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We report a theoretical investigation of dephasing effects to quantum transport properties of molecular
junctions. The quantum transport analysis is done by density functional theory carried out within the nonequi-
librium Green’s function framework, and the dephasing effect is modeled within the Büttiker-probe approach.
We observe two distinct behaviors in the three systems we studied: either an increase or a decrease in electronic
conduction with dephasing. For a 1,4-benzenedithiol molecule and an atomic gold chain, where the conducting
molecular levels are located away from the Fermi level, conduction is seen to increase due to reduced destruc-
tive interference resulting from the Büttiker probe. On the other hand, for a very thin Al nanowire we find that
backscattering dominates over the phase-randomization and the current decreases with dephasing. The resis-
tance follows Ohm’s law while the resistivity scales linearly with the scattering rate. Finally, a comparison
between the Büttiker-probe model and a more microscopic dephasing model shows nearly identical transport
characteristics. From a computational point of view, the Büttiker-probe model has an order of magnitude speed
up.
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I. INTRODUCTION

An important issue in the field of molecular electronics is
the influence of phase-relaxing scattering, i.e., dephasing, on
charge transport characteristics of molecular systems. A main
dephasing mechanism arises from the coupling of quantized
molecular vibrational modes with the electronic scattering
states,1 which is often referred to as electron-phonon �e-ph�
interaction in molecular transport junctions. Recently, e-ph
interactions have received attention both experimentally1–8

and theoretically9–14 for systems where a single molecule is
sandwiched between two metallic leads. Typical examples of
molecules used in theory and experiments include al-
kanethiol molecular wires, benzenedithiol molecules, and
atomic gold chains, whereas the leads are usually made of
gold or aluminum. Experimentally, e-ph interactions can be
inferred by measuring single molecule vibrational spectrum
using inelastic tunneling spectroscopy.1,2,5 This roughly cor-
responds to analyzing positions of the peaks in the second
derivative �d2I /d2V� of a current �I�-voltage �V� curve,
where the voltages at the peaks coincide with energies of the
phonons, i.e., ��=e�Vpeak�. For a theoretical analysis of the
e-ph interaction, the state of the art technique is to employ
density functional theory �DFT� with the nonequilibrium
Green’s function �NEGF� formalism where the e-ph interac-
tions are included through a self-energy term which must all
be solved self-consistently.9,10 In order to quantitatively cal-
culate the nonequilibrium e-ph scattering in molecular de-
vices, the atomic structure must be relaxed for every bias
potential in calculating the e-ph coupling matrix and the vi-
brational spectrum,9 which is computationally very time-
consuming and can become almost intractable for molecular
transport junctions involving even only a modest number of
atoms. For qualitative and semiquantitative analysis of ef-
fects of inelastic scattering induced dephasing, it is therefore
advantageous to start from less expensive models.

One such model for dephasing was originally proposed by
Büttiker over twenty years ago.15,16 The basic idea is to in-

troduce a fictitious voltage probe into a coherent system,
which in turn induces a phase-breaking process. Since the
net current in the fictitious voltage probe should be zero, all
electrons scattered into the fictitious probe are emitted back
into the device with no definite phase relation to the incident
coherent electrons, i.e., phase-memory is lost through such a
scattering process.17 To implement this model in a practical
calculation, one connects fictitious probes to every spatial
site in the device, and adjusts the electrochemical potential �
such that no net current flows through the fictitious probes.
Because of its simplicity and appealing physical intuition,
the Büttiker-probe model has been widely used in mesos-
copic physics.18–28

The purpose of this paper is to examine the dephasing
effects in realistic molecular device structures by using the
phenomenological Büttiker-probe model within an ab initio
transport formalism. Nozaki et al. applied this dephasing
model to several molecular junctions28 where the equilibrium
transport properties were calculated using the extended
Hückel theory. In this work, we implement the Büttiker-
probe model into a NEGF-DFT-based ab initio nonequilib-
rium transport formalism.29,30 Then, we apply the model to
study the following three molecular systems: �i� a 1,4-
benenedithiol �BDT� molecule sandwiched between two
Al�001� leads �Al-BDT-Al�, �ii� an atomic gold chain con-
nected to Au�001� leads, i.e., a gold quantum point contact
�gold QPC�, and �iii� a very thin Al�001� nanowire �AlNW�.
In the Büttiker-probe model, the dephasing strength
�electron-phonon coupling� is controlled by an adjustable
phenomenological parameter �. We present the theoretical
I-V characteristics of the above three systems for different
values of �. For the first two systems, we notice an increase
in current with � whereas in the case of AlNW an opposite
behavior is observed. The resistance and the resistivity data
are presented for AlNW with results showing classical be-
havior. Finally, a comparison is made between the Büttiker-
probe model and another more recent model for dephasing,
which has been proposed by Golizadeh-Mojarad and Datta.27
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Both dephasing models show almost identical I-V character-
istics.

