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Based on first-principles methods, we present a self-doping picture in atomically thin boron sheets: this
shows that for two-dimensional boron nanostructures, adding or removing boron atoms is essentially equiva-
lent to simply adding or removing electrons from a fixed electronic structure. This picture allows us to propose
a general design rule for pure boron nanostructures and explains the occurrence of known stable nanostruc-
tures. In addition, self-doping provides a powerful tool for finding stable metal boride nanostructures. We
illustrate this last point by showing an unexpectedly stable MgB2 sheet structure which is likely the precursor
of MgB2 nanotubes. Our results are easily generalized to other stoichiometries and other choices of metals.
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I. INTRODUCTION

Boron is a peculiar element with extremely versatile
chemistry. In particular, nanostructures of pure boron have
attracted significant attention due to the successful fabrica-
tion of pure boron nanotubes in experiments.1,2 Boron nano-
tubes were first predicted based on the existence of two-
dimensional �2D� quasiplanar boron clusters verified with
theory and in experiments.3–11 All boron nanotubes were pre-
dicted to be metallic based on a 2D buckled triangular
sheet.12–15 Recently, a class of 2D boron sheets have been
discovered.16,17 These boron sheets are always metallic and
made of mixtures of triangular and hexagonal motifs. The
most stable such sheet, denoted as the “�” sheet, has the
right ratio of hexagonal and triangular regions for optimal
stability. In spite of the fact that the � sheet is metallic,
small-radius boron nanotubes made from the � sheet are
semiconducting due to the buckling of nanotube surfaces un-
der curvature.17,18 Furthermore, predictions of stable boron
fullerenes,19–22 which share the � sheet as precursors with
boron nanotubes, have made this research field as appealing
as carbon nanostructures.

Besides pure boron nanostructures, some earlier works
predicted that stable metal boride nanotubes can exist in the
form of isolated nanotubes and are further stabilized by
forming nanotube bundles.23–25 These metal boride �MgB2,
AlB2, and BeB2� nanotubes were shown to be very good
one-dimensional conducting systems and might possibly be
superconducting. In fact, the possibility of superconductivity
in nanostructures has always been a fascinating subject in
physics and materials science. For example, small-radius car-
bon nanotubes have been shown to be superconducting at
low temperatures.26,27 Beyond carbon-based materials, MgB2
as a bulk crystal has attracted interest due to the discovery of
superconductivity near 40 K.28 As nanomaterials, researchers
have proposed that MgB2 nanotubes, which could be fabri-
cated by doping boron nanotubes with Mg,29 may have
higher superconducting temperatures than MgB2 bulk due to
electron confinement.23,30 As a result, MgB2 nanotubes built
from a 2D sheet derived from the bulk structure have been
extensively studied in theory.23,29–32 Besides MgB2, other
metal boride nanotubes are also shown to be intriguing ma-

terials. Amorphous metal �Ni, Fe, and Co� boride nanotubes
with good catalytic properties are made experimentally.33,34

Nanostructures of transition-metal borides are shown to be
good one-dimensional conductors and promising candidates
for hydrogen storage.35–37 In all, metal boride nanomaterials
may prove to be an interesting, versatile, and useful class of
materials.

Despite of these fascinating discoveries on metal boride
nanomaterials, researchers have not yet successfully ad-
dressed a fundamental problem. In all previous analyses, the
fundamental 2D sheet giving rise to those metal boride nano-
structures is extracted directly from bulk MgB2. While a rea-
sonable guess, there is no reason a priori why this should be
the optimal structure. More generally, the proper stoichiom-
etry is not necessarily that of the bulk either: i.e., it is not
clear that MgBx with x=2 is the optimal choice for nano-
structures. Of course, screening all possible candidate struc-
tures with all possible stoichiometries is formidable and
hopeless. In this paper, we provide theoretical tools and un-
derstanding to organize and accelerate this task. We describe
a self-doping picture in boron nanostructures, derived from
analyzing the chemical bonding and electron count in boron
sheets, that allows us to propose a general design rule for
stable boron nanostructures. When applied to 2D metal
boride sheets, self-doping narrows down vastly the phase
space of possible structures to be considered. As an example,
we predict and verify from first principles that the lowest-
energy structure of 2D atomically thin MgB2 sheets is very
different from the bulk-derived one and that the difference in
energy is quite large. Our results are of general interest as
they should be applicable to all stoichiometries of MgBx as
well as to other metal borides.

