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Although the melting of graphite has been experimentally investigated for a long time, there is still much
debate on the graphite melting properties, as studies show significant discrepancies. We calculate the melting
line by means of LCBOPII, a state-of-the-art interaction potential for carbon. To this purpose, we developed a
generalized thermodynamic integration scheme, suitable for layered crystals. We also investigate the structure
of liquid carbon around the coexistence line, including the undercooled region, as well as its dynamic prop-
erties in a wide range of temperatures.
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I. INTRODUCTION

Graphite is the most stable carbon �C� allotrope at ambi-
ent condition. It is a strongly anisotropic crystal that consist
of layers of sp2-bonded carbon atoms arranged in a hexago-
nal structure. The sheets are stacked mostly in an ABAB
fashion. While the in-plane bonds are very strong, the inter-
actions among the layers are relatively weak.

A detailed microscopic understanding of the properties of
graphite is relevant for nanotechnology, material science, and
geophysics. Despite the fact that graphite has been investi-
gated for decades employing a host of different theoretical1–4

and experimental methods �see Refs. 5 and 6 for a review�,
there is still much debate on its melting properties. The ex-
perimental estimates for the melting line are scattered over a
range of 3700–5000 K.

In this paper, we report a computational study of the melt-
ing line of graphite using a state-of-the-art atomistic model.
We determined the graphite melting line by free energy cal-
culations and characterized the properties of the liquid phase
near the melting line, including the undercooled region. This
knowledge is important to understand the formation mecha-
nism of carbon-based nanostructures.

Realistic modeling of the melting of graphite requires an
accurate description of the interatomic interactions in com-
bination with a precise evaluation of the relative free ener-
gies of the graphite and liquid phase. Presently, density func-
tional theory �DFT�-based models incorporating weak long-
range interactions7–11 would provide the best approach to
model the interatomic interactions. However, when com-
bined with free energy calculations this approach is prohibi-
tively expensive.

A viable alternative is employing an accurate empirical
description of the interatomic interactions. We used the em-
pirical “long-range carbon bond order potential” �LCBOP�
that incorporates long-range dispersive interactions, and ac-
curately describes carbon properties for a wide range of
structures and conditions. The present work specifically fo-
cuses on the properties of carbon near the graphite melting
line of the LCBOPII model.12 This potential incorporates sig-
nificant improvements on the LCBOPI+ version, which was

employed to model the carbon phase diagram in our earlier
studies.13,14 The improvements yield a more accurate de-
scription of the high-pressure high-temperature liquid,15 in-
dicating that it may also provide an improved description of
graphite melting.

In the finite periodic systems employed in simulations of
graphite, the layers often show sliding due the weak inter-
layer interaction. The presence of sliding layers requires a
dedicated method to determine the free energy of the graph-
ite phase.16 We provide a generalization of the Frenkel-Ladd
free-energy method17,18 to deal with crystalline systems that
show interlayer sliding. In addition to application to graphite
and other layered crystalline materials like BN and MoSe2,
this extension of the Frenkel-Ladd method is also applicable
for free energy calculations of other important types of
weakly coupled structures, such as multiwalled nanotubes,
onion-like fullerenes, or arrays of nanotubes.

II. METHODS

A. Models and simulation methods

We performed simulations employing both the empirical
bond-order potential LCBOPII and a DFT based description
of the interatomic interactions.

For the LCBOPII model both Monte Carlo �MC� and mo-
lecular dynamics �MD� simulations were carried out. In these
simulations, the systems consisted typically of 100–300 par-
ticles in a periodically replicated cell with rectangular sym-
metry. MC simulations were performed both at constant den-
sity �NVT� and constant pressure �NpT�, where the pressure
was imposed by �anisotropic� volume changes. In the NVT
MD simulations the temperature was imposed by a Nosé
thermostat. The MD simulations were performed using the
STAMP package.19

