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A long-standing question is why Poisson’s ratio � nearly always exceeds 0.2 for isotropic materials, whereas
classical elasticity predicts � to be between −1 to 1

2 . We show that the roots of quadratic relations from classical
elasticity divide � into three possible ranges: −1���0, 0���

1
5 , and 1

5 ���
1
2 . Since elastic properties are

unique there can be only one valid set of roots, which must be 1
5 ���

1
2 for consistency with the behavior of

real materials. Materials with Poisson’s ratio outside of this range are rare, and tend to be either very hard �e.g.,
diamond, beryllium etc.� or porous �e.g., auxetic foams�; such substances have more complex behavior than
can be described by classical elasticity. Thus, classical elasticity is inapplicable whenever ��

1
5 , and the use of

the equations from classical elasticity for such materials is inappropriate.
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I. INTRODUCTION

Classical elasticity continues to serve, without revision, as
the basis for stress and strain analysis in science, engineer-
ing, and technology. The theory describes the reversible, lin-
ear mechanical response of a continuum, which for isotropic
materials reduces to two governing constants. It provides ex-
pressions between all elastic constants and predicts that Pois-
son’s ratio, a material constant defined as

� = −
�22

�11
, �1�

where �22 and �11 are the lateral and axial strains for an
axially loaded specimen, is limited to the range −1 to 1

2 .1

These bounds are cited often;2–4 however, in practice isotro-
pic materials almost never have � lower than 0.2, a discrep-
ancy that remains unexplained since development of the
theory in the 19th century.

The isotropic, two-parameter theory was first verified by
measurement of Poisson’s ratio in steel and brass beams in
bending,5 and the early work was carried out on similar sub-
stances. Unfortunately, confirmation in ordinary materials
has led to its uncritical application in extraordinary materials.
For example, in studies of fused quartz,6 diamond,7 and
beryllium,8 expressions from classical elasticity were used to
find the elastic constants from wave-speed measurements.
On the other hand, it has been shown that porous auxetic
materials do not obey classical elasticity.9 As far as we know,
confirmation of classical elasticity in materials for which �
�0.2 is nonexistent.

In this work we show that the origin of this long-standing
issue can be resolved by using the roots of quadratic formu-
las from the classical theory to divide Poisson’s ratio into
three possible ranges. It is emphasized that since � is unique,
only a single set of roots can be valid.

II. BACKGROUND AND THEORY

Classical elasticity posits a quadratic strain energy func-
tion, derived from the first law of thermodynamics, to govern
the elastic response. For an isotropic body this function is1

2W = �� + 2��V2 + �	 , �2�

for an infinitesimal strain tensor �ij. Here � and � are the
Lamé constants, V�=�11+�22+�33� is the volume change, and
	�=��23�2+ ��31�2+ ��12�2−4�22�33−4�33�11−4�11�22� is the
shear distortion. Differentiation of 2W with respect to �ij
defines the stress tensors 
ij to give the constitutive stress-
strain relations; i.e., Hooke’s law. Material elastic properties
are measured in terms of the shear modulus G�=��, Young’s
modulus E, and bulk modulus B, which are found from � and
� by applying the respective geometries to Eq. �2�. The well-
known relations between any three elastic constants are de-
rived from Eq. �2� and are listed in standard texts.10

Thermodynamic stability requires that G, E, and B are
positive, finite, and nonzero; thus from1,10

B =
2�1 + ��

3�1 − 2��
G , �3�

it follows that −1���
1
2 , which are the classical bounds to

Poisson’s ratio. Further limits to � are obtained as follows.
In sound propagation the longitudinal modulus governing

the compression wave speed is

M =

11

�11
, �4�

where all other strains ��12, �33 etc.� equal zero. The longi-
tudinal modulus is related to the bulk and shear moduli by
M =B+ 4

3G; since B and G must be positive, M must also be
positive. Young’s modulus as a function of � and M is

E =
�1 − 2���1 + ��

1 − �
M , �5�

which may be solved by the quadratic formula as

� =
1

4
� E

M
− 1 � � E2

M2 − 10
E

M
+ 9�1/2� . �6�

The expression inside the square root can be factored into
� E

M −9�� E
M −1�, so the square root is real only when E

M �1 or
E
M �9. The stability requirements E, M 0, and ��

1
2 further
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restrict the range to 0�
E
M �1. The two solutions are shown

in Fig. 1�a�, where the positive root range is 0���
1
2 �solid

line� and the negative root range is −1���0 �dashed line�.
The function is continuous where the two roots converge at
E
M =1, when �=0. Likewise the shear modulus can be found
as

