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Temperature-dependent structural properties of Al�110� surface have been studied ab initio employing the
concepts of the potential-energy surface �PES� and the free-energy surface �FES�, with the latter based on the
harmonic approximation for lattice dynamics. Three effects have been identified as contributing to the
temperature-dependent multilayer relaxation: the bulk-substrate thermal expansion, the effect of asymmetry of
PESs, and the entropy-driven shift of the minima of FESs. Thanks to the proper choice of constraints for PESs
and FESs, it was possible to find relative contribution of the three effects to variation with temperature of the
first three interlayer distances. A very satisfactory agreement of the calculation results with experimental data
has been obtained. Also, a reference of the theoretical data to the experimentally observed anisotropic surface
melting has been noticed. A softening phonon mode has been identified which is responsible for both: the
entropy-driven spectacular expansion of the second interlayer distance and the loss of the surface stability. The
latter can be associated with the anisotropic surface melting. The methodology applied has been found to be
complementary to previous theoretical works �N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne, Phys.
Rev. Lett. 82, 3296 �1999�; S. Narasimhan, Phys. Rev. B 64, 125409 �2001��, by offering another point of
view and additional insight into the relative contribution of different physical effects to the temperature-
dependent structural phenomena in Al�110� surface.
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I. INTRODUCTION

Rich phenomenology exhibited by low-Miller-index metal
surfaces �100�, �110� and �111� has drawn an interest of
physicists for a long time. Such phenomena as damped
oscillatory multilayer relaxation, surface reconstruction, or
premelting have been studied both by experimentalists and
theoreticians, using various techniques. Although the basic
physical reasons underlying a variety of effects are known
�undercoordination of surface atoms, reconfiguration of the
free-electron density near the surface, and free-electron den-
sity spacial oscillation in the direction vertical to the sur-
face�, the physics of particular phenomena is not always
fully understood and is still the subject of a dispute. A new,
very important, research tool has emerged over the last
decades—ab initio calculations based on the density-
functional theory �DFT�. The purely theoretical investiga-
tions, with very few approximations, allow for a deep insight
into the microscopic properties of a system, and it is only the
matter of researcher’s invention how to apply the tool and
use available data to interpret and understand the experimen-
tal observations.

This work deals with a particular case, the Al�110� surface
and its temperature-dependent structural properties, although
the methodology introduced and some conclusions drawn
can be also applied to other metals/surfaces. The system, on
the one hand, is relatively simple and on the other, it exhibits
an intriguing structural behavior observed in numerous ex-
periments, thus it is a rewarding system to test various the-
oretical concepts. Two effects have been a subject of interest:
the surface multilayer relaxation, in particular, its intriguing
temperature-dependent behavior �contraction of the first in-
terlayer distance and spectacular expansion of the second
one�, and the effect of anisotropic premelting.

The measurements reported by several authors show that
the first interlayer distance in the Al�110� surface is smaller

than the respective bulk value by −7% /−11% while the sec-
ond one is larger by 4.8%/5.5%.1–5 It has also been observed
experimentally that the thermal behavior of the two distances
is different.3,5 For example, the measurements reported in
Ref. 5 show that the first interlayer distance exhibits negative
thermal expansion, from −8.1% at 100 K to −11.1% at 300 K
while the second one shows positive expansion, from 5.5%
at 100 K to 6.7% at 300 K �see also Fig. 3�. The same
tendency, but slightly different values, has been reported in
Ref. 3 �see Figs. 7–9�.

The anisotropic surface melting below the bulk melting
point is observed on the �110� surface of Al and other fcc
metals �e.g., Pb and Cu�.7–10 In the case of the Al�110� sur-
face, at about 300 K below the bulk melting point �which is
�933.5 K at zero pressure�, the structure begins to lose a

long-range order in the �11̄0� direction. A few atoms long
intact chains begin to migrate along that direction while the
periodicity in the �001� direction is still preserved. A quasil-
iquid layer with residual anisotropy is formed, whose depth
and disorder increases with temperature up to the bulk melt-
ing point.10

Numerous and various theoretical approaches to the
above described effects have also been reported, among
which the ab initio investigations are of particular interest for
this work �e.g., Refs. 6 and 11–14�. For example, Ref. 14
contains an extended ab initio study of low-Miller-index Al
surfaces in static-equilibrium condition, i.e., with neither
zero-point vibrations nor temperature included. In the work,
the effect of computational parameters, such as cutoff energy
and k-point sampling, as well as the influence of the quantum
size effect �QSE� on various physical characteristics of the
surfaces have been carefully studied. The work provides a
very useful framework for establishing computational condi-
tions when studying particular cases and will be referred to
in this paper.
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As far as the temperature effects are concerned, two ab
initio works have been chosen as a reference, to compare and
discuss the results obtained in this work. First is an ab initio
molecular-dynamics simulation, reported in Ref. 6, and the
second, Ref. 11, is an extensive study of the surface dynam-
ics in the harmonic regime but gives also simple and con-
vincing arguments explaining the unusual thermal behavior
of the Al�110� surface. Both works, although using different
methodology, contain a similar observation; there is a strong
inverse anisotropy of the mean-square displacements
�MSDs� of atoms in the first two layers. First, the MSDs in
the �001� direction are significantly larger for the surface
atoms than for those in all the other inner layers and second,
the MSDs in the direction perpendicular to the surface, �110�,
are much larger in the second layer than in the first layer,
which is connected with the fact that the atoms in the second
layer have natural channels of oscillation perpendicular to
the surface and directed toward the vacuum. In the work
�Ref. 11� a strong coupling between the first and the third
layer has been noticed. It is then argued �in both works� that
the contraction of the first interlayer distance is due to the
displacement of the center of mass of the second layer to-
ward the vacuum �with essentially constant distance between
the first and the third layer� because the atoms have a shal-
lower channel in this direction. As a consequence, the con-
traction of the first interlayer distance is accompanied by the
expansion of the second one. In Ref. 6 the nonlinear effects
are also reported: the nonlinear increase with temperature of
above-mentioned enhanced MSDs.

