extrema in the
micromagnetic energy functional. This is the central idea of
this section. In hindsight, Eq. �21� could have been derived
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directly from Eq. �10�; however, the longer derivation pre-
sented above helped us grasp the distinct physical origin of
the intraband and interband contributions.

With the aim of making Eq. �20� more manageable for
first principles calculations, we will ignore the interband con-
tribution as well as the GRGR term. Both omissions are jus-
tified in most metallic ferromagnets,38 though less so in dis-
ordered ferromagnets such as �Ga,Mn�As �see next section�.
Under this approximation Eq. �20� simplifies into

��Han
i

�Ej 
1

S0
�
k,a

	a,k

�Hso

��i

a,k�	a,k
v j
a,k�

� fk,a��̂�
��k,a

�k,a,

�22�

where we have reinserted 	a
�0�r�s
a�= 	a
�Hso /��̂
a�.
While approximate, Eq. �22� may provide a valid platform to
explore current induced magnetization reversal in real gyro-
tropic ferromagnets with a single magnetic domain and arbi-
trary band structure. In the next section we will describe in
detail how a large �Han can produce a large reorientation of
the magnetization.

As a final sidenote, we point out that this section has
concentrated on evaluating the change in magnetic aniso-
tropy under a perturbation represented by v ·A, where A is
the electromagnetic vector potential. The anisotropy is evalu-
ated by calculating the change in the expectation value of
�0s, thus leading to a rather standard linear response func-
tion calculation. We could in the same way calculate the
change in the transverse spin-spin response function due to
an electric field as indicated in Fig. 3, in order to determine
how small amplitude magnetic fluctuations are altered. If,
however, we are interested only in uniform magnetization
dynamics no additional information is obtained by doing this
calculation. The key point is that the response to a transverse
field B� is already built in our expression for the equilibrium
anisotropy field �Eq. �10��, to all orders in B�. In other
words, the reference �unperturbed� macrostate to which we
apply a current contains a magnetization that is arbitrarily
misaligned with the exchange field. Hence, Eq. �21� along
with Eq. �10� offers a complete account of the nonequilib-

rium magnetic anisotropy of uniform magnetic states in the
presence of a transport current.

III. CURRENT-DRIVEN MAGNETIZATION REVERSAL
IN MONODOMAIN (Ga,Mn)As

Magnetoelectric phenomena in dilute magnetic
semiconductors35 such as �Ga,Mn�As have attracted special
attention because these materials are more compatible with
current microelectronics technology than metals. In addition,
electric field control of magnetism has turned out to be more
feasible in �Ga,Mn�As than in conventional dense-moment
metallic ferromagnets because of their small magnetization,
high carrier spin polarization, strong spin-orbit interactions,
and carrier-mediated ferromagnetism.9,39,40 In particular, the
recent experiment3 by Chernyshov et al. on �Ga,Mn�As wa-
fers under compressive strain has demonstrated the ability of
transport currents to reversibly assist the reorientation of
magnetization in single-domain ferromagnets. As we demon-
strate here this effect is dependent on having both spin-orbit
interactions and broken inversion symmetry. In this section
we compute the change in the magnetic anisotropy due to an
electric current for a realistic model of �Ga,Mn�As. Our cal-
culation is directly relevant to the experiment of Chernyshov
et al. Our results corroborate their interpretation of the data
and predict the possibility of all-electric magnetization
switching in �Ga,Mn�As. Our analysis is limited to zero tem-
perature and neglects the shape anisotropy, which for typical
Mn doping concentrations is 10–100 times weaker than in
conventional ferromagnets.

The dependence of the magnetic anisotropy of �Ga,Mn�As
on doping, external electric fields, temperature and strain has
been successfully explained41–43 by combining �i� a mean-
field theory of the exchange coupling between localized Mn
moments and valence band carriers with �ii� a phenomeno-
logical four or six band envelope-function model in which
the valence band holes are characterized by Luttinger, spin-
orbit splitting and strain-energy parameters. The results pre-
sented below predict the rate at which these fields change
with external electric field.