The DFT-based simulations were performed using the
Car-Parrinello molecular dynamics scheme20 as implemented
in the CPMD software package.21 In these ab initio molecular
dynamics �AIMD� simulations the electronic structure was
obtained from the Kohn-Sham formulation22 of DFT,23

where we employed the gradient-corrected Becke-Perdew
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functional.24 The Kohn-Sham orbitals are expanded in plane
waves with an energy cutoff of 35 Ry. Only valence electrons
are considered explicitly, with a semilocal norm-conserving
Martins-Troullier pseudo potential25 taking into account the
interactions between the core and valence electrons. The cut-
off radius for the carbon pseudopotential is taken 0.635 Å.
The fictitious mass associated with the plane-wave coeffi-
cients is set 100 a.u., allowing for a time step of 0.0484 fs in
the numerical integration of the equations of motion. Liquid
carbon shows metallic behavior in our AIMD simulations.
For metallic systems, the Car-Parrinello method requires
the electronic degrees of freedom to be coupled to a
thermostat.26 Here, we coupled a Nosé-Hoover chain ther-
mostat to the electronic degrees of freedom with a target
energy of 0.015 eV and a coupling frequency of
15000 cm−1.

B. Thermodynamic integration

The Helmoltz free energy in the canonical NVT ensemble
is given by

F�N,V,T� = −
1

�
ln Z�N,V,T� �1�

where Z�N ,V ,T� is the partition function defined as

Z�N,V,T� = CN� e−�H�rN,pN�drNdpN �2�

with CN= 1
N!

1
h3N , �= 1

kBT , and H�rN ,pN�=�i=1
N pi

2

2m
+U�r1 , . . .rN� the Hamiltonian of a single component sys-
tem.

The factorial N! in CN takes into account the indistin-
guishability of the particles; in model-systems such as the
“Einstein Crystal” the particles are distinguishable and CN

= 1
h3N should be used.
The partition function can be factorized in a kinetic and a

configurational part, denoted by P�N ,V ,T� and Q�N ,V ,T�,
respectively:

P�N,V,T� = CN� e−��i=1
N pi

2/2mdpN = CN�2�m

�
�3N/2

Q�N,V,T� = �
V

e−�U�r1,. . .rN�drN. �3�

The configurational part of the free energy �F̃� is defined by

F̃�N,V,T� = −
1

�
ln Q�N,V,T� . �4�

At fixed temperature, the free energy difference �F of two
systems �I and II, e.g. two different volumes or interaction
potentials� is determined by the difference in the configura-

tional part of the free energies: �F=�F̃.
The free energy of a state point in the phase diagram can

be obtained by employing the thermodynamic integration
technique. It consists of two steps. First a reference model-
system with known free energy is chosen such that it has

structural properties similar to those of the state point under
consideration. For a liquid state point, the Lennard-Jones
�LJ� system may serve as a reference system, since an accu-
rate parametrized expression for the free energy has been
determined by computer simulations.27 A convenient refer-
ence system for a solid is the “Einstein Crystal” �EC�28 with
the corresponding lattice structure. Its free energy can be
evaluated analytically. The potential energy function of an
EC is defined by the potential UEC�r1 , . . . ,rN�=�i=1

N ��x�xi
−xi

0�2+�y�yi−yi
0�2+�z�zi−zi

0�2� where �x,y,z are the spring
force constants for vibrations around the reference positions
ri

0. The set of points 	r0
i 
i=1. . .N is usually chosen to be the

equilibrium lattice of the crystal to be simulated.
The second step of thermodynamic integration is to trans-

form the interaction potential of the reference system UREF
into that of the state point under consideration, and measure
the free-energy change associated with the transformation.
This can be achieved by making use of a parametric potential
U��r1 , . . .rN� that coincides with the reference potential for
�=0 and with that of the state point under consideration for
�=1,

U� = �U + �1 − ��UREF. �5�

Then, the final configurational free energy can be expressed
as:28

F̃ = F̃REF + �
�=0

�=1

��U��d� , �6�

where �U= �UREF−U��, and � . . . �� is the canonical average
with the interaction potential U�.

In the practical implementation with the EC reference sys-
tem, one has to take care of the following. In the limit of
vanishing coupling to the EC lattice points ��=1�, the sys-
tem as a whole is free to translate, stretching the springs to
any length and leading to a divergence of �UREF−U��=1 in
Eq. �6�.

