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Propagation of sound beams behind sonic crystals
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A theoretical and experimental study of the propagation of sound beams in and behind two-dimensional
sonic crystals at frequencies close to the band edges is presented. Beam focusing is predicted and discussed.
We evaluate, by analytical numerical methods, the main focusing characteristics, such as the focal distance, the
width of beam waist, and the beam quality at the waist. The field distribution is shown to depend strongly on
the beam size and frequency. Experiments were performed on narrow sources radiating in ultrasound regime,
although the results are extendable to arbitrary frequencies.
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I. INTRODUCTION

The spatially modulated materials, also known as sonic
crystals (SCs) in acoustics or photonic crystals (PCs) in op-
tics, are famous mostly due to their celebrate temporal dis-
persion properties, in particular, due to the appearance of
band gaps in the dispersion curves (see Ref. 1 for photonic
band gaps in optics and Ref. 2 for phononic band gaps in
acoustics). We are reminded that the temporal dispersion is
the frequency dependence on the propagation wave number
o=o([k|), where in a two-dimensional (2D) geometry, the
wave vector k=(k;,k ) is defined by its parallel and perpen-
dicular components with respect to the propagation direction.
In addition to the peculiarities of temporal dispersion, the
spatially modulated materials are known also to modify the
spatial dispersion (also called diffraction), allowing the man-
aging of the diffractive broadening of the beams. This phe-
nomenon is usually interpreted in terms of the spatial disper-
sion diagrams, given by the curves of constant frequency in k
space, i.e., kj=kj(k ), which in paraxial optics are called
“diffraction” curves. The peculiarities of the spatial disper-
sion in periodic materials can result in subdiffraction or self-
collimation, reported both in optics® and in acoustics.*” Self-
collimation is related with the appearance of flat segments in
the spatial dispersion curve and results in nondiffractive
propagation of the beams and wave patterns. The modifica-
tion of the spatial dispersion can also lead to the super-
refraction, and to the lensing and superlensing (subwave-
length focusing), of light® and of sound,” when strongly
tilted, or strongly curved segments in the dispersion curves
appear. There are a number of previous works which have
considered the negative refraction®~'% and the focusing prop-
erties of 2D (Refs. 11-16) and three-dimensional!” sonic
crystals.

The effects of lensing and superlensing are, however, of-
ten treated inconsistently in optics, as well as in acoustics.
Usually the band diagrams and the spatial dispersion curves
(isolines of frequency) are first calculated, based on the
Bloch-wave theory (harmonic expansion). Then, depending
on the slopes of the spatial dispersion curves the effective
refraction index is phenomenologically introduced. Based on
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the refraction index the geometric ray approach is often ap-
plied and the images of the point sources are calculated.

This approach, which mixes the concepts of the wave
mechanics and the geometrical ray propagation, often leads
to inconsistent and confusing results. For example, the focal
distance resulting from a slice of the focusing PC or SC (the
PC or SC lens) should decrease by approaching the band
gaps, as the curvatures of the spatial dispersion curves in-
crease and, consequently, the strength of the “lenses” in-
creases, according to this mixed wave-ray approach. We,
however, by following consistently the solely wave ap-
proach, show the opposite effect: as the wave frequency ap-
proaches the band-gap frequency, the focal distance of the
SC lens increases, not decreases.

Therefore it seems that some clarity must be brought into
the problem of the lensing effects in PC or SC materials. The
paper aims to clarify the questions related with the focusing
of sound beams behind the sonic crystal. In this way, differ-
ently from the previous “superlensing” studies, we consider
the propagation and collimation of beams with finite size, not
the focusing of the waves emitted by the point sources.

