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Training effect in exchange-bias systems consists of a variation in coercivity and symmetry between the first
reversal after field cooling and the following loops. It has been shown, in the frame of a two-dimensional
coherent-rotation approach, that training might be explained in terms of an initial noncollinear arrangement of
the antiferromagnetic spins after field cooling, which relaxes to a collinear arrangement during the first reversal
�A. Hoffmann, Phys. Rev. Lett. 93, 097203 �2004��. In this paper, we extend the model to three dimensions,
by numerically solving the Landau-Lifshitz-Gilbert equation describing the precession motion of magnetic
moments. We are thus able to discuss the validity of Hoffmann’s model within a three-dimensional approach,
with parameter values similar to those in the original publication, and to enlighten the role of out-of-plane
anisotropies and Gilbert damping in determining the occurrence of training. Moreover, when realistic values
are considered for the magnetocrystalline anisotropy of the system, we find that no training is reproduced
within our extended model, suggesting that symmetry-driven irreversibilities might not be as relevant as
previously believed for training effect.
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I. INTRODUCTION

Magnetization reversal in bilayer systems constituted by a
ferromagnet �FM� and an antiferromagnet �AFM� is often
characterized by a shift and by enhanced coercivity in the
hysteresis loop. This effect, known as exchange bias �EB�,
finds fundamental applications in the field of magnetic-data
storage and has originated a large debate and a flourishing of
publications in the attempt to give it a firm description.1

While it is now widely recognized, both experimentally
and theoretically, that EB mechanisms must be described at a
microscopic level by taking the detailed spin structure at the
interface and inside the AFM into account,2–9 some peculiar
features of magnetization reversal have been proposed to de-
pend mainly on the average exchange and anisotropy ener-
gies, which are well described even within the frame of mac-
roscopic coherent-rotation models.

An important example is given by the training effect �TE�,
resulting in a different coercivity and a change in symmetry
between the first reversal after field cooling and the follow-
ing loops.10–19 It has been suggested that two mechanisms
can contribute to this phenomenon: on the one hand, in some
polycrystalline samples, TE seems to be connected with the
domain microstructure in the EB system and with thermally
activated depinning of AFM spins, as corroborated by ex-
perimental and numerical results.15,19 On the other hand, ex-
periments reveal that in some systems TE can be indepen-
dent on the crystalline quality of the film.13 Hoffmann has
shown20 that this observation might be related to the aniso-
tropy symmetry properties of the magnetic films and inter-
preted in terms of a difference in the arrangement of the
macroscopic magnetic moments in the AFM between the ini-
tial condition right after field cooling �noncollinear arrange-
ment� and all the following configurations �collinear arrange-
ment�: while the first loop begins with the system in its
minimum-energy configuration, which could be reached by
surmounting energy barriers during field cooling, all the fol-

lowing loops lead to a metastable configuration, which modi-
fies the symmetry and coercivity of reversal in the FM layer.
This mechanism is fully determined by exchange and aniso-
tropy energies in the system, within a macroscopic descrip-
tion of magnetic moments, and has been reproduced by mini-
mizing the total energy of the system as a function of the
applied field. However, two approximations represent a pos-
sible limit to the application of such a model:20 �i� the system
is treated by assuming an infinite in-plane anisotropy, fully
confining the moments in the plane of the film and �ii� the
values chosen for the in-plane magnetocrystalline anistropy
of the AFM, when compared with the exchange energies, are
roughly two to three orders of magnitude larger than those in
realistic EB systems.