To avoid this problem the EC lattice and the equilibrium
lattice of the crystal should be coupled. This can be achieved
by imposing the center-of-mass �CM� of the system to re-
main equal to the one of the EC lattice �CM0� 17,18 during the
simulation. The configurational free energy of a system with
potential energy U, calculated by integrating from an EC
with �=�x=�y =�z is then given by18

�F̃

N
=

3

2
ln���

�
� + ��

0

1

��u��
�d� −

1

N
3

2
ln���

�
� − ln�VPC�� .

�7�

Here, VPC is the volume of the primitive cell �PC�, u=U /N is
the potential energy per particle, and the superscript � indi-
cates that the averages are evaluated in the canonical en-
semble with the constraint CM=CM0. The first term is the
free energy of the reference EC; the second term specifies the
free-energy change upon transformation from the EC crystal
to the system under consideration; the third one yields the
correction associated with the constraint on the CM. Note
that the latter term yields a finite-size correction that van-
ishes in the thermodynamic limit.
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C. Multi-reference method

Performing simulations of graphite at high temperatures,
we observe a sliding of the graphite planes along each other.
This effect is due to the weakness of the interaction between
nearby planes and to the finite size of the sample. In this
case, relevant for graphite and similar layered systems, the
EC method of Refs. 17 and 18 outlined in Sec. II B has to be
amended.14,16 Since layers can slide in opposite directions by
any amount keeping CM and CM0 equal, �UREF� is unbound
in the limit of vanishing coupling to the EC lattice points
��=0�, and the integrand in Eq. �6� is ill defined.

We propose an EC free-energy method for crystalline lay-
ered systems that avoids this divergence in the vanishing EC
limit and allows for accurate free energy calculations in lay-
ered crystals. We also provide an expression to evaluate the
finite size correction to the free energy due to the sliding of
the EC planes that generalizes Eq. �7�.

The philosophy is to use a set of independent EC sublat-
tices and to couple each of them to a single graphite sheet,
ensuring the maximal structural resemblance. We allow the
reference planes to move independently only in the in-plane
�xy� direction, while in the z direction the reference positions
of all planes are displaced by the same amounts, having
therefore a fixed inter-planar distance. We consider a graph-
ite structure made of M sheets sj with j=1. . .M. The CM0 of

the reference planes follows the CM of the corresponding
graphitic sheet. The in-plane translations of the references
are then tj

x= 1
n�i�sj

xi,j and tj
y = 1

n�i�sj
yi,j, where xi,j�yi,j� indi-

cates the x�y� coordinate of atom i in plane j and n=N /M is
the number of particles of each sheet. In the out-of-plane
direction the reference planes are all displaced by the same
amount, in order to follow the position of the total center of
mass: tz= 1

N�i=1
N zi.

As a result, the expression for the EC interaction is:

UEC�rN;tM� = �
j=1

M

�
i=1

n

��x�xi,j − xi,j
0 − tj

x�2 + �y�yi,j − yi,j
0 − tj

y�2

+ �z�zi,j − zi,j
0 − tz�2� �8�

where, tj
x , tj

y , tz are functions of the positions ri,j. The configu-
rational partition function

Q� =� e−�U��rN�drN �9�

coincides for �=1 with the canonical partition function Eq.
�3�. In the case of graphite it is useful to consider an EC with
springs of different strength in the xy and in the z direction:
�xy =�x=�y and �z. For �=0 it is possible to evaluate the
integral analytically, obtaining

Q�=0
� = � �

�xy�
�N

�Sxy�M��xy�

�
�M

nM�� �

�z�
�N/2

Lz��z�

�
�1/2

N1/2�
= VPCQEC

CM�Sxy��M−1���xy�

�
�M−1

�n�MN−1� �10�

where QEC
CM= � �

� �3�N−1�/2� 1
�xy

� 1
�z

�1/2��N−1�N3/2 �Ref. 18� is the configurational partition function of the EC with the global CM

equal to CM0, and Sxy is the surface of the two-dimensional �2D� in-plane primitive cell. The factor in square brackets in the
last line of Eq. �10� results from the presence of the multiple reference planes.