The investigation into the temperature-dependent struc-
tural properties of atomic systems from first principles is a
demanding task, generally because it requires scanning either
deterministic �MD—molecular-dynamics techniques� or sto-
chastic �MC—Monte Carlo methods� trajectories in multidi-
mensional phase space, which, when one wants to do it ab
initio, usually involves a huge computational effort. A sig-
nificant simplification is provided by the harmonic approxi-
mation with an underlying assumption that within considered
region of phase space the forces acting on ions are linear
with respect to displacements. In that case, the computational
effort is significantly reduced because the partition function
can be evaluated in a quasiclassical way, i.e., the oscillations
and their frequencies found either through DFPT �density-
functional perturbation theory� or through FD �finite differ-
ence� method are quantized, and then the well-known and
relatively simple formulas for the partition function can be
used. The approach has been widely applied in the so-called
quasiharmonic approximation for ab initio crystal
thermodynamics.15–20 A major drawback of the harmonic ap-
proximation is that it does not take into account the effects
involving anharmonic dynamics. However, as it will be dis-
cussed in this paper, there is a wide class of systems whose
structural behavior can be explained on the ground of the
harmonic approximation, including such effects as thermal
expansion or even melting. The effects may appear to be the
entropy-driven ones, with the harmonic contribution to en-
tropy being crucial.

In this work, a methodology is proposed which is based
on that mentioned in Ref. 21 but it has been extended on the
idea of the FES in the configurational space spanned by the

geometrical, arbitrarily chosen, frozen degrees of freedom. In
the first step, the concept of the PES should be recalled. The
PES is a key concept in ab initio structural investigations
within the Born-Oppenheimer approximation. It is just the
total energy of a polyatomic system as a function of certain
geometrical parameters. The geometrical parameters can be
simply the coordinates of all atoms in the system but can also
be chosen in a special way, e.g., as the structural parameters
of a crystal, as the components of a strain tensor, as planar
coordinates of an adsorbate atom on a surface, or quite arbi-
trarily, basing on the intuition of a researcher. Thus, the PES
is a function in certain configurational space, defined by the
chosen geometrical parameters. The minima of the function
identify the stable or metastable static-equilibrium configu-
rations in that space �at absolute zero temperature and with-
out zeroth quantum vibrations�. Moreover, this function de-
termines the system dynamical and thus thermodynamical
properties. Therefore PES contains complete information
about the structural properties if only the Born-Oppenheimer
approximation is valid. The concept of FES is an extension
of the PES idea on the case of nonzero temperature. Chosen
geometrical parameters are treated as constrained �frozen�
and the remaining ones are subjected to the thermodynamical
analysis within the concept of the canonical ensemble. The
free energy becomes a function in the configurational space
of geometrical parameters and contains information about
the temperature-dependent structural properties. In particular,
the gradients of FES correspond to the generalized stresses
�zeros at equilibrium geometries� whereas the second gradi-
ents are the generalized elastic constants �all the quantities
being now temperature dependent�. The zeros of elastic con-
stants at equilibrium geometries indicate the lack of me-
chanical stability. In principle, the dynamics of a system,
necessary for the FES approach, can be analyzed in different
ways �e.g., MD, to take into account the anharmonic effects�,
but in this work, for reasons mentioned in the beginning, the
harmonic approximation has been used.

In the study, three effects have been taken into account as
potentially giving rise to the observed experimentally phe-
nomena: the bulk-substrate thermal expansion, the effect of
asymmetry of PESs, and the entropy-driven shift of the
minima of FESs. A brief summary of the theoretical back-
ground is given in the following chapters. Then, the technical
details and the results of calculations are presented, com-
pared with the results reported in literature, and discussed.

A very satisfactory overall agreement of final results with
experimental data has been obtained, although certain dis-
crepancy is observed also in experimental results reported by
different authors.3,5 This work seems to be complementary to
previous theoretical works, by offering a different point of
view. Thanks to the methodology applied, it has been pos-
sible to resolve the relative contribution of different effects to
observed phenomena, which leads to better understanding of
underlying physics.

II. CONSTRAINED RELAXATION—THE POTENTIAL-
ENERGY SURFACE

The quantity on which the well-known concept of PES
function is based, is the total energy of a polyatomic system

PAWEL SCHAROCH PHYSICAL REVIEW B 80, 125429 �2009�

125429-2



at fixed ionic positions, Etot�R�, i.e., within the Born-
Oppenheimer approximation. The system can be regarded as
consisting of two subsystems: the ionic and the electronic
one, which can be analyzed separately but not independently.
The electronic structure is determined by the positions of
ions but at the same time the properties of the ionic system,
which are of interest in structural investigations, are deter-
mined by the electronic system which forms a kind of “quan-
tum glue” for ions. In the condensed-matter physics, the DFT
appears to be the most efficient tool for investigating into the
complicated nature of nonuniform electron gas. For the pur-
pose of this work we will confine ourselves to those few
general remarks �for review of the field see, e.g., Ref. 22�.