In line with this we adopt the following Hamiltonian for
Ga1−xMnxAs,

H = HKL + Hstrain + S · � . �23�

HKL is the four-band Kohn-Luttinger Hamiltonian44 with
Luttinger parameters �1=6.98, �2=2.1 and �3=2.9. S is the
spin operator projected onto the J=3 /2 total angular momen-

tum subspace at the top of the valence band. �=�0�̂

=JpdSNMn�̂ is the exchange field, �̂ denotes the orientation
of the local moments, Jpd=55 meV nm is the p-d exchange
coupling parameter, S=5 /2 is the spin of the Mn ions, and
NMn=4x /a3 is the Mn concentration �a=0.565 nm is the lat-
tice constant of GaAs�. This four-band model is expected to
be adequate for small and intermediate Mn doping strengths.
Hstrain is the strain Hamiltonian3,45,46 given by

S S
v.A

S S
v.A

+ +...S

FIG. 3. Spin response to a transverse magnetic field B� in the
presence of a current: perturbation theory to all orders in B�. The
quasiparticles �quasiholes� in these diagrams diagonalize a Hamil-
tonian whose exchange field is pointing along an easy direction and
B� is by definition perpendicular to this easy direction. Provided
that in Eq. �10� we take the exact eigenstates of the mean-field
Hamiltonian �within which the exchange field need not be pointing
along an easy direction�, all the diagrams of this figure are implicit
in the diagram of Fig. 1. In particular, the ferromagnetic ISGE
captures the influence of currents on ferromagnetic resonance.
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Hstrain = − b��Jx
2 −

J2

3
��xx + c.p.� + C4�Jx��yy − �zz�kx + c.p.� ,

�24�

where J is the total angular momentum �J=3S by the
Wigner-Eckart theorem�, �i,i are diagonal elements of the
stress tensor, b=−1.7 eV is the axial deformation potential
and the parameter C4=5 eV Å captures the strain-induced
linear in k spin-splitting of the valence bands in paramag-
netic GaAs. In Eq. �24� the notation c.p. stands for cyclic
permutations and �x,x=�y,y ��z,z for �001� growth lattice-
matching strains. The term proportional to C4 is crucial for
the occurrence of the ferromagnetic ISGE because it breaks
inversion symmetry �we are neglecting the intrinsic lack of
inversion symmetry of the zinc-blende structure, which is
relatively inconsequential�, and it introduces gyrotropy. �A
bulk, unstrained zinc-blende crystal is not gyrotropic because
it corresponds to the Td symmetry point group.� Eq. �24� may
be simplified to

Hstrain = − b�ax�Jz
2 −

J2

3
� + C4�ax�Jyky − Jxkx� , �25�

where �ax=�zz−�xx is the purely axial strain component. In
this paper we take �ax�0 �compressive strain�, which applies
when �Ga,Mn�As is grown on top of a GaAs substrate.

Using Eqs. �10�, �21�, and �23� we evaluate the magnetic
anisotropy field both with and without electric current;
the results are highlighted in Figs. 4–8. Figures 4 and 5
correspond to electrical equilibrium and illustrate
H
=−1 /S0�k,a���k,a /�
�fk,a for 	=0 and H	

=−1 /S0�k,a���k,a /�	�fk,a for 
=� /2, respectively. The ex-
trema of the micromagnetic energy functional are character-
ized by H	=H
=0 and by inspection we locate them at 

=0 and �
 ,	�= �� /2,n� /4� where n=0,1 ,2 , . . .. For our pa-
rameters �see figure captions� the energy minima that define
metastable magnetic configurations are found at �
 ,	�
= �� /2,n� /2�. That is to say, the easy directions correspond

to �100�, �010�, �1̄00�, and �01̄0�, which are contained in the
plane of the �Ga,Mn�As wafer. For later reference, we con-
sider an initial condition in which the magnetization is point-
ing along �100�. If a small static perturbation tilts it toward
�110�, the negative anisotropy field �H	�0 for 	�0� cre-
ates a torque that will turn the magnetization back to �100�.
Of course, it is the combined action of the anisotropy field
and damping what ultimately drives the system to the mini-
mum energy state; in absence of damping the magnetization
would keep precessing indefinitely.