The paper is organized in the following way. In Sec. IT A
the model is introduced and in Sec. II B the band diagrams
(isofrequency contours) are evaluated for a concrete case.
Based on the band diagram structure, in Sec. II C several
models for beam propagation, of increasing complexity, are
proposed. Next in Sec. IIl we proceed with the analytical
estimations following from these models. In particular, we
calculate the focal distances, the beamwidth and the quality
of the beam at the waist (in the focal spot behind the SC). In
this section these evaluations are checked by the numerical
finite difference in time domain (FDTD) calculations. In Sec.
IV experimental setup and the measurements of the field dis-
tributions beyond the crystal for a narrow beam are presented
and compared with the previous theory. Finally, Sec. V rep-
resents the conclusions.

II. THEORY
A. Model

The propagation of a sound beam in a spatially modulated
medium is described by the inhomogeneous wave equation
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where the functions B(r) and p(r) are, respectively, the spa-
tially dependent (periodic) bulk modulus and density of the
periodic medium, and p(r,?) is the scalar pressure field of the
sound wave. As we restrict the analysis to that of a mono-
chromatic wave with frequency o, then p(r,?)
=p(r)exp(iwt) and the problem reduces to the time-
independent eigenvalue equation

2

%p(r) + V[

1

o(0) v P(P)} =0, (2)

which will be used to build the band diagrams.

We start our analysis by considering a family of spatial
dispersion curves for a 2D sonic crystal, obtained by solving
Eq. (2) by the harmonic expansion method. In the numerical
study, and also in the experiments described in the next sec-
tion, we consider a sonic crystal of the square geometry,
consisting of a periodic array of steel cylinders with radius
r=0.8 mm and lattice constant a=5.25 mm, as, e.g., in Ref.
5, resulting in a filling factor f=(r/a)?=0.073. The mate-
rial parameters are p,=10° Kgm™ and B,=2.2
X 10° Nm™ for the host medium (water) and p,=7.8
X 10> Kg m~ and B,=160X 10° N m~2 for steel, with cor-
responding sound velocities ¢,=1483 ms™! and ¢
=4530 ms~'. In such a crystal, the frequencies of interest
correspond to the ultrasonic regime. The results presented in
the following sections are however rescalable and valid for
arbitrary frequency ranges.

B. Band diagrams

In Fig. 1 the isofrequency contours from the first two
lowest bands are shown, combined into one plot, for conve-
nience. As usual, normalized frequency and wave number
are used, defined as Q=wa/2mc, and K=ka/2mw. We con-
sider frequencies close to the first and second band gaps (the
band gaps are centered at =1/y2 and Q=1), and corre-
sponding to the symmetry points M and I' in the first and
second Brillouin zones, respectively. The shaded triangles
denote the incident beams.

Figure 1 illustrates several things. On one hand it shows
the frequencies of interest, where focusing is expected to
occur. These regimes are close to the upper boundaries of the
bands, where the dispersion curves are convex (correspond-
ing to the negative diffraction regime). The curvatures of the
dispersion curves at the areas of interest are positive, in con-
trast to the curves with negative curvature at lower frequen-
cies indicating the normal diffraction. Only in this case of
positive curvatures (negative diffraction) of the SC, the fo-
cusing of the beams behind the crystal is possible. Figure
1(a) also shows the equivalence of the focusing effects at
both the first and the second band edges, as the correspond-
ing isofrequency lines can be obtained one from another by
rotation by 45° and by a rescaling of the wave vectors and
the frequency in a factor v2. These two band gaps were
already studied from the unified point of view in Ref. 4.
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FIG. 1. (Color online) (a) The spatial dispersion curves as cal-
culated by the harmonic expansion (see Ref. 4 for details of the
method). The thick curves represent the areas considered, i.e., are
calculated for wave frequencies close to the upper boundaries of the
first and second bands. Shaded triangles (red and blue curves) de-
note the spatial angular spectrum incident of the incident beams. (b)
Different regimes considered: (a) broad beams with spatial spectra
inside the “parabolic” area of the spatial dispersion curve, (b)
beams of intermediate width, with spatial spectra filling the full
width of the isoline of the given band, (c) narrow beams with the
spatial spectra extending over isolines from the neighboring bands,
and thus overlapping the band gaps (in angular domain). The region
denoted by (d) corresponds to the forbidden angles (band gaps in
space spectra domain).