We begin the construction by dividing the geometrical
parameters of a system into two categories: the ionic coordi-
nates R= �R1 , . . . ,RNR

� and certain geometrical parameters
that we will call the constrained ones, denoting them by
�= ��1 , . . . ,�N�

�. The constrained parameters can be, e.g.,
the volume of a crystal, the structural parameters of a crystal,
the components of a strain tensor, but they can also be cho-
sen quite arbitrarily, even as certain atomic coordinates, such
as a planar position of an adsorbate atom on a surface. The
choice of the constrained parameters depends on the nature
of problem and, in a large extent, is a matter of the intuition
and experience of a researcher. An illustrating example is
presented in this paper.

The total energy becomes a function of atomic
coordinates and parameters which describe constraints,
Etot=Etot�R ,��. We define PES as the following function:

EPES��� = Etot�R,���R=Req
, �1�

where Req denotes the coordinates of atoms at their
equilibrium positions. In other words, PES is the total energy
of a system as a function of constrained geometrical param-
eters with ions relaxed to their equilibrium positions �with
respect to the remaining degrees of freedom�. If ��R, then
EPES����Etot�R�.

In the structural investigations, besides EPES���, the first
and the second derivatives of this function are also of great
importance. The first derivatives

Si = −
�EPES���

��i
�2�

have the meaning of generalized stresses. For instance, if �i
is an ionic Cartesian coordinate, the Si is just the ith Carte-
sian component of force acting on the ion; if �i is a volume,
then Si has the meaning of pressure; if �i is a component of
the strain tensor, Si is the corresponding component of the
stress tensor, etc.,

The second derivatives

Kij = −
�Si

�� j
=

�2EPES���
��i � � j

�3�

have the meaning of generalized elastic constants and, in the
examples above mentioned, are interpreted respectively as
force constants, modulus of compressibility �bulk modulus�,
components of the elastic tensor, etc. If we deal with an
infinite system �such as crystal or crystal surface�, a proper

normalization is necessary, which has not been included in
the formulas above. It should also be noted that the differen-
tiation with respect to �i involves relaxation of uncon-
strained ionic coordinates Req. In some cases �such as, e.g.,
elastic tensor� the formalism may involve a lot of mathemati-
cal complication �see, e.g., Ref. 23� which will not be dis-
cussed here.

The EPES��� function carries information about basic
structural properties of a system, without temperature and
quantum zero-point vibration effects. The condition for the
extremum of the function is �Si=0; i=1, . . . ,N��. If it is
minimum �either global or local�, then it points to the static-
equilibrium state �respectively, stable or metastable�. For ex-
ample, this is the condition for equilibrium positions of at-
oms, equilibrium volume or equilibrium lattice parameters of
a crystal. The vanishing second derivative Kij at an extre-
mum �Si=0� points to the lack of mechanical stability at a
given configuration. The behavior of the EPES��� function
along various directions in the configurational space ��	 pro-
vides information about possible structural transformations.

III. CONSTRAINED DYNAMICS—THE HARMONIC
APPROXIMATION

At given constraints, an atomic structure is relaxed and
ions are free to move around their equilibrium positions. It is
possible then to think about thermodynamics with imposed
constraints �constrained thermodynamics�. The thermody-
namical properties are determined by the dynamical ones,
therefore we meet first the problem of constrained dynamics.
In computational practice, the problem can be treated by
scanning either stochastic or deterministic trajectories using
numerous techniques. However, as already mentioned, if one
wants to do it from first principles, the task is computation-
ally very demanding. An attractive alternative, employed in
this work, is the quasiclassical approach based on the har-
monic approximation. The main drawback of this approach
is that it neglects the anharmonic contribution to entropy.
However, as it will be shown, the harmonic contribution to
entropy can be crucial in the entropy-driven effects. There is
also a simple way to account for nonlinearity connected with
the deviation of constraints, as will be demonstrated in this
paper.

According to the definition of EPES���, at a fixed value of
the � vector all the unconstrained atomic degrees of freedom
�R� are relaxed to their equilibrium values �Req�. The func-
tion Etot�� ,R� plays the role of potential energy for ions and
can be approximated by the second-order power series with
respect to ionic displacements from equilibrium positions.
The forces on ions become then linear with respect to the
displacements and dynamics is harmonic �the smaller are the
displacements, the better is the approximation�. The eigen-
frequencies and corresponding polarization vectors ��n ,An	,
the independent harmonic modes of oscillation �normal
modes�, are found from the eigenvalue problem

�̂A = �2A , �4�

where
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�̂ = ��ij���� = 
 1
�MiMj

�2Etot��,R�
�Ri � Rj

�
R=Req

�5�

is the force-constant matrix of the system, i , j label the un-
constrained ionic coordinates, and Mi is the ionic mass asso-
ciated with ith unconstrained coordinate. One should note
that the force constants and therefore the eigenfrequencies
and polarization vectors are now �-vector dependent.

As a result we get a discrete spectrum of normal modes
whose number is equal to the number of unconstrained ionic
degrees of freedom. In the case of infinite periodic systems,
the translational symmetry is used to reduce the force-
constant matrix to the dynamical matrix which becomes the
wave-vector dependent and the normal modes are addition-
ally classified by a wave vector k belonging to the first Bril-
louin zone �BZ�. Any state of system vibration is a linear
superposition of normal modes. Thus, from the point of view
of thermodynamics, the real system is equivalent to the sys-
tem of independent �or weakly interacting� harmonic oscilla-
tors whose thermodynamical analysis is straightforward.