II. METHODS

We calculate ground-state properties using density-
functional theory with the local-density approximation,
plane-wave basis, and norm-conserving
pseudopotentials.38–44 The B pseudopotential has cutoff radii
�rc

s ,rc
p ,rc

d�= �1.7,2.1,1.7�a0. For Mg, we use nonlinear core
corrections45 and �rc

s ,rc
p ,rc

d�= �2.1,2.5,2.5�a0. We expand
wave functions with an energy cutoff 32 Ry. K-point sam-
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pling with a Gaussian smearing width of 0.5 eV converges
total energies to better than 1 meV/atom. Our supercells con-
tain 2D sheets extended in xy plane with periodic copies
along z direction separated by 7.4 and 15.9 Å for pure boron
and MgB2, respectively. We relax all structures until atomic
forces are below 1 meV /Å and stresses are below 50
MPa. We generate maximally localized Wannier functions
�MLWFs� using standard algorithms.46–48

III. SELF-DOPING IN BORON NANOSTRUCTURES

A. In-plane and out-of-plane states

Our naming system for pure 2D boron sheets involves
using a letter followed by the � value.16 In brief, � is the
fraction of atoms removed from a triangular sheet that yields
a desired sheet. Thus T�0� is flat triangular, H�1/3� is hexago-
nal �i.e., graphitic�, and A�1/9� is the most stable � sheet.16,17

Previously, we discovered that A�1/9� is most stable due
to the optimal filling of � bonds: electrons fill all in-plane
bonding � states while leaving all in-plane antibonding ��

states empty, and any remaining electrons partially fill out-
of-plane � states.16 The fact that � bonds are stronger than �
bonds explains why best structures are determined by opti-
mal filling of the in-plane manifold.

Following this philosophy, we count the number of in-
plane and out-of-plane states for many boron sheets to iden-
tify trends. We begin with a large M-atom T�0� sheet and
gradually remove atoms: each removal leaves behind a hex-
agonal hole. For each structure obtained, we calculate the
densities of states �DOS� projected onto in-plane and out-of-
plane states; mathematically, this means projection onto even
and odd parity states with respect to reflection in the sheet
plane. We identify the separation energy Esep of in-plane
bonding � and antibonding �� states as the energy where the
in-plane DOS has a zero �we have checked the validity of
this criterion in a few cases by manually plotting wave func-
tions and checking their character in detail�. By integrating
the in-plane DOS D���� and out-of-plane DOS D����, we
calculate �i� N�—the number of in-plane � bonding states
with energy below Esep

N� = �
−�

Esep

d�D���� , �1�

and �ii� N�—the number of out-of-plane � states with energy
below Esep

N� = �
−�

Esep

d�D���� . �2�

The number of electrons is given by integrating the total
DOS up to the Fermi energy EF,

Ne = 2�
−�

EF

d��D���� + D����� = 3M�1 − �� . �3�

where the factor of 2 accounts for spin and the form 3M�1
−�� comes from the fact that each boron atom has three
valence electrons and removing atoms from the original T�0�

sheet reduces the number of atoms by a proportion of �
�which is justified by the definition of ��.

A configuration should be optimal if electrons fill all the
in-plane bonding states and leave all the in-plane antibond-
ing states empty with partial occupancy of the � manifold.
This simply means EF=Esep or equivalently

2�N� + N�� = Ne = 3M�1 − �� . �4�

Note that Eq. �4� is a constraint on the sheet structure �i.e.,
the � value� and will hold only for particular sheets that are
highly stable.