By inserting F̃REF=− 1
� ln�Q�=0

� � in Eq. �6�, we arrive at the following expression for the configurational free energy of
graphite:

�F̃

N
= ln��xy�

�
� +

1

2
ln��z�

�
� + �

0

1

��u��d� −
1

N
ln��xy�

�
� +

1

2
ln��z�

�
� + ln�VPC��

−
1

N
��M − 1�ln��xy�

2�
� + ln�Sxy� + ln�N�� − M ln�M�� . �11�

We collected the finite-size corrections in two different
square brackets: the first corresponds to the correction in Eq.
�7�, while the second contains the correction due to the slid-
ing of the EC planes. The latter vanishes for M =1, so that
Eq. �7� is recovered. Notice that in our approach this term
vanishes in the thermodynamic limit as slow as ln�N� /N2/3,
and it is therefore important to take it into account correctly.

It is important to note that the above outlined multi-
reference approach can be applied to other weakly bounded

complex systems that have subsystems showing sliding or
rotation relative to each other. This class may include onion-
like structures and nanotube arrays.

D. Coexistence

In a one-component system the coexistence line is the
locus of the points �Tc , pc� where the difference of the Gibbs
free energy G�N , p ,T�=F�N ,V ,T�+ pV between the two
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phases vanishes. In the previous section, we have outlined
how to obtain the free energy by thermodynamic integration.
Starting from a state point near coexistence, the temperature
dependence of the difference in Gibbs free energy can be
obtained by integrating

�

��

���G�N,p,T�� = ��E + p�V�NpT. �12�

The coexistence temperature Tc can then be located as the
temperature where �G=0.

Once a single coexistence point �Tc , pc� is known, one can
trace the coexistence line by integrating the Clausius-
Clapeyron equation29

dTc

dpc
=

Tc�Vc

��Ec + pc�Vc�
�13�

where �Vc and �Ec are the volume and energy differences
between the two phases at the point �Tc , pc�. We integrated
Eq. �13� with the trapezoidal predictor-corrector scheme
proposed by Kofke.29 We used an integration step of
�p=1 GPa. The averages �E� and �V� were calculated with
NpT-MC runs of 5�104 MC cycles �one MC cycle corre-
sponds to N particle moves� following equilibration runs of
1�104 MC cycles. In the case of graphite we performed
anisotropic volume moves along the Cartesian directions.

III. RESULTS

A. Melting temperature at 2 GPa

As a starting point to trace the melting line for the
LCBOPII model, we determined the coexistence point at the
pressure of 2 GPa. This is the lowest pressure where a direct
comparison with the results for the LCBOPI+ model is pos-
sible. The thermodynamic integration of the graphite and of
the liquid state point was performed at T=4250 K.30

The accuracy of the thermodynamic integration is influ-
enced by the choice of the parameters of the reference po-

tentials, i.e., the 	 and the 
 of the LJ potential and the �xy,
�z of the EC. The overlap of the configuration space ac-
cessed by the reference and the LCBOPII systems should be
as large as possible, and the conversion from one system
to another as smooth as possible. The reference system for
the free energy calculation of the liquid state was taken as
a system with a cut and shifted LJ potential, with cutoff
rc=4	. The free energy of this LJ liquid has been accurately
parametrized in Ref. 27. The values of 
 and 	 were chosen
in the supercritical domain, and such that there is a maximal
similarity of the local structure of the LJ and LCBOPII liquid
by matching the position of the first peak of the radial
distribution function g�r�. This yields a value of 


=0.2 eV Å−2, 	=1.3 Å.
For graphite, the coupling constants �xy and �z of the

harmonic potential were chosen such that the mean-squared
displacement �MSD� around the equilibrium position
��i=1

N �ri−ri
0�2� is similar to that of the LCBOPII system. The

parameters we used are: �xy =16 eV Å−2 and �z=2 eV Å−2.
The graphite sample in the periodic box consisted of four
graphite sheets of 72 particles each. The liquid sample con-
tained 216 particles in a cubic periodic box.

The results are shown in Fig. 1. For every value of � we
run MC simulations of 106 MC cycles. Before starting aver-
aging we equilibrated the sample for 104 MC cycles. The
results of the �-integration are summarized in Table I.