[001] [101] [100] [1,0,−1] [0,0,−1]
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FIG. 4. �Color online� Equilibrium anisotropy field �meV per
spin� in �Ga,Mn�As for 	=0, and 
� �0,��. The parameters used
for this calculation were: Mn fraction x=0.08, hole concentration
p0.15 nm−3, �F�=3, and axial strain �ax=−0.5%. These aniso-
tropy field results were evaluated using the model explained in the
text.
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FIG. 5. �Color online� Equilibrium anisotropy field �meV per
spin� in �Ga,Mn�As for 
=� /2 and 	� �0,��. The parameters are:
Mn fraction x=0.08, hole concentration p0.15 nm−3, �F�=3, and
axial strain �ax=−0.5%. These results were evaluated using the
model explained in the text. Due to strain, the in-plane anisotropy is
notably weaker than the out-of-plane anisotropy represented in the
previous figure.
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FIG. 6. �Color online� Change in the magnetic anisotropy field
of �Ga,Mn�As �in meV per spin� due to the inverse spin-galvanic
effect, for an electric field of 1 mV/nm along �010�. The parameters
are: Mn fraction x=0.08, hole concentration 0.25 nm−3, �F�=2,
and axial strain �ax=−1%. We compare between interband and in-
traband contributions: in contrast to the case of good metals, the
interband contributions are not negligible in �Ga,Mn�As. For the
present case, had we neglected the interband contribution the mini-
mum electric field needed to reorient the magnetization by 90°
would be off by approximately 20%. The sum of interband and
intraband pieces gives rise to a smooth curve that reflects the
Dresselhaus symmetry of the axial strain. Reversing the sign of the
axial strain �i.e., making it tensile� leads to a sign reversal of �H	.
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Figure 6 illustrates how an electric current along �010�
alters the azimuthal anisotropy field for fixed 
=� /2. Al-
though the polar component of the anisotropy field �H
� too
generally changes in presence of a current, it is not pertinent

to the �100�→ �010� or �100�→ �1̄00� magnetization reorien-
tations that we are interested in. The cosinelike shape in Fig.
6 is consistent with the Dresselhaus symmetry of the C4 term
in the strain Hamiltonian. If the system had a perfect

Dresselhaus symmetry the change in the micromagnetic en-
ergy functional under an electric current j would read

�EGS � C4�ax��yjy − �xjx� , �26�

which means that a current along �010� ��100�� would tilt the

steady-state magnetization direction along �010� ��1̄00��. Us-
ing �x=sin 
 cos 	 and �y =sin 
 sin 	 it follows that �H	

� jy cos 	+ jx sin 	, and hence a cosinelike dependence in 	
is indeed expected for a current along �010�. We have veri-
fied that a current along x gives rise to a sine-like depen-
dence with the appropriate sign. Nevertheless, Eq. �26� is not
exact because the magnetization vector introduces another
preferred direction; for instance, we find that an electric field
pointing along ẑ �i.e., �001�� can also alter the steady-state
spin orientation. This effect, which vanishes in the paramag-
netic limit, highlights one instance in which the ferromag-
netic and paramagnetic ISGEs differ. Another attribute of
Fig. 6 is that it determines the quantitative importance of
interband contributions to the current-induced spin density in
�Ga,Mn�As. Although normally neglected, interband transi-
tions become quantitatively significant in strongly disordered
ferromagnets. In particular, interband and intraband contribu-
tions are largely indistinguishable in ferromagnets with �0�
�1 because in such case both contributions scale like �.47

We note parenthetically that neither intraband nor interband
contributions display the smooth sinusoidal shape portrayed
by their sum. In addition, we remark that reversing the sign
of the axial strain �i.e., making it tensile� leads to a sign
reversal of �H	 without substantial changes in its
magnitude.48