The rest of the paper is organized as follows: in Sec. II,
we present our theoretical methods elaborating on the imple-
mentation of the Büttiker-probe model. All the results are
presented in Sec. III. We conclude with a short summary in
Sec. IV.

II. THEORETICAL METHOD

Within the NEGF-DFT formalism, the electronic structure
of the system is determined by DFT where the density matrix
is calculated self-consistently using the NEGF
framework.17,29 We refer interested readers to Refs. 29 and
30 for implementation details of the NEGF-DFT formalism
and here we focus on extending the Büttiker-probe model
into the NEGF-DFT.

The dephasing effect due to the Büttiker probes is intro-
duced through a scattering self-energy term �B

r �subscript B
stands for Büttiker probe� as follows:

�B
r = −

i

2
�S

Gr�E� = �ES − H − �L
r �E� − �R

r �E� − �B
r �−1, �1�

where � is the dephasing parameter of the Büttiker-probe
model, Gr is the retarded nonequilibrium Green’s function,
H is the Hamiltonian matrix, S is the overlap matrix, and
�L,R

r are the retarded self-energies of the left and right lead.
The scattering self-energy �B

r is obtained by summing up the
self-energy term �p

r of each fictitious Büttiker probe where
p=1,2 , . . . ,N with N being the total number of fictitious
probes, which is equal to the number of atomic orbitals. This
form of �B

r is equivalent to each atomic orbital �in orthogo-
nal representation� being connected to a fictitious probe with
a coupling strength �. Note that �B

r is omitted from the
NEGF-DFT self-consistent iteration which determines the
Hamiltonian of the open device, as a test calculation showed
insignificant differences in the total density of states.

The general expression for current I at any probe m �in-
cluding the left and the right lead� is given by31–33

Im =� ĩm�E�dE

ĩm�E� =
2e

h
�

n

Tmn�E��fm�E� − fn�E��

Tmn = Tr��mGr�nGa�

�m = i��m
r − �m

a � , �2�

where m ,n� �p ,L ,R�, Ga= �Gr�†, and �m
a = ��m

r �†, Tmn is the
transmission coefficient between probes m and n, �m is the

linewidth function at probe m, ĩm is the current density that is

essentially equivalent to an effective transmission at non-
equilibrium, and fm�E�= f�E−�m� is the Fermi-Dirac distri-
bution with �m being the electrochemical potential of lead m.

In the above expression for current, the unknown quanti-
ties are the electrochemical potentials �p of the fictitious
probes that can be obtained by applying the condition of zero
current �essential for current conservation� in every Büttiker
probe. Since the current in each Büttiker probe depends on
the electrochemical potentials of all other probes, one must

solve the condition Ip=�ĩp�E�dE=0 simultaneously for all
p� �1,N�, which implies solving N nonlinear coupled equa-
tions. This cannot be done analytically due to the energy
integral in Eq. �2�. An alternative scheme for current conser-

vation is to set the integrand itself to zero, i.e., ĩp�E�=0 at
every energy. This is analytically solvable and greatly re-
duces the computation time. Although this solution omits the
inelastic effects, it does capture the phase-breaking scatter-
ing. In this study, our main purpose is to introduce a practi-
cal dephasing model into our ab initio transport formalism,
we therefore choose the energy conserved �elastic� option for
calculating �p. For further details on these two solution
schemes, see Ref. 25.

In the elastic scheme, the electrochemical potentials �p
can be easily obtained by solving a linear matrix equation of
the form: A · f=b, where A is a square matrix of dimension N
and f and b are vectors of length N. The matrix elements are
given by

App = �
q=1,q�p

N

Tpq + TpL + TpR

Apq = − Tpq

bp = TpLfL�E� + TpRfR�E�

fp = fp�E� , �3�

where all the elements of the matrix A and the vector b are
known. We obtain the values of �p at every energy by in-
verting the matrix A and solving for f with f=A−1b. Similar
solutions for obtaining �p have been presented in Refs. 18
and 25. With the values of �p we can then calculate the
terminal current from Eq. �2�. Note that this scheme is gen-
eral and can be applied to any system.