The results of Table II, where we report the magnitude of
the finite-size corrections, clearly show that the effect of the
sliding reference is not negligible. The total free energies per
particle ��F /N in the tables� of the two phases are equal
within the error bars. As the pressure is small and the volume
per particle v in the two phases is very close, also the differ-
ence in the Gibbs free energy turns out to be zero within the

error-bar: ��G̃liq− G̃graph�=��F̃ /N+�p�v=0.0010�0.0027�
−0.0016�0.0001�=−0.0006�0.0027�. This small difference in
the Gibbs free energy yields a negligible shift down �4 K� of
the melting temperature with respect to the temperature of
the thermodynamic integration. Our final estimate for the
melting temperature at 2 GPa is 4250 K�50.

TABLE I. Helmholtz free energies per particle at T=4250 K
and volumes corresponding to the average volume at p=2 GPa,
associated to the reference systems ��=0�, to the thermodynamic
integration and to the final carbon phase ��=1�.

Phase �F�=0 /N ��d���u�� �F�=1 /N

Graphite −22.3571 −2.090�0.027� −24.447�0.027�
Liquid −11.1963 −13.2517�0.0014� −24.4480�0.0014�

TABLE II. Magnitude of the finite-size correction per particle
for the graphite’s multilayered thermodynamic integration results
reported in Table I.

Ordinary corr. Sheets corr. Total corr.

−0.0647 −0.0975 −0.1621

0 0.2 0.4 0.6 0.8 1
λ

-6

-5

-4

-3

-2

-1

0

1

<
∆u

>
λ

(e
V

) EC

LJ LCBOPII

GRAPHITE
LIQUID

FIG. 1. �Color online� Behavior of ��u�� as a function of �. The
red plus-symbols correspond to the thermodynamic integration of
graphite from the multireference EC. Note the absence of any di-
vergence at �=1, despite the relative sliding of the graphite sheets.
The blue crosses correspond to the thermodynamic integration of
the liquid. The connecting solid and dashed lines are a guide to the
eye. The error bars are smaller than the size of the symbols.
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B. Melting line

We traced the coexistence line in the interval 1–20 GPa
by means of the trapezoidal predictor-corrector scheme
�Fig. 2�.29 Note that beyond 16 GPa the stable phase is dia-
mond. Using the numerical details given in Sec. II D, the
difference between the “predictor” and the “corrector” esti-
mates was less than 2 K on all points.

The negligible dependence on pressure of the melting
temperature is due to the fact that the volumes per particle in
the two phases are almost equal �Eq. �13�� over the whole
coexistence line, despite the fact that the value decreases by
more than 25% �Fig. 3�. In the same figure we also plot the
volumes per particle for the liquid and for the over-heated
graphite at T=4750 K. On this isotherm the difference in
volume per particle increased, but becomes only significant
for pressures below 6 GPa. Hence, for LCBOPII the volume
per particle of graphite is only slightly larger that that of the
liquid over a wide range of pressures and temperatures
around the melting line.

The experimental melting temperatures are scattered over
the interval 3700–5000 K, strongly depending on the details
of the experimental apparatus and on the heating rate of the
graphite sample.6 Togaya et al.,31 whose investigation is con-

sidered to be the most reliable by Bundy,5 report a melting
line between 4600 K and 4800 K, with a gentle maximum
around 5 GPa. However, this is an indirect observation, as
the melting temperature is deduced from the measured en-
thalpy of melting. They measure an enthalpy of melting
around 1.23 eV per particle. Taking the difference of en-
thalpy per particle between the two phases �E /N+ p�V /N,
we found a value of 0.63�0.01 eV at 0 GPa, which de-
creases linearly to 0.56�0.01 eV at 15 GPa. In a review of
40 years of investigations over this topic, Savvatimskiy6 con-
clude that the majority of the reliable estimates give a melt-
ing temperature between 4600 and 5000 K. Compared to the
LCBOPI+ the melting line shifts to higher temperatures,
closer to the experimental values of Ref. 31. In this respect,
LCBOPII improves the results of LCBOPI+, even though it
probably still underestimates the melting line of a few hun-
dred Kelvin.