Based on first-principles calculations, we have discovered
that N� and N� are smooth functions of �. Figure 1 shows
the behavior of N� and N� versus � for a large collection of
boron sheets. As we can see, N� /M is precisely unity for all
�, and N� /M always hovers around 1/3. When plugging
N�=M and N�=M /3 into Eq. �4�, we find the simpler rela-
tion

2�M + M/3� = 3M�1 − �� . �5�

The solution to this equation is �=1 /9 which is precisely the
� value for the most stable A�1/9� or � sheet.

The results shown in Fig. 1 are surprising: the number of
in-plane bonds remains constant even as we add or remove
boron atoms from the boron sheet. Since the interatomic dis-
tances are essentially fixed when � changes,16 adding or re-
moving atoms directly changes the areal density of boron
atoms. Naively, we would have expected a higher areal den-
sity of atoms to result in a higher density of bonding states.
We discuss the reason for this behavior next.

B. Chemical bonding from maximally localized Wannier
functions

By investigating the chemical bonding in 2D boron sheets
using MLWFs, we can explain the surprising results on con-
stant number of bonds. We consider the evolution of MLWFs
when boron sheets change from hexagonal to triangular. For
example, Fig. 2�a� shows how a six-atom unit cell of H�1/3�
evolves under addition of boron atoms into mixed phase
D�2/9�, A�1/9�, and finally T�0�. As per Fig. 1 and detailed
analysis of the band structures, all four sheets are found to
have nine � bonding bands. For each sheet, we calculate
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FIG. 1. �Color online� N� /M and N� /M versus �. All data are
extracted from ab initio plane-wave calculations, red � for � and
blue � for � states. The horizontal black dashed line shows
N /M =1 /3.
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MLWFs for the lowest 12 bands and obtain nine in-plane ���
and three out-of-plane ��� MLWFs. We reproduce the nine �
bonding bands in each case by imposing an inner window.47

For in-plane states, each sheet has one or two unique
types of � MLWFs due to symmetry �the others are obtained
by symmetry operations�. We show representative � MLWFs
for each sheet in Fig. 2�b�. Sheet H�1/3� has nine identical
MLWFs localized in the middle of two adjacent atoms, i.e.,
two-center bonding. At the other extreme, sheet T�0� is three-
center bonded,16 and we find that it can be described using
two different sets of MLWFs: �i� triangular-shaped � ML-
WFs centered in the centers of triangles indicating explicitly
three-center bonding as shown in Fig. 3�a�, or �ii� � MLWFs
shown in Figs. 2�b� and 3�b� which are centered between

adjacent atoms and symmetrically spread to triangles on both
sides. These two sets of MLWFs span the same subspace,
generate identical band structures, and thus describe the
same physics of three-center bonding. We use group �ii� be-
cause it shows the most consistent evolution with � below.
The two intermediate sheets D�2/9� and A�1/9� each have
two types of � MLWFs. For D�2/9�, the first type is similar
to that of H�1/3� as it is centered between a B-B pair in a
hexagonal environment while the other is asymmetric and
spreads toward the neighboring triangular region, i.e., mixing
of two- and three-center character. For A�1/9�, the first type
is in a triangular environment and resembles that of T�0�
while the other is asymmetric in the same manner as D�2/9�.