The ab initio calculation of the force-constant matrix is a
separate problem and will not be discussed here in detail.
The second derivatives in Eq. �5� can be calculated either
from the DFPT �Refs. 24–27� or from the FD �Refs. 28 and
29� method with the use of the Hellmann-Feynman forces.

IV. CONSTRAINED THERMODYNAMICS—THE
FREE-ENERGY SURFACE

The thermodynamical analysis is performed within the
concept of canonical ensemble �system is in contact with the
thermostat of temperature T�. The Helmholtz free energy is
the proper thermodynamical function to be considered in the
case of geometrical constraints since it is minimized at equi-
librium in such conditions �e.g., constant volume and tem-
perature for a crystal�.

The statistical thermodynamics gives the general formula
for the free energy,

F = −
ln�Z�

�
, �6�

where Z=iexp�−�Ei� is the partition function,
�=1 / �kBT�, kB is the Boltzmann constant, and the summa-
tion runs over all the microstates.

The formula above leads to the concept of FES which is
simply the free energy as a function of geometrical param-
eters describing constraints. The energy of the system con-
tains two parts: the static one, equal to the value of EPES���
function at the fixed configuration �, and the dynamical part
Ed���, connected with the dynamics of atoms along uncon-
strained coordinates,

E = EPES��� + Ed��� . �7�

The partition function then takes the form

Z = 
i

exp�− ��EPES + Ei
d�� = exp�− �EPES�Zd, �8�

where Zd=iexp�−�Ei
d� is the dynamical part of the partition

function and the summation runs over the microstates corre-

sponding to this dynamics. Thus, the free energy, apart from
being a function of temperature, is also a function of the
constrained degrees of freedom � and becomes the FES,

FFES�T,�� = EPES��� −
1

�
ln�Zd�T,��� . �9�

It can be seen above that FFES differs from EPES by the
temperature-dependent dynamical part. As in the case of
EPES���, the first and the second derivatives of FFES��� are
very informative,

Si�T,�� = −
�FFES�T,��

��i
�10�

and

Kij�T,�� =
�2FFES�T,��

��i � � j
�11�

having the same interpretation as in the case of EPES; the
generalized stresses and the generalized elastic constants
�isothermal�, which are both temperature-dependent now.

The quasiclassical approach together with the harmonic
approximation allow to calculate easily the thermodynamic
functions. The normal modes �independent oscillators� are
quantized and the summation over the microstates in Eq. �6�
denotes the summation over quantum states. The dynamical
part of the partition function �Eq. �8�� takes the form

Zd = �
i

Zi, �12�

where Zi is the single-quantum oscillator partition function
given by

Zi =
exp�− ���i���/2�

1 − exp�− ���i����
. �13�

The free energy is the sum of the single-oscillator free
energies and the static part �both � dependent�,

FFES��� = EPES��� + 
i

Fi��� . �14�

One can evaluate now the first derivative �Eq. �10�� of
FFES��� within the harmonic approximation

�k�T,�� = −
�FFES�T,��

��k
= Sk��� +

1

�k


i

Ui����i
k��� ,

�15�

where Sk��� is the static contribution, Eq. �2�,

Ui��� =
��i���

2

�1 + exp�− ���i����	
�1 − exp�− ���i����	

�16�

is the contribution of the ith normal mode to the internal
energy and

�i
k��� = −

� ln��i����
� ln��k�

�17�

is the Grüneisen number. As it can be seen in Eq. �10�, the
evaluation of generalized stresses at a given � vector within
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harmonic approximation requires the calculation of normal-
mode frequencies as well as their first derivatives with re-
spect to �. The second derivatives �generalized elastic con-
stants� can be found either by the FD method or by analytical
differentiation of Eq. �14� which would lead, however, to
mixed second derivatives of �i���.

V. EXAMPLE: THE fcc Al CRYSTAL

The quasiharmonic approximation is a well-known idea.
So far, many papers dealing with ab initio crystal thermody-
namics based on that approach have been published, e.g.,
Refs. 15–20. The crystal thermodynamics is treated within
the harmonic approximation with the assumption that the
phonon frequencies depend on crystal volume. Using the lan-
guage presented in this work, it becomes just a particular
case of applying the FES concept. For the purpose of this
work, the aluminum thermal-expansion curve calculated
from first principles is needed. For this reason, and also to
show the consistency of the quasiharmonic approximation
with the FES language, chosen results published in Ref. 19
are presented below.

Let the crystal volume be considered as the constrained
degree of freedom: �=V. The partition function and the free
energy Eqs. �13� and �14� now read

Zi =
exp�− ���i�V�/2�

1 − exp�− ���i�V��
, �18�

FFES�V� = 
i

Fi�V� + EPES�V� , �19�

where the summation consists of the integration over the
Brillouin zone and the summation over phonon branches.
The free energy is a function of volume and it becomes FES.

The first derivative has the meaning of pressure

P�T,V� = −
�FFES�T,V�

�V
. �20�

This is an equation of state which in that approach takes
the form called the Mie-Grüneisen equation of state,

P�V,T� = P0�V� +
1

V


i

Ui�i, �21�

where P0 is the static contribution to pressure, equal to
−�EPES�V� /�V, Ui is the single-mode contribution to the in-
ternal energy, Eq. �16�, and �i=−d�ln��i�� /d�ln�V�� is the
volume-dependent Grüneisen number. The Grüneisen num-
ber is normal-mode specific, therefore must be indexed by i.