One of the most intriguing aspects of hysteresis-loop
simulation in EB systems are the very different results that
are sometimes obtained when minimization algorithms are
compared with calculations where the full Landau-Lifshitz-
Gilbert �LLG� equation is solved to describe precession of
the magnetic moments. A remarkable example is given in a
paper by Schulthess and Butler,21 who showed how Koon’s
model for FM-AFM interfaces22 is not a good description for
EB when moment precession, rather than energy minimiza-
tion, is taken into account. There is a fundamental reason for
this: EB reversal dynamics, as also evident in Hoffmann’s
model for TE, develops in an energy landscape which shows
many local energy minima. In this situation, the transient
dynamics of magnetic moments, i.e., their path toward equi-
librium, can largely influence the final local energy minimum
where the system falls. Different paths lead to a different
ability of overcoming energy barriers and therefore to differ-
ent final steady states.23 The simulation of a magnetic mo-
ment preceding around an effective field therefore allows the
system to reach new final states, which could not be reached
by means of simple in-plane rotation.

In the frame of this discussion, an important issue is to
extend Hoffmann’s model for symmetry-driven TE, where
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the interplay between local and global minima plays a key
role, to a three-dimensional �3D� description for the evolu-
tion of the FM-AFM system by means of LLG equations. A
recent paper by Saha and Victora24 already applies LLG dy-
namics to a polycrystalline FM-AFM bilayer composed of
noninteracting, randomly oriented grains. Their paper high-
lights the role of micromagnetic domain evolution on EB and
TE. However, the presence of many grains while making the
system more realistic, partially conceals the role of aniso-
tropy in the TE. Indeed, for some parameter values, they find
training even in the case of uniaxial magnetocrystalline an-
isotropy in the AFM, at variance with Hoffmann’s model,
probably due to the many degrees of freedom made available
by the randomly oriented grains.

In this work we simulate the behavior of an FM-AFM
bilayer by solving the LLG equation. In the first part of the
paper, we show that the LLG equation can indeed reproduce
TE within a three-dimensional extension of Hoffmann’s
macroscopic model, when an initial in-plane noncollinear ar-
rangement of the AFM moments is considered and as long as
parameter values similar to those in the original manuscript
are chosen. In doing this, we also enlighten some differences
which emerge in the magnetic-moment configurations. In
particular, the presence of a finite out-of-plane anisotropy
opens a new channel for AFM spin relaxation by out-of-
plane reorientation, which turns out to be strictly connected
with the occurrence of training. To further enlighten the key
role of the precession motion, we also show how changes in
the Gilbert damping constant can as well rule the occurrence
of training, by determining different paths toward
equilibrium.

In the second part of the paper, we choose the system
parameters, particularly the magnetocrystalline anisotropy in
the AFM, in order to better adhere to the properties of real-
istic EB bilayers. In doing so we find that, although noncol-
linear initial conditions can still be obtained, they now pos-
sess a large out-of-plane component. When hysteresis loops
are then simulated by solving the LLG equations, no training
is observed anymore, a hint that symmetry-driven effects
might be responsible for TE only in the limit of very large
magnetocrystalline anisotropy.

II. MODEL

The system under study is an FM/AFM bilayer, modeled
following Ref. 20 in the frame of a coherent-rotation ap-
proach as an ensemble of three magnetic moments MF,
MAF1, and MAF2, the first one describing the FM layer and
the other two for the two sublattices representing the AFM
layer �see Fig. 1�. The total energy of the system can be
written as the sum of Zeeman, anisotropy, and exchange
�AFM exchange and interface exchange� contributions

Etot = EZeeman + Eanisotropy + Eexchange. �1�

The temporal evolution of each magnetic moment Mi is de-
scribed by the LLG equation25–27

dMi

dt
= − �Mi � Hi +

�

�Mi�
Mi �

dMi

dt
, �2�

where � is the gyromagnetic ratio of the electron spin, � is
the Gilbert damping constant, and Hi is the effective field
acting on the ith magnetic moment, defined as

Hi = −
�Etot

�Mi
. �3�

A normalized LLG equation can then be written by substi-
tuting mi=Mi / �Mi� and �=�t. Hence the system dynamics is
fully determined once the damping constant � and the total
energy Etot are provided. The latter can be written by consid-
ering the following expressions:

EZeeman = − �
i

H0 · Mi; �4a�

Eanisotropy = �
i

�Mi��−
1

2
k1,i�mi,x

4 + mi,y
4 + mi,z

4 �

+ k2,imi,y
2 + k3,imi,z

2 �; �4b�

Eexchange = − �
i�j

Ji,jMi · M j , �4c�

where H0 is the external applied field, k1,i�0 and k2,i�0 are
anisotropy constants describing cubic and uniaxial magneto-
crystalline anisotropy, respectively, k3,i�0 describes in-
plane anisotropy due to both shape anisotropy �for the FM�
and interface anisotropy associated to the removal of inver-
sion symmetry in a layered structure �for both FM and AFM
moments�, and finally Ji,j is the exchange coupling constant
between the ith and the jth magnetic moment. The exchange
coupling energy contains the AFM exchange coupling
�JAF1,AF2�0� and the interface exchange coupling of the FM
layer with the first �JF,AF1�0� and the second �JF,AF2�0�
AFM sublattice. As the effect of a finite temperature is not
included in the model, results must be interpreted as a zero-
temperature limit.

In order to implement a numerical solution for the LLG
equation, a suitable constraint must be imposed to numeri-
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FIG. 1. �Color online� Sketch of the simulated FM-AFM system
with the polar coordinate system used throughout the paper.
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cally ensure conservation of the magnitude of magnetic mo-
ments during their evolution. A natural choice is to rewrite
the normalized LLG equation in polar coordinates, which
automatically guarantees �m�=1. The vectorial LLG equation
�three equations, three unknowns for each moment� is thus
replaced by the following system �two equations, two un-
knowns for each moment, see Fig. 1�:

d�

d�
+ �

d�

d�
sin � = − hx sin � + hy cos �; �5a�

− �
d�

d�
+

d�

d�
sin � = hz sin � − �hx cos � + hy sin ��cos � .

�5b�

This finally yields a system of six nonlinear, strongly inter-
twined ordinary differential equations, which is solved by
means of a multistep adaptive algorithm based on numerical
differentiation formulas of order 5.28

In order to provide the numerical code with suitable initial
conditions, mimicking the state of the system after field cool-
ing, we find the absolute minimum-energy configuration, for
a given set of parameters, by means of a global search heu-
ristic method, namely, a genetic algorithm, because of the
occurrence of many local minima.29,30 After each iteration, a
fast deterministic algorithm is used to refine the search be-
fore fitness evaluation.

III. SIMULATIONS FOR LARGE
MAGNETOCRYSTALLINE ANISOTROPY

In this section we simulate the FM-AFM system under
study with parameter values in the range of those used by
Hoffmann.20 As a suitable initial condition for each loop
simulation, the minimum-energy configuration of the mag-
netic moments for a given set of parameters must be calcu-
lated, in order to reproduce the state of the system after field
cooling. Such an initial condition has already been derived
by Hoffmann in the two-dimensional limit of very large
AFM cubic magnetocrystalline anisotropy �AFM moments
always aligned along an easy axis� and no FM magnetocrys-
talline anisotropy �FM moment always aligned with the ap-
plied field�.20 His results show the occurrence of three differ-
ent regimes as a function of magnitude and direction of the
applied field, namely, parallel, antiparallel, and noncollinear
�perpendicular� in-plane arrangements of the two AFM mo-
ments MAF1 and MAF2. It is also shown that if the cubic
anisotropy term is replaced by a uniaxial term in the AFM
then the noncollinear phase disappears. It seems to be im-
plicit in the paper that whenever the system is found in the
noncollinear phase after field cooling then its evolution is
characterized by training in the FM hysteresis loop.