After looking at the figures, the main observation is that
despite large changes in sheet structure and atomic areal den-
sity, the same number of � MLWFs are basically centered at
the same sites as in H�1/3� while showing minor shifts in
some cases. Thus, during the evolution of the sheet from
hexagonal to triangular, the basic in-plane bonding pattern
and number of bonds of the hexagonal system is retained
with some minor perturbations in shape and position. �We
have checked that these results are general and not restricted
to the sheets discussed here.�

Turning to out-of-plane states, due to symmetry, the three
� MLWFs of a given sheet are identical and can be trans-
formed into each other by simple translation and rotation. We
show the representative � MLWFs for each sheet in Fig.
4�a�. For H�1/3�, two sets of � MLWFs can be obtained
depending on the choice of initial guess. These two sets of �
MLWFs reproduce the same band structure, span the same
subspace, and thus describe the same physics. We label them
H�1/3��i� and H�1/3��ii� in Fig. 4. The � MLWF in H�1/3��i�
is peanutlike and centered in the middle of the B-B line
connecting two boron atoms. On the other hand, H�1/3��ii� is
centered on a boron atom and spreads to its three nearest
neighbors. For the other extreme, the sheet T�0�, � MLWF is
centered on a boron atom and spreads to its six nearest
neighbors. The � MLWFs of the two mixed-phase sheets
�D�2/9� and A�1/9�� differ from each other. For D�2/9�, the
MLWF is centered on a boron atom and spreads to four
nearest neighbors, while for A�1/9�, the MLWF is centered in
the middle of a B-B pair and spreads to these two boron
atoms and two other boron atoms in the two neighboring
triangular regions. When looking at the centers of these �
MLWFs, as shown in Fig. 4�b�, we discover that � MLWFs
evolve with the structures of boron sheets in almost the same
way as � MLWFs. As we can see, sheets D�2/9� and T�0�
have � MLWFs centered on the same sites as H�1/3��ii�,
which are on every other atoms of the H�1/3�’s lattice. On
the other hand, sheet A�1/9� has � MLWFs centered on the
same sites as H�1/3��i�, which are on every other B-B bonds
of the H�1/3�’s lattice. Although we do not have all sheets
sharing the same � MLWF centers like what we have for �
MLWFs, we do have the bonding patterns of three sheets,
D�2/9�, A�1/9� and T�0�, originating from the same parent
system H�1/3�. In details, the � manifolds of D�2/9� and T�0�
originate from H�1/3��ii�, and that of A�1/9� originates from
H�1/3��i�.

FIG. 2. �Color online� �a� Evolution of boron sheets from H�1/3�
to D�2/9�, A�1/9�, and finally T�0�: green “�” mark the centers of �
MLWFs. �b� Isosurface contour plots of representative � MLWFs
for H�1/3�, D�2/9�, A�1/9�, and T�0�, respectively: red for positive,
blue for negative values; other � MLWFs are obtained by symme-
try. Red solid lines show unit cells.

FIG. 3. �Color online� Centers �marked by green �� and isos-
urface contour plot �red for positive and blue for negative values� of
two sets of � MLWFs for T�0� boron sheet: �a� triangular shaped,
�b� rectangular shaped. These � MLWFs are even with respect to
reflection in the plane of the boron sheets. Red solid lines show the
unit cells.
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C. Self-doping and a general design rule

The above analysis leads to the following picture for bo-
ron sheets: adding a boron atom to fill a hexagonal hole in a
2D boron sheet does not change the number of bonding
states but simply causes the three valence electrons of the
added atom to be released into the lattice. In other words,
adding a boron is equivalent to doping the original boron
system with three more valence electrons. We call this un-
usual situation self-doping. Since 2D boron sheets are pre-
cursors of atomically thin boron nanotubes and fullerenes,
self-doping is generally useful and applicable. For example,
self-doping provides a general design rule for stable boron
nanostructures. If we start with a stable graphene-derived
carbon nanostructure with Z atoms containing many hexagon
motifs, we could contemplate replacing all carbon with bo-
ron. However, to make a stable structure, we would need to
add boron atoms since boron has only three valence electrons
compared to carbon’s four, and we need an extra electron per
atom �Z extra electrons in total� to fill the bonding states. The
solution is simple: if we fill the hexagon center sites with
additional Z /3 boron atoms, they will each donate three elec-
trons �exactly Z electrons in total� without changing the
bonding states, making the structure isoelectronic to the
original carbon system, and thus stabilize the final boron
structure.