The second derivative normalized to the unit volume is
the bulk modulus �isothermal modulus of elasticity� and gets
the analytical form

B�T,V� = V
�2FFES�T,V�

�V2

= BT0 + �P − P0� +
1

V


i

�i
2�Ui − CiT� − 

i

Ui
��i

�V
,

�22�

where BT0 is the static contribution and

Ci =
kB�2��i

2 exp�− ���i�
�1 − exp�− ���i��2 �23�

is the single-mode contribution to the constant volume spe-
cific heat.

In the equation of state �Eq. �21��, any pair of variables,
among temperature, volume, and pressure, can be taken as
independent, and next, via the Maxwell’s thermodynamic re-
lations, all the thermodynamic functions can be evaluated.
For the purpose of this work, however, we are interested only
in the volume thermal expansion �temperature-dependent
shift of the FFES�V ,T� minimum�.

The fcc Al thermal-expansion curve, Fig. 1,19 has been
calculated ab initio, within local density approximation
�LDA� �Ceperley-Alder/Perdew-Zunger30,31�. The Al pseudo-
potential has been generated with the use of FHI98PP code,32

with the nonlocal core-valence exchange-correlation interac-
tion included. All the calculations for crystal �the ground
state and the linear-response function� have been done with
the use of the ABINIT �Ref. 33� code. The cutoff energy of
Ecut=20 Hartree and �6�6�6� Monkhorst-Pack k-points
mesh,34 shifted by �0.5,0.5,0.5�, �0.5,0.0,0.0�, �0.0,0.5,0.0�,
and �0.0,0.0,0.5�, have been applied. The same set of special
k points was used in the calculation of the electronic ground
state, the response function, and in the calculation of the
phonon partition function. The choice of all the parameters
has been preceded by a careful study of convergence. The
Murnaghan equation of state35 has been used to fit the static
contribution to the free energy, EPES�V�. The second-order
polynomial has been used to fit the �i�V�. It should be added
that the curve in Fig. 1 corresponds to the calculated ab initio
thermal-expansion coefficient �Fig. 4a in Ref. 19� whose
agreement with experimental data is very good.

FIG. 1. The relative variation in the fcc Al lattice constant as a
function of temperature, calculated ab initio �LDA� �the static-
equilibrium value of the lattice constant is 3.974 Å� �Ref. 19�.
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VI. Al(110) SURFACE

The methodology above presented has been applied to
investigate the temperature-dependent structural properties
of the Al�110� surface. First, we consider the temperature-
dependent multilayer relaxation and its intriguing behavior
described in the introduction. Three mechanisms have been
identified as contributing to the phenomenon: �i� the effect of
thermal expansion of the bulk substrate, �ii� the shift of av-
erage interlayer distances due to asymmetry of EPES, and �iii�
the entropy-driven shift of interlayer distances. To start the
investigation, it was necessary to establish the model for ab
initio calculations. A standard approach of repeated slab ge-
ometry has been applied. The additional technical parameters
�to those appearing in the bulk calculations�—the number of
atomic layers in the slab and vacuum thickness—have been
subjected to thorough convergence tests. Particularly, the
slab thickness is a critical parameter for two reasons: the
well-known QSE �see Refs. 13 and 14� and the necessity to
avoid interaction between two surfaces. The vacuum thick-
ness must be big enough to avoid the interaction between
adjacent slabs. Since the problem appeared to be computa-
tionally very demanding, the model parameters had to be
chosen very carefully, as a result of a compromise between
required accuracy and reasonable needs for computational
resources. As a result of many tests, such as convergence of
electronic density near the surface �Fig. 2� or convergence of
static multilayer relaxation, with respect to the number of
atomic layers �from 7 up to 15�, it has been found that the
11-layer symmetric slab is the minimum one guaranteeing
acceptable accuracy on the one hand and reasonable require-
ments for computational resources on the other �see also
Refs. 13 and 14�. The vacuum thickness of 11 Å has been
found to be sufficient to avoid interaction between adjacent
slabs. To make the calculations consistent with these previ-
ously done for the bulk,19 the same parametrization of XC
functional �LDA, Ceperley-Alder/Perdew-Zunger30,31� and
the same pseudopotential have been used, the cutoff energy

has been set to Ecut=20 Hartree and �8�12�1� Monkhorst-
Pack k-points mesh, shifted by �0.5,0.5,0.5� has been applied.
The surface lattice constant has been set to the bulk static-
equilibrium value �3.974 Å �Ref. 19��. All the calculations
for slabs reported in this paper have been done with the use
of the ABINIT code.33

Below, the results of calculations for the three above-
mentioned mechanisms and the final results are presented
and discussed.

A. Effect of bulk-substrate thermal expansion

The bulk crystal lattice thermal expansion is the effect
independent of the surface properties but appears to have a
significant influence on those properties. A crystal surface
can be thought of as an atomic system placed on the bulk
substrate. The location of the bulk-surface border can be
roughly estimated from the local properties, i.e., at certain
depth they should not differ from those of the bulk. Since the
crystal lattice constant varies with temperature, the bulk sub-
strate acts as a rigid “piston” stretching or compressing the
surface. In this work, the influence of the bulk-substrate ther-
mal expansion on the interlayer distances has been studied.
The effect is shown in Fig. 3 and in Figs. 7–9 �thin solid
line�. The expansion of the bulk lattice �represented in the
graphs either as the relative variation in the lattice constant
or temperature� results in contraction of all the interlayer
distances. In the same figure, respective experimental values
are shown �according to Ref. 5�. The relationship between
the value of the bulk constant and temperature has been
found from the previously ab initio calculated Al crystal
thermal-expansion curve �Fig. 1�.