In addition to phase randomization, the Büttiker-probe
model also introduces extra resistance in the system by re-
laxing the momentum of the electrons, i.e., backscattering.
We believe that a “momentum relaxing” dephasing model is
appropriate for systems where the dominant scattering source
does not conserve electronic momentum, such as e-ph inter-
action which is important in molecular conductors. Recently,
a new momentum relaxing elastic dephasing model has been
proposed by Golizadeh-Mojarad and Datta27 �it will be re-
ferred to as Datta model from hereafter� which is derived
from e-ph scattering and can thus be considered as more
directly connected to microscopic scattering processes. In the
Datta model, within the nonorthogonal atomic orbital repre-
sentation, the retarted self-energy ��D

r � and the lesser self-
energy ��D

	� due to scattering are given by
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�D
r = d · SGrS

�D
	 = d · SG	S , �4�

where the proportionality constant d is an adjustable param-
eter of the Datta model, G	 is the lesser nonequilibrium
Green’s function and the subscript D stands for Datta model.
Both �D

r and �D
	 are calculated self-consistently which

makes the Datta model more computationally expensive as
compared to the Büttiker-probe model. For further details on
the Datta model see Ref. 27.

The elastic Büttiker-probe model as discussed above is
used to study the following three systems: �i� Al-BDT-Al, �ii�
gold QPC, and �iii� a very thin AlNW. In all cases, the leads
extend to z= 
� along the transport direction z and have a
finite cross section. For the first two systems, the atomic
structure is fully relaxed using the SIESTA DFT package34

with the outermost layers of the lead atoms fixed at their bulk
positions. The bulk value of the lattice constant �4.05 Å� is
used for the Al nanowire. After the atomic structures are
relaxed, we carry out the self-consistent NEGF-DFT calcu-
lation within the local density approximation employing
standard norm-conserving pseudopotentials35 and double-�
polarized basis sets for all atoms. Note that the quantities
calculated self-consistently are the device Hamiltonian H
�by NEGF-DFT� and the Datta model self-energy �D

r,	. All
the calculations are performed at a temperature of 5 K. For
the nonequilibrium calculations the bias polarity is defined as
follows: �L=EF and �R=EF+ �e�V where EF is the Fermi
energy and V is the applied bias.

III. RESULTS AND DISCUSSION

In order to get a clear understanding of the dephasing
effects, it is useful to first study the transport properties of
the fully coherent systems. Figure 1�a� shows the transmis-
sion �T� versus energy �E� for the BDT molecule at equilib-
rium without any dephasing. We see that around EF the

transmission is very flat with an average value of around
0.12. There are several peaks with higher transmission start-
ing roughly 0.6 eV above EF. By comparing the density of
states of the device and of the isolated leads �not presented
here� to T, it is clear that the states near EF are lead domi-
nated and that the peaks at 0.60 and 0.90 eV result from Van
Hove singularities in the leads. A scattering state analysis
�i.e., a projection of the scattering states onto the molecular
eigenstates, for further details see Ref. 36� shows that the
peak at 0.79 eV is due to a molecular eigenstate �specifically,
the lowest unoccupied molecular orbital+3�. Moreover, the
presence of potential barriers at the metal-molecule inter-
faces also contribute to the low average transmission near
EF. The transmission properties of gold QPC �see Fig. 1�b��
is also relatively flat around EF with several intermittent pla-
teaulike features. Due to the absence of tunneling barriers at
the interfaces, the transmission for gold QPC is much higher
at EF. A transmission value of T	1 indicates that the con-
ducting states near EF are mostly composed of s-type orbitals
that form a single conducting channel. Both sets of results
�Figs. 1�a� and 1�b�� are reasonably consistent with the avail-
able experimental data37,38 and other theoretical studies39–44

on these two molecular systems.
The current-voltage �I-V� characteristics of the Al-

BDT-Al and gold QPC systems for different values of the
Büttiker probe dephasing parameter � are presented in Figs.
2 and 3, respectively. For both systems we observe a linear
increase in current with dephasing. The increase in current
indicates the dominance of the phase-relaxation effects over
backscattering. As can be understood from a simple dephas-
ing picture, reduced destructive interference due to phase-
relaxation can enhance conduction around EF �located away
from the conducting molecular levels as seen in Fig. 1� and
thus increase the current. Note that we assume phase-
randomization results from e-ph interaction which is impor-
tant in molecular electronics1 and can lead to significant ef-
fects to quantum transport.45 Thus, the values of � �ranging

FIG. 1. �Color online� Transmission coefficient as a function of
energy for Al-BDT-Al �a� and gold QPC �b� at equilibrium without
any dephasing. The corresponding relaxed atomic structures of the
two systems are shown in the insets.