We first test our genetic algorithm within a two-
dimensional energy description �i.e., fixing �=90° in our
model� in order to reproduce the phase-diagram analytically
calculated by Hoffmann but with finite anisotropy values. We
use JF,AF1=JF,AF2=−0.4JAF1,AF2, k1,F=−0.1JAF1,AF2MF,
k1,AF1=k1,AF2=−0.4JAF1,AF2MF, no uniaxial anisotropy �k2,i
=0�, and in-plane anisotropy only for the FM layer �k3,F=

−JAF1,AF2MF ,k3,AF1=k3,AF2=0�. We indeed reproduce the
trend already obtained by Hoffmann, just with slightly
shifted boundaries between different phases �see Fig. 2�. We
also find, in agreement with Ref. 20 that the presence of
uniaxial anisotropy prevents the stabilization of a noncol-
linear AFM configuration �not shown�.

We then include the � degree of freedom in our descrip-
tion and maintain the same parameters as above. In doing
this, we find again that three phases are present �see Fig. 3�,
however the antiparallel phase now corresponds to a con-
figuration where the two AFM moments have their main pro-
jections along the out-of-plane anisotropy axis with just a
small canting ��30° with respect to the polar axis�. This
out-of-plane configuration can be attributed to the inherent
in-plane frustration determined by the competition between
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FIG. 2. Results from two-dimensional energy minimization with
the genetic algorithm �gray-scale boxes� and comparison with Hoff-
mann’s analytical model �solid line�. The arrows represent the ar-
rangement of the two AFM sublattices. Each box is the result of one
simulation with parameter values corresponding to the center of the
box. White, gray, and black boxes correspond to in-plane noncol-
linear, parallel, and antiparallel arrangements, respectively.
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FIG. 3. Results from three-dimensional energy minimization
with the genetic algorithm. The arrows represent the arrangement of
the two AFM sublattices. Each box is the result of one simulation
with parameter values corresponding to the center of the box.
White, gray, and black boxes correspond to in-plane noncollinear,
in-plane parallel, and out-of-plane antiparallel arrangements, re-
spectively. In the out-of-plane antiparallel arrangement, a small
canting is present, as described in the text.
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AFM exchange coupling and interface exchange coupling,
which is relaxed in the out-of-plane arrangement. Also the
two in-plane parallel and antiparallel phases show a small
canting with respect to the anisotropy axes.

Within our extension of Hoffmann’s model to three di-
mensions, we simulate training by first applying the minimi-
zation genetic algorithm to find the system energy minimum,
in order to describe the configuration of magnetic moments
after field cooling. We then cover the whole hysteresis loop
twice �from negative fields to positive fields and back� in
order to evaluate the occurrence of training. For each field
value, the LLG equations are solved numerically by taking
the configuration obtained at the end of the previous step as
initial condition and finally obtaining the new steady-state
arrangement. The typical integration time for each step, cho-
sen in order to fully reach a steady state, is �	10 000, while
we use �=0.1 as a damping constant. This damping value
will be modified later on in order to discuss its influence on
the simulation results.

Representative hysteresis loops are shown in Fig. 4, cal-
culated starting from an initial condition of noncollinear ar-
rangement for the two AFM sublattices �white area of the
phase diagram in Fig. 3�. We indeed find that, for parameter
values similar to those presented by Hoffmann in his ex-
amples, TE is well reproduced �see panel mF
 in Fig. 4�. All
the situations where we have occurrence of training do not
qualitatively differ from this one. Loops are simulated with
the same set of parameters used for Fig. 3. The field is ap-
plied in the plane of the sample with a �=20° tilt with re-
spect to the cubic anisotropy axis. In the figure we show the
three components for each of the three magnetic moments
involved in the simulations, namely, the two components in
the plane of the sample �parallel and perpendicular to the
applied field, respectively� and the one perpendicular to the
sample surface. By looking at the out-of-plane component of
the two AFM moments �see panels mAF1z and mAF2z in Fig.
4�, it is clearly seen that during the first half loop they lay in

the plane of the sample, while their main projection is along
the surface normal during the whole following evolution.
This relaxation from an in-plane to an out-of-plane arrange-
ment takes place during the first FM reversal and can be
attributed to the already mentioned in-plane frustration deter-
mined by the interplay between AFM and interface ex-
change.