C. Regimes

However, most importantly, Fig. 1(b) also shows the pos-
sibility of three different focusing regimes by a SC, depend-
ing on the beam size: (a) ideal (or aberration-free) focusing
of relatively broad beams (those with a sufficiently narrow
spatial spectrum). We recall that spatial and angular (spec-
tral) distributions are related via the Fourier transform. In
general terms, the wider the spatial beamwidth, the narrower
its spatial spectrum. The regime (a) occurs when the spec-
trum is so narrow that the corresponding segment of the spa-
tial dispersion curve can be considered parabolic [the seg-
ment labeled by a in Fig. 1(b)]; (b) focusing with
aberrations, when the spatial spectrum of the beam becomes
broader (the beam becomes narrower) and projects on all the
dispersion curve of the particular band [segment b in Fig.
1(b)]. The aberration effects come into play in the latter case,
as the corresponding area of the spatial dispersion profile is
characterized no more by parabolic dispersion but also by
higher order effects (nonparabolic part of the spatial disper-
sion curve); and (c) a focusing with a significant distortion of
the spatial spectrum of the beam and consequently with a
decrease in the beam quality, when the spatial spectrum be-
comes significantly broader than the central area of the dis-
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persion curve. The focusing in the latter limit is also affected
by the spatial dispersion curves belonging to the neighboring
band (segment c). The segment denoted by d corresponds to
a gap in the spatial spectrum domain and the spatial frequen-
cies lying on this segment are removed (filtered out) from the
beam as it propagates through the crystal.

We note that the width of the spatial spectrum of the beam
has a sense in comparison to the width of the loop of the
spatial dispersion curve. Close to the band gap, where the
spatial dispersion loop shrinks, the limiting width of the
beam (separating broad and narrow beam regimes) increases.
We consider this issue below.

In order to illustrate the existence of the three different
focusing regimes, numerical calculations have been per-
formed by solving Eq. (1) using the FDTD technique (see
details, e.g., in Ref. 4) with input beams of different width.
We assume infinite impedance of the cylinders and conse-
quently neglect shear wave propagation in the scatterers. Fig-
ure 2 shows the resulting pressure distribution for a beam
with constant frequency of 230 kHz and a decreasing width,
relative to the lattice period, of L/a=8, 4, and 2, respec-
tively. We observe behaviors corresponding to cases (a)—(c)
discussed above and illustrated in Fig. 1(b).

III. ANALYTIC ESTIMATIONS

We proceed to the study of the beam propagation charac-
teristics, corresponding to the three basic regimes identified
above. In analytical-conceptual treatment we use the follow-
ing approach. First we calculate the band structure of the
sonic crystal using the standard approach of the plane-wave
expansion method: we consider the wave equation [Eq. (1)]
with spatially periodic coefficients, expand the fields in the
harmonic components, diagonalize the resulting coupled
equation system (find the Bloch modes), and calculate the
eigenvalues of frequency. Then we use, as described in Ref.
4, the analytical estimations of the spectral width of the
propagation area (corresponding to the band studied), as well
as the curvatures (second-order derivatives) and the astigma-
tisms (fourth-order derivatives) of the spatial dispersion
curves. Finally, using the above data from the wave equation
approach for the evaluation of the dispersion characteristics,
we investigate the propagation properties of the beams in the
simplified paraxial approximation, valid for beams forming
small angles with respect to the axis. The results shown in
Fig. 2 justify the validity of this approach for the considered
problem.