C. Low-density liquid carbon

We analyzed the local structure of liquid carbon for 5
different pressures �0,5,10,15, and 20 GPa� along the melting

0 5 10 15 20
Pressure (GPa)

3500

3750

4000

4250

4500
T

em
pe

ra
tu

re
(K

)

LIQUID

GRAPHITE

DIAMOND

LCBOPI
+

LCBOPII

FIG. 2. �Color online� Graphite melting line according to
LCBOPII �red dots, solid line�, compared to the LCBOPI+ carbon
phase diagram �blue diamonds, dashed lines�.

0 5 10 15 20
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8.5
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V
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3 )

Graphtie, T=4250K
Graphite, T=4750K
Liquid, T=4250K
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FIG. 3. �Color online� Volume per particle in liquid carbon
�circles� and in graphite �diamonds� on the isotherms at T
=4250 K �blue solid lines� and T=4750 K �red dashed lines�.
Error-bars are within the size of the symbols.

0 1 2 3 4 5
r ( Å )

0

1

2

3

g(
r)

Lower Density
Higher Density

FIG. 4. �Color online� LCBOPII radial distribution functions on
the melting line at the densities of 1.94 g cm−3 �T=4250 K� and
2.59 g cm−3 �T=4250 K� �solid blue and dashed red lines,
respectively�.

0 1 2 3 4 5
r ( Å )

0

1

2

3

g(
r)

AIMD
LCBOPII

FIG. 5. �Color online� LCBOPII �solid blue� and AIMD �dashed
red� radial distribution functions on the melting line �T=4250 K� at
the density of 1.94 cm−3.
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line and in the undercooled liquid at T=4000 K. We also
investigated the diffusive behavior of the liquid, performing
classical and AIMD simulations up to 7000 K. These are key
properties to describe the stability and nucleation of graphite
and graphite-related materials or nanostructures. All simula-
tions have been performed in the NVT ensemble. The den-
sity has been determined with NpT-MC simulations, in order
to reproduce the �LCBOPII� coexistence densities at the se-
lected pressures. The systems consisted of 128 particles in a
periodic box, known to be large enough to give a sufficiently
accurate description of liquid carbon.32,33

1. Local structure

In Fig. 4, we show the radial distribution function g�r� for
the LCBOPII liquid along the coexistence line, at two den-
sities. Liquid carbon appears to be very structured. As shown
in Fig. 5, the LCBOPII reproduces well the features of the
g�r� obtained with AIMD at the same state-points, although

the first peak is sharper and more pronounced.
Along the melting line and inside the undercooled region,

the liquid is mainly threefold coordinated, with smaller frac-
tions of twofold and fourfold coordinated atoms. In Fig. 6 we
show the LCBOPII coordination fractions at 4000 K, against
the ab-initio benchmarks. The coordination are evaluated ac-
cording to the definition used in the LCBOPII potential.12

Compared to the behavior of LCBOPI+ around the
coexistence,34 LCBOPII shows improvements in several re-
spects. Firstly, the fraction of the threefold coordinated atoms
is now closer to the one of the benchmarks, although still
slightly over estimated. Secondly, the twofold prevails on the
fourfold at low pressures, but it disappears as soon as the
pressure is increased to a few GPa. LCBOPII reproduces the
trend of the ab initio benchmarks as the pressure is in-
creased. Increasing the temperature, the threefold fraction
decreases and the liquid becomes increasingly twofold, as
shown in Fig. 7 for the density of 1.94 g cm−3. LCBOPII is
able to reproduce this trend, although at higher temperatures
the threefold fraction is slightly over estimated.