B. Effect of asymmetry of potentials

To study PESs and FESs, it is necessary to choose some
constraints. Examples of constraints are shown in Fig. 4.
However, these are not the only possibilities, one can choose,
e.g., a constraint coupling the first and the third layer d13 �to
study the effect of the coupling, important as stated in Ref.

FIG. 2. The relative change �with respect to the bulk reference
value� in the electronic density averaged over the surface cell, as a
function of distance from the surface �Fridel oscillations�, and for
different number of atomic layers in the slab �7,9,11,13,15�; open
circles show bulk positions of Al ions and black circles—their re-
laxed surface positions calculated for a 11-layer slab. The conver-
gence can be observed pointing to the 11-layer slab as the minimum
one giving converged result.

FIG. 3. The relaxation of atomic layers in the 11-layer sym-
metrical slab, represented in terms of interlayer distances �dij�, as a
function of deviation of the bulk lattice constant from its equilib-
rium value. The positions of black dots represent experimental val-
ues �Ref. 5� corresponding to T=100 K and T=300 K �respective
lattice deviations according to Fig. 1�.
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11� or any other configuration that would provide a signifi-
cant information about the system. The author of this work
tested both configurations shown in Fig. 4, although in this
paper only the results corresponding to configurations “B” ��
parameters directly referring to interlayer distances dij� are
reported. In principle, the � parameters span three-
dimensional �3D� configurational space but the evaluation of
FES in 3D space involves enormous complication such as
scanning phonon frequencies in 3D space, minimization in
3D, etc. The advantage of such an approach would be a
direct inclusion of coupling between constraints but the dis-
advantage is less degree of freedom contributing to entropy
and therefore the entropy-driven effects poorly reproduced.
Here, a simplified approach has been applied, namely, the
constraints have been applied independently, one by one, i.e.,
at every constraint the FES was a function of only one vari-
able.

The parameters �1=d12, �2=d23, and �3=d34 have been
varied between −2% and +2% of the reference bulk distance
with respect to their equilibrium values which have been
found to be d12=−8.08%, d23=4.28%, and d34=−2.81% �the
values agree well with the results reported by Da Silva14 for
an 11-layer slab: −8.18% ,+3.93% ,−2.87%, respectively; the
differences, especially for d23, can be attributed to a more
exact method—full-potential linearized plane wave—used
there�. Thus, at five points in that range the whole structure
was relaxed �except for the constrained degrees of freedom�,
the ab initio total energies were calculated and the third-
order polynomial fitted to the results. A convenient feature of
the ABINIT code—the possibility to perform the constrained
relaxation—has been exploited. The resulting PESs are
shown in Fig. 5. The fitted curves have been used to find the
thermodynamical average of every � parameter as a function
of temperature. In the regime of dynamics confined to the
adiabatic variation in constraints, the thermodynamical aver-
age can be found from the formula

�̄�T� =
�� exp�− EPES���/�kBT��d�

�exp�− EPES���/�kBT��d�
. �24�

The results are shown in Figs. 7–9 �thin dash line�. A
slight asymmetry of potential-energy surfaces results in the

temperature-dependent shift of interlayer distances. The ef-
fect, however, appears to be inconspicuous in comparison
with the other two.

C. Entropy-driven shift

The entropy-driven shift is connected with the displace-
ment of the minimum of FES. It is named the “entropy-
driven” because it is mainly the entropy contribution to free
energy which is responsible for the displacement: the system
“moves” toward lower frequencies to increase entropy, even
if the internal energy increases. To find the free energy from
the formula �9�, it was necessary to study the dynamics of
the system. This was done within the harmonic approxima-
tion as described in Sec. III. Since finding the full phonon
band structure appeared to be an extremely demanding com-
putational task �according to the author’s experience it was
about three months of CPU time per one series of calcula-
tions�, for the purpose of this work only the 	-point vibra-
tions have been used. At such approximation the problem
reduces formally to the dynamics of the 11-atom chain. From
33 degrees of freedom, four are frozen �because of con-
straints�. The diagonalization of the 29�29 dynamical ma-
trix gives 29 eigenfrequencies among which two have zero
value �correspond to the acoustic modes� and must be ex-
cluded from the partition function.

The calculations of the dynamical matrix have been done
with the use of the finite difference �FD� method. For all the
constraints: �1, �2, and �3 �configuration B in Fig. 4� and at
four points around their equilibrium values, the structure was
relaxed, phonon spectra found, and the second-order polyno-
mial fitted to the data. An example of the phonon energy as a
function of the value of constraint �2, is presented in Fig. 11.
In the next step, the free energies as functions of � values
have been evaluated from the formula �14�. An example of,
obtained in that way, FESs, for the constraint �2�d23� and
five temperatures is presented in Fig. 6. The shift of the
FFES��� minimum can be clearly seen. Its temperature-
dependent position has been found from the root of the func-
tion �15� and it represents the entropy-driven shift of the
interlayer distance. The shifts corresponding to the first three

FIG. 4. Examples of the choice of constraints in the 11-layer
symmetrical slab for an investigation into the temperature-
dependent multilayer relaxation. Other configurations are also pos-
sible �e.g., a constraint coupling the first and the third layer, d13,
etc.�. In this work, the configuration B has been exploited, in which
the constraints refer directly to interlayer distances: �1=d12, �2
=d23, and �3=d34.