The coefficients of diffraction (of the leading-order dif-
fraction, i.e., the usual diffraction, as well as of the higher
order diffraction terms) are determined by the shape of the
spatial dispersion curves K”=KH(K 1) and are found by its
series expansion. Following,* they can be analytically esti-
mated by assuming a small filling factor f=m(r/a)’>~ O(e?)
and the close-to-band-gap condition AQ=(,-0)/Q,
~O(e). Under these assumptions, K;=K,(K,) can be ex-
panded as

Ki=dy+dK7 +d,KS + -+, (3)
where the coefficients are dependent on the beam and crystal

parameters, through the frequency and the filing factor, re-
spectively, and take the form
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FIG. 2. (Color online) Numerically calculated beam profiles,
showing the propagation inside and outside the crystal. Three cases
(), (b), and (c) correspond to three relatively different widths of the
beams. Each figure shows the propagation with (bottom) and with-
out (top) sonic crystal. The parameters are: (a) D=8a, (b) D=4a,
and (c) D=2a, where D is the source diameter and a the lattice
period. The frequency is 230 kHz in all three cases. Amplitudes are
given in decibel scale. The size of the integration region is 40
X 10 cm?.

dy=aAQ + O(e),

2
d2=05< Afflg)-'-O( )

f2
AQ*  AQS

~

dy= 201( ) +0(e™"), 4)
where « is a geometncal factor that depends on the band
number, being a= 1/V2 and a=1 for the first and second
bands, respectively. We recall that the detuning term AQ
=0, where AQ)=0 denotes the middle of the band gap and
corresponds to the triple cross section of the circular disper-

sion curves of harmonics, and |AQ,pp|=f>> corresponds to
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the zero diffraction point (ZDP) where the diffraction coef-
ficient d, vanishes.

In the paraxial treatment, the beam broadening after the
propagation in a homogeneous material with diffraction co-
efficient d, is given by Ax*(z)=Ax3+(4d,z)*/ Ax], where Ax,
is the initial width. The above classical formula appears due
to the parabolic form of the dispersion curve, which intro-
duces the parabolic shape of the phase shift of the compo-
nents of the spatial spectrum A@(K L)=—de2LL. In the nor-
mal diffraction regime Q<Q,pp the components with
increasing angle to the optical axis k, obtain a negative
phase shift. The propagation of the beam behind the crystal
can only increase the negative phase shift already accumu-
lated during the propagation through the SC. Therefore the
propagation behind the SC is trivial: the beam simply ex-
pands. For 1> Q,pp the situation is different—the compo-
nents with nonzero K| acquire the positive phase shift in the
SC. Therefore in the propagation behind the SC, a homoge-
neous material can compensate this positive phase shift, i.e.,
can result in the collimation of the beam. We concentrate on
the latter regime, and calculate how and where the beam
focuses. In other words, the focusing behind the crystal is
due to the fact that inside the SC the beam propagates with
negative diffraction and acquires the negative curvature of
the phase fronts. Therefore, the crystal acts as a focusing
lens. As the result, the beam behind the SC focuses in a free
propagation, at a variable distance which depends on both
the crystal and source properties (width and frequency).

Next we present three focusing models to describe the
different regimes of the beam propagation inside and outside
the SC discussed above.

(1) Model A considers the case of broad Gaussian beams
(narrow Gaussian spatial spectra) and assumes a parabolic
(aberration-free) focusing. No distortion of the Gaussian
beams due to higher order diffraction corrections is consid-
ered (d,K*—0). The results in the frame of the model are
quite simple. (1) The width of the beam at the focal point is
always the same as the width of the initial beam. This fol-
lows from the fact that the spectral width of the beam is
unchanged during all the propagation. (2) The focal distance
behind the crystal can be calculated considering that the spa-
tial spectra components are again mutually in phase in focus.
This means d,L+2z,=0 (where L is the length of the SC) or in
terms of the SC parameters

2
/ ) (3)

Zf=—aL<l—m

Equation (5) implies that the focal distance vanishes at
ZDP (JAQ,pp|=1%3) and increases monotonically to infinity
at the band edge. Close to the band gap (in the limit AQ)
—0) Eq. (3) takes the simplified form z,=aLf*/|AQJ*.