This design rule explains the fact that the A�1/9� sheet and
the stable B80 fullerene19 can be derived from graphene and

the C60 fullerene by filling hexagonal holes with extra atoms.
Moreover, it explains why stable B80+8k�k�0,k�1�
fullerenes can be built from the corresponding C60+6k�k
�0,k�1� fullerenes.20 Finally, our design rule also sheds
light on the recently discovered families of stable boron
fullerenes.21,22

IV. METAL BORIDE NANOSTRUCTURES

A. Self-doping applied in metal borides

Beyond pure boron nanostructures, self-doping provides a
powerful tool for gaining a zeroth-order view of metal boride
systems. In metal boride structures, we expect that the boron-
boron bonding is much stronger than the metal-boron or
metal-metal bonding. Furthermore, we expect the metal at-
oms to donate electrons to the boron subsystem. Therefore, a
stable metal boride 2D sheet should have optimally filled
boron bonds as a starting point.

Consider a MeBx system where Me is a metal atom. As-
suming that each metal atom donates y electrons to the boron
subsystem and does not otherwise perturb the electronic
structure, each boron atom now has on average �3+y /x�
electrons and the total number of electrons for the boron
subsystem is now

Ne = �3 + y/x�M�1 − �� . �6�

As discussed in Sec. III A, optimal filling of the boron sub-
system means EF=Esep or equivalently 2�N�+N��=Ne. Since
we assume the electronic structure of boron subsystem re-
mains fixed after doping, we still assume that N�=M and
N�=M /3. Therefore, to achieve the MeBx system with opti-
mal stability, the following constraint should be satisfied,

2�M + M/3� = �3 + y/x�M�1 − �optimal� . �7�

The solution is

�optimal =
1 + 3y/x
9 + 3y/x

. �8�

Therefore, if we can estimate the charge transfer y, we
estimate the optimal � for any x and thus greatly narrow
down the search space for the most stable 2D metal boride
structures.

B. Charge transfer

Unfortunately, charge transfer is not easy to calculate pre-
cisely because there is no unique way to assign electrons to
atoms. One popular way is to calculate Löwdin charges by
projecting electronic states to orthogonalized atomic
orbitals.49,50 However, Löwdin orbitals form an incomplete
basis with long-ranged tails, and this method may lead to
unreasonable charge-transfer results. For instance, in bulk
MgB2, one rational way to explain its stability is that each
Mg atom donates all its two valence electrons to the boron
honeycomb lattice, making boron lattice isoelectronic to
graphene and stabilizing the structure. Following this expla-
nation, which is consistent with our method based on self-
doping picture, we expect the charge transfer from Mg to

FIG. 4. �Color online� �a� Isosurface contour plots of represen-
tative � MLWFs for H�1/3�, D�2/9�, A�1/9�, and T�0�, respectively:
red for positive, blue for negative values; other � MLWFs are ob-
tained by symmetry. These � MLWFs are odd with respect to re-
flection in the plane of the boron sheets. �b� Centers of � MLWFs
shown by green �. Red solid lines show the unit cells.
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boron to be essentially complete and close to two electrons
per Mg. However, our Löwdin analysis gives only 0.76 e/Mg
charge transfer. Therefore, in order to apply self-doping in
metal boride systems, a scheme that gives more reasonable
charge transfer is necessary.

Here we propose to compute charge transfer by projecting
wave functions onto MLWFs: these are an exponentially de-
caying, maximally localized, orthogonal, and complete
basis.46–48 For Mg-B systems, we found it easy to assign
MLWFs to Mg or B atoms by simple visual inspection. For
bulk MgB2, we calculate MLWFs for six lowest bands, ob-
taining five MLWFs for B which are similar to those of H�1/
3�, and one MLWF around Mg �see Fig. 5�a��. Projecting the
DOS onto these MLWFs and integrating up to the Fermi
energy gives a very reasonable charge transfer of 1.82 e/Mg
or approximately Mg2+. Therefore, we believe that the
MLWF-based charge transfer gives sensible values for our
self-doping method and we use it to calculate charge transfer
below.