G =
M

8
� E

M
+ 3 � � E2

M2 − 10
E

M
+ 9�1/2� . �7�

Substituting Eqs. �6� and �7� into 2G�1−��=M�1−2�� re-
veals that the positive root in � is linked to the negative root
in G, which is indicated by the � sign in Eq. �7�. The ratio G

M
is plotted in Fig. 1�a� with a solid line for the negative root
and a dashed line for the positive root. There is a similar
quadratic formula for the bulk modulus with a link to the
signs of the roots in Eqs. �6� and �7�. However, in real ma-
terials the elastic constants are unique at any given state; e.g.,
there is only one bulk modulus at any given temperature and
pressure. Since there must be a single value of �, G, and B
for any value of E and M, only one set of roots is valid.

In biaxial loading 
=
11=
22, with all other stresses
equal to zero, and �=�11=�22. The biaxial elastic constant
is11

H =



�
. �8�

The constitutive stress-strain relations show that H=E / �1
−��, and since E0 and −1���

1
2 , it follows that H0. Of

course an expression between H and any other two elastic
constants may be derived. The quadratic relationships are of
special interest. The biaxial modulus as a function of E and
M is

H =
E

4
�5 −

E

M
� � E2

M2 − 10
E

M
+ 9�1/2� . �9�

Equation �9� is plotted in Fig. 1�a� as the ratio H
M ; the maxi-

mum occurs in the positive root at E
M = 9

10, where H
M = 9

8 . In the
same way � as a function of H and M is found to be

� =
M

2H + 4M
�2H

M
− 1 � �9 − 8

H

M
�1/2� . �10�

The two roots of this expression converge at H
M = 9

8 , where
�= 1

5 . Figure 1�b� shows how the maxima in Eqs. �6� and �10�
divide Poisson’s ratio into three ranges: −1���0, 0��
�

1
5 , and 1

5 ���
1
2 , of which only one can be valid.

III. RESULTS AND DISCUSSION

The data in Table I, listing Poisson’s ratio for isotropic
samples of pure elements,12–19 engineering alloys,13,16,20–25

polymers,26–31 and ceramics,32–45 show that 1
5 ���

1
2 is con-

sistent with experiment. The list is not exhaustive but does
provide a representative survey of 40 materials encompass-
ing the four major classes of solids. Note that data for certain
materials were unavailable, so the table lists volumetric av-
erages from single-crystal measurements, assuming that
grain boundaries do not affect the elasticity of the aggregate.
Further data can be found in Simmons and Wang.40 Table I
includes newer materials such as bulk metallic glass �vitre-
loy� and nanolaminate ceramic �Ti3SiC2�. Within experimen-
tal error all substances lie within 1

5 ���
1
2 .

Three of the materials in Table I �vitreloy, silicate glasses,
and concrete� have variable compositions; hence, Poisson’s
ratio varies. Figure 2 further explores � for compositionally
variable solids, plotting Poisson’s ratio for 121 glasses
grouped by chemical system.6 Within the experimental scat-
ter ��

1
5 with the exception of pure SiO2 glass �fused

quartz�.
Well-characterized substances for which ��

1
5 are

�-beryllium, diamond, boron nitride, fused quartz,
�-cristobalite, and TiNb24Zr4Sn7.9 ��-type titanium� alloy.
These outliers may be separated into two categories, hard
materials �beryllium, diamond, and boron nitride� and meta-
stable materials with a large void fraction �SiO2 glasses, cris-
tobalite, and titanium alloy�. Auxetic substances such as
�-cristobalite are included in this list, and are not distinct
from other homogenous materials, which do not obey 1

5 ��
�

1
2 . Also there are certain foams which have negative �.2

While classical elasticity has been applied to the aggregate
behavior of foams,46 they are not included in this discussion
because their properties are not fundamental but arise from
cell geometry.47

For the hard materials, measurements of Poisson’s ratio
for �-beryllium range from 0.021 to 0.116.8 Poisson’s ratio
for diamond is known more accurately, and for random ag-
gregates is calculated to be 0.069.7 Measurements of � of
vapor-deposited diamond are complicated by texture,48 and
of sintered diamond by binder;49 nevertheless, it appears that
� is less than 1