Figure 3(a) compares the numerical results for the focal
distance obtained by solving Eq. (1) by the FDTD method
with the analytical expression Eq. (5), derived under the
paraxial approximation, for a beam propagating along the
(110) direction. The frequencies belong to the first propaga-
tion band (similar results are obtained for the second band).
Note a good agreement with the result following from FDTD
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FIG. 3. (a) Focal distance of the sonic crystal lens for frequen-
cies inside the first band, evaluated from the analytical expression
Eq. (5) (continuous line) and by numerical simulation using the
FDTD method (symbols). (b) Beamwidth at the focal distance,
evaluated from Eq. (6), with the corresponding numerical result
(symbols). A broad beam with L=38a [case (a) in Fig. 2] is used as
the input beam in (a) while L=4a in (b). The parameters are
f=0.073 and L=0.1 m.

calculations in the case of a broad (unfiltered) beam, in spite
of the simplicity of the model and Eq. (5).

(2) Model B is applicable for beams of intermediate width
or equivalently, those whose spectrum is relatively broad
(comparable with the width of plateau of the diffraction
curve but not broader than the dispersion curve itself). Then
after the propagation in the SC the beam is not filtered (all
spectral components are allowed to propagate), however the
high spatial components acquire a nonparabolic phase shift.
Afterward in the free propagation behind the SC, this phase
shift cannot be more compensated.

In this way the model B states that the beam is focused at
the same distance as follows from model A, however the
width at the waist is no more the same as at the incident in
the SC (as predicted by model A) but is affected due to
aberrations [Fig. 2(b)]. In general the width is increased. The
evaluation of the width at the waist can be performed con-
sidering that the width of the parabolic part of the dispersion
curve is approximately equal to the width of the loop of
dispersion curve. As the spectral width is roughly Ak,
=AQ/2 it follows that

Ax;=4/AQ. (6)

In Fig. 3(b) the beamwidth, evaluated numerically as the
width at half of the maximum amplitude in focus, is depicted
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FIG. 4. (Color online) Experimental results for (a) 225 kHz, (b) 240 kHz, and (c) 255 kHz. The left column shows the spatial distribution
(in false color) in the XZ plane. The spatial dimensions are 20 X 50 cm?. The right column shows the measured amplitude distribution along

the z axis.

together with the analytical prediction Eq. (6). Note that, due
to the normalizations used, the width in the real space is
scaled by a factor a/2.

(3) Model C. This model considers that not only the phase
of the beam (in the spatial spectrum domain) is distorted but
also its amplitude. Some spatial spectrum components are
removed (filtered out) corresponding to the angular band gap
[region d in Fig. 1(b)]. This results in a complicated waist
around the focal point.

The spectrum is filtered at around the cross points of the
dispersion circles of the harmonic components. A simple
geometrical analysis shows that these points are located at
Ky=* AQ)/2. The beam after crossing the crystal now con-
sists of two parts: a part containing the central region of the
spectrum, which behaves in propagation as described by
model B and two sidelobes containing the high unfiltered
spatial frequencies, those with [K|> K. The resulting field
distribution is even more strongly distorted at the beam waist
than predicted by the model B. Characteristic is that the
beam waist makes several periods of oscillations, related
with the spatial beat between the central spectral component
and the sidebands. As a result, the beam distribution presents
a modulated profile where several focuses are apparent, as
observed in Fig. 2(c), and also in the experimental measure-
ments of the next section.