Figure 7 demonstrates that a sufficiently strong current is
able to rotate the magnetization by 90° or 180°. We explain
this property by considering the case in which the equilib-
rium magnetization is pointing along �100�. If a small current
is applied along �010�, then �100� is no longer an extremum
of the micromagnetic energy functional �because H	�	=0�
�Ey �0�. The modified easy direction remains in the neigh-
borhood of �100� since the restoring torque �H	�0� again
crosses zero at 	�0. Once the applied electric field exceeds
a critical value �Ec5.5 mV /nm in the present figure� the
H	�0 region near �100� disappears completely and hence
assisted by damping the magnetization eventually points
along �010�. In other words, at �and above� the critical
switching field the energy minimum that is nearest to �100� is
located at �010� �note that this direction remains stable when
the current flows along �010��. Once the magnetization is
aligned with �010�, an equally strong electric current in the

�100� direction will rotate it toward �1̄00�. In this fashion it is
possible to switch the direction of magnetization by 180°
solely by application of transport currents.

The procedure sketched above accomplishes magnetiza-
tion switching by application of two perpendicular current
pulses, each of which forces a 90° rotation. Yet, it is also

possible to achieve the �100�→ �1̄00� switching with a single
unidirectional pulse, provided the electric field along �100� is
ramped up sufficiently �Ec,220 mV /nm for the parameters
of the present figure�. In order to understand this, recall that
j�x̂→�Han�− x̂. Consequently, for a strong electric current
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FIG. 7. �Color online� Reorientation of the magnetization due to
an electric current. An initial magnetization along �100� can be
rotated �assisted by damping� into �010� by applying a sufficiently
strong electric field with a nonzero projection along the �010� di-
rection �a current along �100� would not destabilize the �100� easy
axis�. For the parameters of this figure �x=0.08, p0.15 nm−3,
�F�=3, �ax=−0.5%� the critical electric field is 5 mV /nm, which
corresponds roughly to a critical current density of 5
�107 A /cm2.
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FIG. 8. �Color online� Dependence of the critical electric field
�at which the magnetization gets reoriented by 90°� on �compres-
sive� axial strain. The critical current is �roughly� inversely propor-
tional to �ax. The reason behind this relationship is that the equilib-
rium, azimuthal anisotropy is largely indifferent to �ax. For x
=0.04 and �ax=−2% we find Ec0.25 mV /nm, which corresponds
to a critical current on the order of 106 A /cm2. These results are for
a �Ga,Mn�As model with carrier density p0.15 nm−3 and �F�
=3.
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�1̄00� is the only easy direction ��100� becomes a hard direc-
tion�. The inequivalence between �100� and �1̄00� does not
violate any symmetry principles;49 in effect, an electric cur-
rent breaks time reversal symmetry and can thus connect
time-reversed magnetic states.

Using �=10−3 � cm as the typical resistivity for �Ga,M-
n�As samples we deduce that E=1 mV /nm corresponds ap-
proximately to a current density of 107 A /cm2, hence the
critical switching current is on the order of 106–107 A /cm2.
It is plausible that a detailed exploration of the parameter
space comprised by the Mn concentration x, the hole density
p and the axial strain �ax will enable lower critical currents,
thereby diminishing the importance of the Joule heating. As
a word of caution, we note that the four-band model em-
ployed here typically overestimates the effect of spin-orbit
interactions, thus potentially leading to an underestimate of
these critical currents. There is in addition some uncertainty
associated with the use of a lifetime approximation for Bloch
state quasiparticles in these strongly disordered metallic con-
ducting ferromagnets. In particular, it may be interesting to
compute the influence of disorder vertex corrections; this
task is beyond the scope of the present work.