FIG. 5. PESs for the constraints � chosen as interlayer distances
�the case B in Fig. 4�. On the horizontal axis, there is a deviation
from equilibrium distance expressed in percentage of reference bulk
distance. The equilibrium distances are d12=−8.08%, d23=4.28%,
and d34=−2.81%.
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interlayer distances are shown in Figs. 7–9 �dash-dot line�.
It should be mentioned that the calculation of the free-

energy surface appeared to be a difficult computational task.
Since the partition function and the free energy are very sen-
sitive to phonon frequency values, their evaluation must have
been done with very high accuracy. For example, in the cal-
culations presented here the forces acting on atoms have
been converged down to 10−8 Hartree /Bohr, at maximum
forces having values on the order of 10−3 Hartree /Bohr.
Many trials had been done before acceptable stability of re-
sults was achieved. About ten days of CPU time on a typical
high-power computer was needed for one series of calcula-
tions. Here, the representative results are shown.

D. Final results

The temperature-dependent values of interlayer distances
d12, d23, and d34 have been taken as a superposition of three
above discussed effects and they are shown in Figs. 7–9
�thick solid line�, together with all three contributions. The
following conclusions can be drawn from the figures: �i� the
thermal contraction of the first interlayer distance, d12, is
mainly due to the thermal expansion of the bulk substrate;

the effect of asymmetry and the entropy-driven shift do not
play here an important role �both are relatively small�, �ii�
the spectacular thermal expansion of the second interlayer
distance, d23, is caused by the entropy-driven shift which
predominates over the other two effects; the distinct soften-
ing mode, seen in Fig. 11 �thick solid line�, has been identi-
fied as responsible for the spectacular expansion �the mode
was just removed from the partition function and the expan-
sion disappeared�; such a softening mode has not been ob-
served at the other two constraints, �iii� the three contribu-
tions nearly cancel to zero in the case of the third interlayer
distance, d34, which remains almost constant with changing
temperature. The overall agreement with the experimental
values is very satisfactory.

In Figs. 7–9 also the results of ab initio molecular-
dynamics simulation6 are presented, together with experi-
mental results.3 In the reported MD simulation all the three
effects considered here are included. The authors take into
account the bulk thermal expansion �the empirical thermal-

FIG. 6. The free-energy surfaces �FFES� for �=d23��2�, for five
temperatures. A distinct shift of the minimum can be observed.

FIG. 7. Temperature-dependent variation in d12 interlayer dis-
tance �thick solid line� as a superposition of three effects: bulk-
substrate thermal expansion �thin solid line�, asymmetry of EPES

�dash line�, entropy-driven shift �dash-dot line�; experimental re-
sults according to Ref. 5 �empty squares� and Ref. 3 �solid squares�,
results of ab initio MD �Ref. 6� �stars�. In this case, the bulk thermal
expansion plays a crucial role and leads to significant contraction of
the interlayer distance �the contraction rate is about two times
higher than the bulk thermal-expansion rate�.

FIG. 8. Temperature-dependent variation in d23 interlayer dis-
tance �thick solid line� as a superposition of three effects: bulk-
substrate thermal expansion �thin solid line�, asymmetry of EPES

�dash line�, entropy-driven shift �dash-dot line�; experimental re-
sults according to Ref. 5 �empty circles� and Ref. 3 �solid circles�,
results of ab initio MD �Ref. 6� �stars�. In this case, the entropy-
driven shift plays a crucial role and leads to spectacular expansion.

FIG. 9. Temperature-dependent variation in d34 interlayer dis-
tance �thick solid line� as a superposition of three effects: bulk-
substrate thermal expansion �thin solid line�, asymmetry of EPES

�dash line�, entropy-driven shift �dash-dot line�; experimental re-
sults according to Ref. 5 �empty triangles� and Ref. 3 �solid tri-
angles�, results of ab initio MD �Ref. 6� �stars�. In this case, the
three effects almost cancel each other, which leads to nearly no
variation in the distance with temperature.
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expansion coefficient is applied to ab initio equilibrium lat-
tice constant�. However, in MD simulation it is rather diffi-
cult to distinguish between the nonlinear effects and the
entropy-driven ones, although both can be present. It is also
difficult to tell what is the effect of the bulk thermal expan-
sion. In other words, the relative contributions of different
effects are somewhat hidden in the MD simulation, although,
the overall agreement with experimental data is very good.
The approach presented in this work allows to resolve the
relative contribution, at least partially. For example, it has
been found in this work that the contraction of the first in-
terlayer distance is mainly due to the bulk thermal expan-
sion, which seems to contradict the conclusion in Ref. 6
�which attributes the contraction rather to the shallower po-
tential channel for atoms from the second layer toward the
vacuum�. However, the effect of the bulk thermal expansion
was present in the MD simulation, only its contribution may
be could not be noticed.