IV. EXPERIMENT

The results of the preceding section have been checked
experimentally in the case of a narrow beam, excited by a
piezoelectric transducer. The emitted beam had a frequency-
dependent half width covering three to four lattice periods.
The experimental setup is basically the same used in Ref. 5
to demonstrate the self-collimation phenomenon of ultra-
sonic beams, which we summarize for convenience. The
sonic crystal used in the experiments was designed according
the parameters described above, total length of the crystal
being L=10 cm. The crystal was immersed in a Plexiglas
tank, with dimensions 1 X 1 X2 m?, filled with water, which
acted as a host medium. A narrow ultrasonic source with
radius R=1.25 cm was placed 5 mm close to one of the flat
boundaries of the crystal (entrance plane) oriented in the
(100) direction and the pressure distribution was measured
with a needle hydrophone. The source radiates a nearly
Gaussian ultrasonic beam (with an effective width approxi-
mately half than that of the source) with measurable ampli-
tude in the frequency interval ranging from 150 to 260 kHz,
which covers most of the frequencies of interest in the sec-
ond propagation band, where the experiments were per-
formed. All the signal generation and acquisition process is
based on a National Instruments PXI-technology controller
NI8176, which also controls an OWIS GmbH two-axis mo-
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torized system that allows the hydrophone to scan the pres-
sure distribution along the whole space beyond the exit plane
of the crystal, for a given frequency component.

In order to visualize the beam propagation after the crys-
tal and the focusing effect, in Fig. 4 we show the experimen-
tal measurements along the XZ plane (left column) and the
amplitude distribution along the axis (right column) for three
different frequencies. The experimental results show some
unique features in the spatial distribution of the beams after
crossing the crystal, already anticipated by the theoretical
analysis. At low frequencies, close to the self-collimation
point [Fig. 4(a)] is apparent a strong distortion of the beam in
the neighborhood of the focal region, located close to the exit
plane. In fact, a focal distance cannot be unambiguously de-
fined. Also typical for narrow beams in the low-frequency
regime is a spatial separation of the pressure distribution into
two lobes in the far field. Measured distribution is in accor-
dance with the results of the numerical simulation shown in
Fig. 2(c), performed for similar parameters.

At intermediate frequencies a clean, lenslike profile is
formed, with a well-defined maximum corresponding to the
focal point, as shown in Fig. 4(b). At higher frequencies,
approaching the band edge, several focuses (field maxima)
are observed. The point with maximum pressure is located at
a fixed (frequency-independent) position, close to the crystal
but the true (dynamic) focus corresponds to the last maxi-
mum (that located more far away from the SC). The exis-
tence of the spatial beatings can be attributed to the spatial
filtering effect described in Fig. 1(b) and in model C pre-
sented in Sec. III.

In Fig. 5 position of the focus as evaluated from numeri-
cal simulation (open circles) is compared with the experi-
mentally measured values (black circles), for frequencies in
the second propagation band ranging from 230 to 260 kHz.
In this band, the middle of the bang gap is located at 280
kHz and focal distance cannot be measured for frequencies
higher than 260 kHz because strong uncertainty (as is appar-
ent in the error bars in Fig. 5). We expect, according to the
model, that the focal distance increases monotonically when
the source frequency approaches the band edge, with a cor-
responding decrease in amplitude.
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FIG. 5. Focal distance for a narrow beam, as obtained numeri-
cally and experimentally. Open symbols: numerics and full sym-
bols: experiment.

V. CONCLUSIONS

The propagation characteristics, and, in particular, the fo-
cusing effect, of acoustic beams after crossing a SC have
been studied both theoretically and experimentally. The field
distribution is shown to depend strongly on the beam size
and frequency, and different models for broad, intermediate,
and narrow beams are proposed in the framework on the
paraxial approximation. Explicit formulas for the focal dis-
tance and the beamwidth at the waist are proposed.

It is shown that, in the case of a narrow beam (covering
few crystal periods) with a correspondingly broad spatial
spectrum, the crystal can result in a strong distortion of the
beam profile at particular frequencies, as a consequence of
spatial filtering effects (modification of the spatial spectrum
of the incident beam) related to the particular form of the
dispersion surfaces. A dependence of the focal distance with
the frequency is also predicted and experimentally verified in
the case of narrow beams with good agreement.
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