Such an out-of-plane relaxation is a peculiar feature
emerging from our model and it appears to be strictly con-
nected with the occurrence of training. In order to prove this,
we show in Fig. 5 simulation results obtained with the same
parameters and same initial conditions as in Fig. 4 but with
an in-plane anisotropy term added to the two AFM sublat-
tices �k3,AF1=k3,AF2=−JAF1,AF2MF�, preferentially confining
them in the sample plane. It is clearly seen that now the
evolution of the AFM moments is fully confined in the plane
of the sample �see panels mAF1z and mAF2z in Fig. 5� and that
this is accompanied by no training �see panel mF
 in Fig. 5�.
Such a behavior highlights that not only the symmetry of the
in-plane anisotropy but also its out-of-plane component
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FIG. 6. Graph showing the occurrence of training for a FM-
AFM bilayer as a function of the damping coefficient � and for
three different values of the AFM cubic anisotropy constants
k1,AF1=k1,AF2. All other simulation parameters are the same as those
used for the simulation shown in Fig. 4.
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might play a significant role in determining the occurrence of
training.

It should then be stressed that, within our approach based
on LLG equations, an in-plane noncollinear arrangement of
the two AFM magnetic moments after field cooling is a nec-
essary but not sufficient condition for the occurrence of train-
ing. We indeed find that for several combinations of param-
eter values, for which we can find a cooling field leading to
an initial AFM noncollinear arrangement, nontrained loops
are nevertheless obtained. This can be attributed to the pecu-
liar spiral-like path of the transient moment dynamics, lead-
ing to a different ability of overcoming energy barriers com-
pared with simulations based on energy minimization. This
finding is in full analogy with the analysis by Schulthess and
Butler21 about Koon’s model for FM-AFM interfaces,22

where the introduction of LLG equations extended the origi-
nal results showing new possible regimes.

As already pointed out, in such complex systems, such as
FM-AFM interfaces, where the interplay between local and
global minima plays an important role in the system dynam-

ics, different transient spatial paths can lead to very different
final steady states. This is also true when the evolution is
changed by modification in the damping constant �. A larger
damping value shrinks the spiral-like evolution of the mag-
netic moments and therefore makes again different final-
energy minima available. This is clearly shown in Fig. 6,
where we analyze the occurrence of training as a function of
the damping constant � for three different values of the AFM
cubic anisotropy constants k1,AF1=k1,AF2. As a lower value
for � determines a longer characteristic evolution time for
the system, we increase the value of � accordingly, in order
to ensure that a steady-state configuration is always reached.
All other simulation parameters are the same as the ones
used for the simulation in Fig. 4. The relevance of this find-
ing is evident when considering that many common factors
can influence the damping constant, for example, the size of
a magnetic device,31 impurities,32–34 or its operating
temperature.35,36 It should also be pointed out that, in FM/
AFM LLG simulations, care is often taken in order to ensure
that the results are independent of the value of the damping

FIG. 7. �Color online� Results from three-dimensional energy minimization with the genetic algorithm, for a system with realistic
magnetocrystalline anisotropy �see text�: �a� azimuthal angle ��1−�2� between the two in-plane projections of the AFM moments and �b�
average polar tilt ��1−�2� /2 of the two AFM moments. The arrows nearby the color bar are a sketch of the AFM moment geometry.
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parameter.21,24 While this might be the case for a single FM
structure, our findings show that in the dynamics of a FM/
AFM bilayer the damping constant might play a relevant role
in determining the local minimum reached during the rever-
sal dynamics.