Overall, the magnitude of the critical switching current
depends on �a� the size of the equilibrium anisotropy barrier,
�b� the extent to which inversion symmetry is broken and �c�
the strength of spin-orbit interaction. In �Ga,Mn�As the first
two factors are tunable. On one hand, �a� may be optimized
by choosing appropriate doping concentrations: in general
lower Mn density is beneficial �Fig. 8�, as it reduces the
equilibrium anisotropy without significantly affecting the
magnitude of ISGE. However, for very low Mn concentra-
tions a metal-insulator transition is impending, which ham-
pers ISGE. On the other hand, �b� may be modified via strain
engineering: as shown in Fig. 8, the critical current is
�roughly� inversely proportional to the strength of the
uniaxial strain that breaks inversion symmetry. The inverse
proportionality may be understood on the basis of Eq. �26�
combined with the fact that the equilibrium anisotropy does
not change to first order in �ax �because k-linear terms vanish
after summing over all momenta�.

IV. SUMMARY AND CONCLUSIONS

In this work we have presented a theory of current-
induced spin torques in uniform ferromagnets. The torques
can be viewed as due to a difference between the magnetic
anisotropy energy of a ferromagnet which carries no current
and the magnetic anisotropy of a ferromagnet in the transport
steady state, which give rise to a corresponding change in
anisotropy effective magnetic fields. When the transport
steady state is described using a relaxation-time approxima-
tion, the current-induced contribution to the anisotropy field
of a strongly metallic ferromagnet is given in energy units by

�Han =
1

S0
�
k,a

��0�r�s�a,ava,a · E
� fk,a

��k,a
�k,a, �27�

where ��0�r�s�a,a is the spin-density weighted average of the
exchange splitting of a particular state and we have ignored

disorder vertex corrections �which are difficult to implement
in first principles electronic-structure calculations�. We refer
to the existence of this current-induced anisotropy field as
the ferromagnetic inverse spin-galvanic effect.

In bulk materials this current induced field is nonzero
only in gyrotropic ferromagnets, i.e., only in ferromagnets
that are noncentrosymmetric and optically active. Although
uniform ferromagnetism may appear to be incompatible with
broken inversion symmetry because of the Dzyaloshinskii-
Moriya interaction, the equilibrium magnetic anisotropy is
often strong enough �or at least can be engineered so that it is
strong enough� to prevent the formation of spiral magnetic
states.

As an illustration of our theory, we have estimated current
induced torques in uniform �Ga,Mn�As, which is not gyro-
tropic when it has pseudocubic symmetry but becomes gyro-
tropic when strained. Since substrate-dependent strains are
present in all �Ga,Mn�As thin films, the strength of the fer-
romagnetic ISGE is expected to be strongly sample depen-
dent. We have concluded that it should a priori be feasible to
design �Ga,Mn�As samples in which it is possible to switch
the magnetization purely by electrical means. For typical
sample parameters the necessary switching currents are on
the order of 106–107 A /cm2, but the value may be tuned by
adjusting the doping concentration and the axial strain. At
these critical currents the Joule heating is not negligible;
however, it is possible that further studies exploring the en-
tire parameter space of Mn concentration, hole density, and
the axial strain will identify circumstances under which the
critical currents are smaller.

Another possible avenue for further research consists of
evaluating the anisotropy fields which can be generated by
electrical currents in strain engineered samples of appropri-
ate technologically useful ferromagnets. We are not aware of
room-temperature transition metal ferromagnets that are gy-
rotropic in bulk. However, there are recent reports50 on the
emergence of sizeable Rashba spin-orbit interactions �and
thereby gyrotropy� in magnetic interfaces of rare earth metals
such as Gd, where the atomic spin-orbit coupling is strong.
An additional possibility not explored so far would consist of
arranging a metallic, room-temperature ferromagnet �e.g.,
permalloy� in contact with a nonmagnetic, gyrotropic mate-
rial �e.g., strained GaAs�. In these artificial heterostructures
room-temperature magnetism and gyrotropic symmetry
would coexist by virtue of the proximity effect.

Finally, effects similar to those studied in this work would
allow transport currents to change spiral states, and possibly
to induce or remove them.
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