5 . Resonant ultrasound measurements of sin-
tered cubic boron nitride have found �	0.14–0.18,49 which

FIG. 1. �Color online� Quadratic elasticity expressions. �a� The
two solutions of Eqs. �6�, �7�, and �10�, labeled �, G

M , and H
M . Solid

lines show the positive roots of Eqs. �6� and �10� and the negative
root of Eq. �7�, and vice-versa for the dashed lines. �b� Roots of
Eqs. �6� and �10�, labeled E

M and H
M , with the three possible ranges

of Poisson’s ratio drawn with different line types.
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is somewhat larger than that predicted from volumetric aver-
aging of the single crystal. Sintering boron nitride to full
density complicates the determination due to the sintering
aid.

As shown in Fig. 2, � for pure SiO2 glass is in the range
of 0.15–0.16. Interestingly, it is possible to densify glasses,
with the change in volume correlated with the inverse of
Poisson’s ratio. The volume change for fused quartz was
large, 21%, which increased � to 0.33.50 Poisson’s ratio for
the low-temperature form of cristobalite was found to be
negative, which has been attributed to the rotation of the
SiO4 tetrahedra akin to the rotation of ribs in auxetic
foams.51 A titanium alloy with �=0.14 appears to be due to a
strain-induced martensitic transformation.52 The resemblance
of these materials with large atomic voids to that of foams
with microstructural pores is striking. Likewise, there is a
similarity to lightweight concrete, wherein the mineral ag-
gregate �such as haydite� contains a significant fraction of
voids; Poisson’s ratio of these materials have been measured
to be less than 1

5 .45

IV. CONCLUSIONS

The equations and their roots derived herein are general.
While the analysis does not determine which of the three
ranges of � is valid, from experimental data it is clear that
1
5 ���

1
2 is the correct result. This range can be used to

identify additional constraints on the elastic constants such
as E

M �
9

10 . The two-parameter theory cannot describe mate-
rials with large void fractions �e.g., �-cristobalite�, irrevers-

TABLE I. Poisson’s ratio of isotropic materials at RT.

Material Poisson’s Ratio Ref. Material Poisson’s Ratio Ref.

Elementsa Polymersc

C �graphite� 0.31 12 Polystyrene 0.34 26

Mg 0.291 13 Polycarbonate 0.42 27

Sib 0.22–0.23 14 Polyvinyl chloride 0.38 27

Cr 0.21 13,15 Polymethyl methacrylate 0.365–0.375 28

Cu 0.355 16 Polyethylene terephthalate 0.29 29

Zn 0.25 13 Polytetrafluoroethylene 0.41–0.42 30

Ag 0.36 17 Natural rubber 0.4999 31

Sn �metal� 0.357 13,18 Ceramicsa

W 0.28 13,16 MgO 0.18�0.03 32

Au 0.45 16 NaCl 0.253 33

Pb 0.46 16 CsCl 0.266 34

U 0.23 19 CaF2
b 0.283 35

Engineering Alloys Al2O3 0.231 36

Low alloy carbon steel 0.29–0.30 13 TiN 0.25 37

18–8 Stainless steel 0.305 16 BaTiO3 0.27 38

Grey cast iron 0.26 20,21 LiNbO3
b 0.25–0.26 39,40

70–30 Brass 0.331 16 Ti3SiC2 0.20 41

Aluminum 6061-T6 0.33 22 B2O3 glass 0.30 42

Bronze 0.34 23 GeO2 glass 0.20 43

Titanium �dental alloy� 0.30–0.31 24 silicate glasses 0.20–0.276 44

Cu-Zr-Be glass �vitreloy� 0.35–0.39 25 Concrete 0.20–0.37 45

aMeasurements of aggregate polycrystalline samples, except where noted.
bVolume average of single-crystal elastic constants.
cNeat materials.

FIG. 2. �Color online� Poisson’s ratio of 121 inorganic glasses.
Data compiled in Ref. 6. Uncertainty standard deviation ranges
from �0.003 to �0.01; representative error bar shows �0.01.
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ible structural changes �e.g., titanium alloy�, or extremely
hard substances �e.g., diamond�. The use of Eq. �2� to inter-
pret the behavior of such materials6–8,48–51 is incorrect. This
failure has not been apparent heretofore because a test of
classical elasticity requires three independently measured
elastic constants, which generally are not available. How-
ever, deviation from the range of � identified herein can be

taken as an indication of the incorrectness of an analysis
employing the classical equations.
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