E. Reference to anisotropic surface melting

An interesting reference to the observed experimentally
anisotropic surface melting �see Sec. I� can be found in the
results obtained in this work. Figure 10 shows the tempera-
ture dependence of the second derivative of FFES��2� calcu-
lated at its minimum. At �400 K the function crosses the
zero line, which according to the theory �Sec. IV� is an in-
dication of the loss of stability. In other words, starting from
certain temperature ��400 K in this case� the function
FFES��� �Fig. 6� does not have a distinct minimum any more.
Moreover, it has been checked that the softening mode seen
in Fig. 11 �thick solid line� is responsible for the loss of
stability. Its polarization has been also found and will be
represented here in the basis whose unit vectors are oriented

as follows: ���001� , �11̄0� , �110�� , . . .�, for each atom in the
11-atom chain in a supercell. Thus, the polarization of the
softening mode in the initial part of the ���� curve
is as follows: ��0,−0.28,0� , �0,0.31,X� , �0,0.25,X� ,
�0,−0.42,0� , �0,−0.06,0� , �0,0.41,0� , . . .�, where Xs stand
here for the frozen degrees of freedom and the three dots at
the end denote the second, symmetric part of the polarization
vector �the rest of the atoms�. Clearly the displacements of

all the atoms in the softening mode are in the �11̄0� direction,
exactly along which the loss of the long-range order has been
observed experimentally. The loss of stability appears at
�400 K, which is much lower than the bulk melting point,
and this also agrees �at least qualitatively� with the experi-
mental observation. Moreover, one can conclude, when look-
ing at the polarization vector, that the second and the third
layer perform a synchronous oscillation with opposite phase
to oscillating synchronously the first and the fourth layer.
However, it is difficult to draw any conclusion from that fact
at this stage since it is not sure what is the effect of the finite
size of the system on the oscillations and how the polariza-
tion evolves with increasing �.

It should be mentioned that the premelting on Al�110�
surface is a complicated process and still seems to be a con-
troversial issue. As the experiment shows,36 with increasing
temperature the premelting is preceded by the proliferation
of point defects and surface roughness. This fact has been
also confirmed by theoretical works.6,37 The controversy con-
cerns the residual anisotropy: in the experiment reported in
Ref. 36, the residual short-range order was observed in both

directions, �11̄0� and �001�, and the quasiliquid layer sup-
posed to be formed by migrating clusters rather than intact
atomic chains. In turn, the MD simulation6 shows an en-
hanced MSD in the direction �001�, which might rather be

expected along �11̄0�. The present work provides one more
piece of information: there exists a distinct anisotropic loss

of stability in the direction �11̄0�. This agrees also with the
conclusions of MD simulation reported in Ref. 36 where the
residual order was observed preferentially in that direction.

The fact that the MSD is smaller along �11̄0� can be due to a
relatively small contribution of the softening modes �the one
in the center of BZ, identified in this work and probably also

FIG. 10. The second derivative �2FFES���

�2 , for �=d23, as a function

of temperature. The zero of the function �at �400 K� points to the
loss of stability.

FIG. 11. The dependence of phonon frequencies on the d23 in-
terlayer distance. Two characteristic modes can be observed: the
rapidly softening one �thick solid line� and rapidly hardening one
�thick dash line�. The softening mode is responsible for the entropy-
driven increase in d23 interlayer distance and for the loss of stability
of the structure at �400 K. The polarization of the softening mode
�see Sec. VI E� points to its connection with the anisotropic surface
melting. The hardening mode is mainly a relative oscillation of the
first two atomic layers in the vertical to the surface direction and
points to partial detachment of the two layers from the rest of the
crystal.
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adjoining modes� to the MSD �one should note that the loss
of stability can be caused even by a single mode�.

The softening of the above described mode is
accompanied by the hardening of another mode
�thick dash line in Fig. 11�. Its polarization has been
found to be ��0,0 ,−0.7� , �0,0 ,X� , �0,0 ,X� , �0,0 ,0.003� ,
�0,0 ,−0.001� , �0,0 ,0� , . . .�.

This mode appears to be mainly a relative oscillation of
the first layer with respect to the second one. The hardening
of this mode can be explained in the following way: the
thermal expansion of the second interlayer distance causes
partial “detachment” of the first two layers from the rest of
the crystal �weakening of bonding between first two layers
and the rest of the crystal� and therefore the strengthening of
bonding between the two layers, which in turn results in an
increase in the frequency of relative oscillation.

The conclusions above drawn correspond nicely with the
observation that in the second interlayer region a significant
decrease in electronic density appears, �10% of the bulk
value �Fig. 2�.

VII. CONCLUSIONS

A number of approximations have been used in this work.
First, the local density approximation for the exchange-
correlation energy and the norm-conserving pseudopotential,
which are both typical of the calculations based on the
density-functional theory. Second, the harmonic approxima-
tion for lattice dynamics with only 	-point vibrations taken
into account, and second-order polynomial approximation
for the ���� dependence. Third, treating the constraints in-

dependently, one by one. Finally, treating the three consid-
ered physical effects as independent �in principle, they are
not�. In spite of that, very satisfactory results have been ob-
tained and two main goals have been achieved. The first one
is the better understanding of physical effects staying behind
the temperature-dependent structural behavior of the Al�110�
surface and the second is the demonstration that the method-
ology based on the concepts of PES and FES joined with the
harmonic approximation is an effective scientific tool in the
analysis of temperature-dependent structural properties of a
certain class of systems. Whether the methodology can be
applied to a particular case is always an open question, but
the successful, in the author’s opinion, attempt presented
here opens promising perspectives.

It should be pointed out that the analysis in this work has
been performed in the harmonic regime, except for the non-
linearity of forces associated with the variation in con-
straints. This is certainly the disadvantage of the approach,
but, in principle, the presented methodology allows to in-
clude the anharmonic dynamics �e.g., MD simulation at im-
posed geometrical constraints�. However, as the results show,
the harmonic contribution to the free energy may appear to
be crucial in explaining such effects as the thermal expansion
and even premelting, if they are the entropy driven.
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