Again, we would like to emphasize that, formally, charge
transfer is an ill-determined quantity depending on details of
how it is defined and calculated. However, our main use of
the charge transfer will be to make zeroth-order estimate of
�optimal in Eq. �8� in order to describe the basic properties of
stable metal borides. For such an application, we believe that
as long as the charge transfer can be reasonably defined—
such as in our case involving a metal atom that is chemically
expected to donate electrons to the boron subsystem—the
overall approach will be useful.

C. MgB2 sheets

We illustrate this approach based on self-doping for 2D
atomically thin MgB2 sheets. �Enlarging the project to other
MgBx stoichiometries is a future project.� Figure 5 shows
three MgB2 sheets: Fig. 5�b� is the bulk-derived sheet struc-
ture with Mg on H�1/3�, Fig. 5�c� is based on a G�3/10�
boron sheet, and Fig. 5�d� is built from an E�1/5� boron
sheet. These MgB2 sheets are illustrated in Figs. 7�e�–7�g�.
The MLWF charge transfers are 1.37, 1.05, and 0.62 e/Mg,
respectively, which are quite different from and clearly
smaller than 1.82 e/Mg �the bulk MgB2 value�. This already
suggests that the MgB2 sheet structure derived from bulk
will not be most stable.

Furthermore, we notice that the charge transfers of three
MgB2 sheets are different from each other. Hence, the charge
transfer y and the optimal � are interdependent quantities:
rigorously, Eq. �8� should be solved self-consistently in y and
x. However, since the method is approximate and we wish to
present a zeroth-order view, we note that, very crudely, y
hovers around unity. Using a guess of y=1 in Eq. �8� yields
�optimal=5 /21 which suggests that Mg placed on ��1 /4
boron sheets should create the most stable MgB2 sheets.

To test this method, we construct many MgB2 sheets by
putting Mg on different boron sheets with a range of �. Fig-
ure 6 shows the energies of the best MgB2 sheets we found
for each � and Fig. 7 shows their atomic geometries. The
optimal MgB2 sheet we have found, shown in Fig. 7�a�, oc-
curs at �=1 /4 and is obtained by doping Mg on an F�1/4�

FIG. 5. �Color online� Isosurface contour plots of MLWFs as-
sociated with Mg �top, side and best-angle view, red for positive
and blue for negative values�, total DOS �red solid lines� and partial
DOS on Mg �blue dashed lines� for �a� MgB2 bulk, �b� MgB2 sheet
derived from bulk with Mg on the H�1/3� sheet, �c� MgB2 sheet
from a G�3/10� boron sheet, and �d� MgB2 sheet based on an E�1/5�
boron sheet. The charge transfers from Mg to B are �a� 1.82, �b�
1.37, �c� 1.05, and �d� 0.62 e/Mg. For the MgB2 sheet in �c�, there
are two types of MLWFs associated with Mg: we only show one of
them while the other is very similar to the one in �d�. Small gray
balls are boron and large blue green balls are Mg. Black solid lines
are the Fermi levels.
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boron sheet. This particular MgB2 sheet is 0.72 eV /MgB2
more stable than the bulk-derived one ��=1 /3�, which is a
significant energy difference. We believe that this sheet is a
better precursor for MgB2 nanotubes.

During the above search process, we found the following
rules of thumb to hold when generating stable MgB2 sheets.
While we are not able to present a proof, we believe they
should be generally applicable to other stoichiometries. In
order to make the lowest-energy structure, one should: �a� to
whatever extent possible, put Mg on the hexagon sites
�above or below the boron sheet�, �b� fill both sites above

and below the hexagon if needed, and �c� put the any remain-
ing Mg in the triangular regions. Only a very small number
of our most stable MgB2 sheets do not obey these rules, e.g.,
the sheet in Fig. 7�d�.