2. Diffusive behavior

So far, there is very limited data available on the diffusion
in liquid carbon. Galli et al.35 reported a value of the diffu-
sion constant of 2.4�10−4 cm2 s−1 obtained with AIMD
simulations, at a temperature of 5000 K and a density of
2.0 g cm−3. Later, for the same state-point, Goedecker and
Colombo36 reported a value of 3.5�10−4 cm2 s−1 obtained
by means of tight-binding MD simulations. Recently, Ghir-
inghelli et al.13 extrapolated the diffusion coefficient around
the melting temperature assuming that liquid carbon is an
Arrhenius liquid. Here, we report the results of our investi-
gation on the diffusion of the graphite melt at two densities
�1.94 and 2.59 g cm−3�. Those corresponds to the density at
the temperature of 4000 K and the pressures of 0 GPa and 15
GPa. All MD simulations have lasted long enough to reach
�at least� a MSD of 20 Å2, corresponding to an average par-
ticle displacement of about three interatomic distances. In
Fig. 8, we report the MSDs for the LCBOPII simulations at
the lower density �1.94 g cm−3� and at the temperatures of
T=4250 K, 5000 K, and 6000 K.
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FIG. 6. �Color online� Coordination fractions in the undercooled
liquid at T=4000 K. The twofold coordination fractions are repre-
sented by circles, the threefold by triangles, and the fourfold by
diamond. The one calculated according to LCBOPII are connected
by solid lines, the one obtained with ab-initio simulations by dashed
ones.
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FIG. 7. �Color online� Coordination fractions in the liquid car-
bon at low density �1.94 g cm−3� as function of the temperature.
The legend is the same as in Fig. 6. The AIMD results show that the
liquid is mainly threefold coordinated, although the difference be-
tween twofold and threefold fractions becomes small around 7000
K. The LCBOPII model is able to reproduce qualitatively the trend.
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FIG. 8. �Color online� Mean square displacements for the
LCBOPII-MD simulations for the temperatures T=4250 K, 5000
K, 6000 K �blue, red, and green lines, respectively� at the density of
�=1.94 g cm−3. The plot is truncated at the MSD of 20 Å2.
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For an Arrhenius liquid, it holds that

D�T� = Ce−Ea/kBT, �14�

where Ea is interpreted as the activation energy associated to
the diffusion and C is a kinetic prefactor. In Fig. 9, we plot
the logarithm of the LCBOPII and AIMD diffusion coeffi-
cients against the inverse temperature �. By fitting those
data, we get an estimate for Ea, reported in Table III.

As compared with AIMD, LCBOPII overestimates the ac-
tivation barrier for the diffusion, resulting in a somewhat
slower dynamics at temperatures around the melting one.
The diffusion coefficient is very sensitive to the details of the
interaction, and can change with temperature by several or-
ders of magnitude. LCBOPII is able to reproduce the Arrhen-
ius behavior shown by the AIMD, and to predict the right
order of magnitude for the diffusion coefficient, although the
dynamic seems systematically slower. This observation
could be connected to the small differences in the local struc-
ture of the two liquids.

IV. CONCLUSIONS

For weakly bounded layered systems, it is hard to get an
accurate estimate of the free energy with ordinary thermody-

namic integration schemes, because the sliding of the sheets
results in a strongly divergent integral. We propose a general
multireference approach that is able to overcome this prob-
lem, allowing for precise evaluation of free energies for com-
plex systems composed by weakly bound subsystems. We
use this technique to calculate the melting line of graphite, as
described by the LCBOPII model of interaction. We show
that in this case the sliding of the sheets gives a non-
negligible finite-size contribution to the absolute free energy.

The calculated graphite melting temperature for LCBOPII
is 4250�50 K for pressures up to 20 GPa. Although experi-
mental data for the melting temperature ranges from 3700 K
to over 5000 K, recent reviews consider melting tempera-
tures between 4600 and 5000 K to be the most reliable with
overall a limited pressure dependence of the melting tem-
perature. Hence, LCBOPII reproduced well the latter experi-
mental observation and predicts a melting temperature only
slightly below ��10%� the most reliable experimental val-
ues. It improves significantly over the LCBOPI+phase dia-
gram, especially at low pressure.

We also investigated the structure and the diffusive behav-
ior of the liquid, comparing them to ab initio benchmarks.
The structure of the liquid is in good agreement with the ab
initio benchmarks around and above the melting tempera-
ture. The diffusion follows an Arrhenius behavior, giving a
qualitatively correct description, as compared with the ab
initio benchmarks.

The capability of LCBOPII to describe thermodynamical,
structural, and dynamic features of the liquid carbon, makes
it suitable for the study of the stability and growth of
graphite-related nanostructures.
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