IV. SIMULATIONS FOR SMALL MAGNETOCRYSTALLINE
ANISOTROPY

As briefly discussed in the introduction, the parameter
values used in Hoffmann’s model, where all exchange and
anisotropy energies are of the same order of magnitude,
might be a poor description for many experimentally rel-
evant systems showing EB and TE. If we restrict ourselves
to the case of CoO/Co bilayers, as in Ref. 20, the
magnetocrystalline anisotropy constant takes a value of
about 2�105 erg /cm3,37 corresponding to roughly
2�10−6 eV /atom once the lattice parameter of CoO is
taken into account. On the other side, typical values
for the exchange integrals are 2�10−4 eV /atom and
2�10−3 eV /atom for the nearest-neighbor 90° exchange
and the second-neighbor 180° exchange, respectively.38

Therefore, in a realistic model the exchange energy should
be two to three orders of magnitude larger than the magne-
tocrystalline anisotropy. As for the AFM coupling at the in-
terface between the FM layer and the two AFM sublattices, it
has been evaluated, assuming Heisenberg exchange across
the interface, to be on the order of 1 meV /nm2.39 In order to
be used in our model, where all the spins of each sublattice
are represented by a single magnetic moment, such a value
should be scaled down by the number of atomic layers con-
stituting the film, which might be of some tens to some hun-
dreds. Therefore, the interface exchange energy is also ex-
pected to be two to three orders of magnitude lower than the
AFM exchange coupling.

According to the discussion above, we run new simula-
tions for the initial conditions after field cooling, by means of
the genetic algorithm. All parameter values are the same as
before, except for the AFM magnetocrystalline anisotropy
and the interface exchange coupling, which are set to
k1,AF1=k1,AF2=−0.01JAF1,AF2MF and JF,AF1=JF,AF2
=−0.01JAF1,AF2, respectively.

The results are shown in Fig. 7. Due to the low magneto-
crystalline anisotropy, the phase diagram now shows a num-
ber of configurations where the AFM moments are not
aligned close to any of the anisotropy axes. Therefore, to
better convey the complex 3D arrangement, we plot both the
angle ��1−�2� between the in-plane components of the two
AFM moments �panel �a�� and the angle ��1−�2� /2 �panel
�b��, which for AFM moments laying on opposite sides with

respect to the equatorial plane �which is the case with our set
of parameters� provides the average polar tilt of the AFM
moments with respect to such a plane.

A close inspection of the results from energy minimiza-
tion reveals that many noncollinear situations are again ob-
tained but mostly with moment orientation not aligned with
any of the anisotropy axes. We have extensively analyzed the
hysteresis loops simulated with LLG equations starting from
such initial conditions and found that no sign of TE is ever
obtained. This result is a hint that, for realistic systems where
the magnetocrystalline anisotropy is much lower than the
AFM exchange, symmetry-driven contributions to TE might
be less relevant than previously believed.

V. CONCLUSIONS

In conclusion, we have extended Hoffmann’s model for
symmetry-driven TE in FM-AFM bilayers to three dimen-
sions, by numerically solving the LLG precession equation
for the magnetic moments. For the same parameter values as
those used by Hoffmann, we verify that even within our
extended three-dimensional model the occurrence of training
is strictly connected with the configuration of AFM magnetic
moments after field cooling. Some peculiar new features of
the training dynamics anyway emerge in our analysis. First
of all, the transition during the first FM reversal is accompa-
nied by an out-of-plane relaxation of the two AFM moments,
driven by the inherent in-plane frustration between interface
and AFM exchange. This enlightens that the out-of-plane
anisotropy can play a key role in the occurrence of training.
Moreover, an initial noncollinear AFM arrangement is a nec-
essary but not sufficient condition for training, whose dy-
namics strongly depend also on other system parameters. In
particular, when realistic values are chosen for the exchange
and anisotropy energies, TE is not reproduced anymore
within our model, suggesting that symmetry-driven irrevers-
ibilities might not be as relevant as previously believed for
TE in realistic systems where the magnetocrystalline aniso-
tropy is much lower than the AFM exchange.

All such considerations confirm that the behavior of FM-
AFM interfaces can be very complex even within a coherent-
rotation approach based only on three magnetic moments
and that therefore not only the symmetry-driven initial state
after field cooling plays a role for TE but also the dynamics
of the magnetic moments as governed by anistropy, interface
coupling, and damping.
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