To exemplify these rules, for the fixed boron sublattice of
sheet F�1/4�, we constructed a few variants of the optimal
MgB2 sheet �Fig. 7�a�� where only the distribution of Mg
atoms among hexagon sites was varied. These MgB2 sheets,
which are shown in Fig. 8, are all less stable than the optimal
one but only by at most 20 meV /MgB2. Thus while a search
over possible Mg arrangements is needed to find the true
ground state, this part of the search does not contribute
greatly to the total energy as long as all Mg atoms occupy
hexagon sites. In summary, the combination of the optimal �
from Eq. �8� and the above rules for the best Mg placement
greatly narrows down the search space for optimal metal
boride nanostructures.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we present a self-doping mechanism in bo-
ron nanostructures based on a clear analysis of the chemical
bonding in boron sheets using MLWFs. We propose a gen-
eral design rule for boron nanostructures based on self-

FIG. 6. �Color online� Red squares show the energies �measured
relative to bulk MgB2� per formula unit of the most stable MgB2

sheets at each � versus �. The optimal MgB2 sheet structure occurs
at �=1 /4 �whose image is shown in Fig. 7�a��. The point at �
=1 /3 corresponds to the bulk-derived sheet structure.

FIG. 7. �Color online� The most stable MgB2 sheets for �a� �
=1 /4, �b� �=1 /13, �c� �=1 /9, �d� �=1 /7, �e� �=1 /5, �f� �
=3 /10, and �g� �=1 /3. The structure in �a� is the best MgB2 sheet
in our library. We display top views that are rotated slightly around
the horizontal �x� axis. Small gray balls are B, large light yellow
balls are Mg lying above the boron plane, and large dark blue balls
are Mg lying below the boron plane. Red solid lines show the
primitive cells.

FIG. 8. �Color online� MgB2 sheet structures derived from the
same F�1/4� boron sheet sublattice but with different Mg distribu-
tions from the optimal MgB2 sheet shown in Fig. 7�a�. These sheets
are all less stable than the optimal structure. The energy differences,
in meV per formula unit, are shown below each structure. We dis-
play top views that are rotated slightly around the horizontal �x�
axis. Small gray balls are B, large light yellow balls are Mg lying
above the boron plane, and large dark blue balls are Mg lying below
the boron plane. Red solid lines show the primitive cells.
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doping which explains many stable boron structures discov-
ered in other work. Moreover, self-doping provides a tool for
studying metal-doped boron nanosystems and we use it to
discover a stable atomically thin MgB2 sheet. The method is
general, applicable to other metal borides, and should help in
designing and understanding the properties of metal-doped
boride nanotubes and other nanostructures.

We close by noting two points concerning our results.
First, this work has focused on the properties and stability of
isolated atomically thin 2D boron and metal boride nano-
structures �and by extension isolated nanotubes made of such
sheets�. A subject of present interest and for future investi-
gation involves the importance of bundling effects when the
nanostructures are brought in close proximity. Stabilizing ef-
fects of bundling have been already demonstrated for AlB2
and MgB2 nanotubes built from 2D sheets derived from AlB2
and MgB2 bulk structures.24,32 How the metal boride struc-
tures we propose here are stabilized or modified by bundling
is an interesting open question.

Second, our focus has been on finding thermodynamic
ground-state structures for pure boron and metal boride
nanostructures. Other pure boron nanostructures �such as
those built from the triangular sheet12–15� or metal doped
nanostructures �such as those built from the bulk MgB2 de-
rived 2D sheet23,29–32�, while not thermodynamic ground
states, are mechanically stable �i.e., metastable� and, in prin-
ciple, might be fabricated during experimental growth via
kinetic limitations. Clearly, understanding the growth pro-
cesses of boron nanostructures is an important topic for fu-
ture work in terms of seeing whether and how metastable
nanostructures might be fabricated, as well as helping real-
izing a larger variety of boron nanosystems in experiments.
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