FIG. 2. �Color online� I-V curves for the Al-BDT-Al system
using two different dephasing models: Büttiker probe and Datta
model �purple up-triangle� �Ref. 27� where � and d are the corre-
sponding adjustable parameters of the two models, respectively. In-
set: Current density as a function of energy at applied bias V
=0.5 V.
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from �=0.001 to 0.003 eV� are chosen from the e-ph cou-
pling calculated for the BDT system from an atomistic ab
initio technique.9 Their results showed that the elastic/
inelastic e-ph coupling energy is roughly a few meV, which
corresponds to the energy range for �. This choice was mo-
tivated by setting the dephasing rate equal to the e-ph scat-
tering rate which are each related to � and the e-ph coupling
energy, respectively. Since the number of phonon modes par-
ticipating in electronic transport, and hence the e-ph scatter-
ing rate, varies with temperature and voltage, � is in prin-
ciple a function of these external parameters. Here, for
simplicity, we take the Büttiker dephasing scheme to be a
single parameter model provided by � which can be consid-
ered as the average inelastic broadening parameter. In par-
ticular, here we used similar values of � for the gold QPC
system. A comparison of the Büttiker probe with the Datta
dephasing model is also presented in both Figs. 2 and 3. It
shows that almost identical I-V characteristics can be ob-
tained with the Datta model for a particular value of the d
parameter. Note that the computation speed is approximately
an order of magnitude higher while using the Büttiker-probe
model.

In the insets of Figs. 2 and 3, we show the current density

�ĩE� versus energy at V=0.5 V for the respective systems. As
expected, for the energy independent Büttiker-probe model

we do not observe any features in the ĩE versus E plots apart
from a constant shift with the � parameter. On the other
hand, nonlinear energy dependent features are present in the
current density with the Datta model. For gold QPC with the
Datta model �see the inset of Fig. 3� the effective transmis-
sion actually decreases over a short range in the energy win-
dow �between 0.11 to 0.22 eV� which could be due to the
enhanced backscattering from the off diagonal elements of
the full matrix of the Datta self-energy �D

r , as opposed to the
simple diagonal form of the Büttiker probe self-energy �B

r .
In the Datta model the self-energy �D

r is proportional to the
density of states which is a function of energy �see Eq. �4��.
Hence, the change to the current density, resulting from the

Datta model, shows a nonlinear behavior with energy.
Since the Büttiker probe is a phenomenological model, it

is somewhat difficult to establish a rigorous relationship be-
tween the Büttiker-probe model and the Datta model. Nev-
ertheless, by comparing the dephasing rates of the two mod-
els an approximate relation between the two parameters �
and d can be deduced. In the nonorthogonal representation,
the dephasing rate can be defined as

 =
Tr�S−1�s�

h
, �5�

where �s is the linewidth function matrix due to scattering
such that s=B ,D. Then, from Eqs. �1� and �5�, we obtain the
dephasing rate for the Büttiker-probe model

B =
N�

h
, �6�

where N is the number of orbitals in the scattering molecule.
Note that B is energy independent. Similarly, the dephasing
rate for the Datta model can be obtained from Eqs. �4� and
�5� as

D =
2�

h
dD̄

D̄ = �
0

eV Tr�A�E�S�
2� · eV

dE

A�E� = i�Gr − Ga� , �7�

where D̄ is the energy-averaged density of states of the scat-
tering molecule. By setting these two dephasing rates equal
to each other, we obtain the following simple relation be-
tween the parameters � and d:

� =
2�

N
D̄d . �8�

This simple approximate relation should provide reasonable
results as long as the off diagonal elements of �D matrix do
not contribute significantly to the conduction. From Eq. �8�
with d=0.05 eV2, D̄=0.4815 eV−1, and N=124, we obtain a
value of �=0.0012 eV for the BDT molecule. From the I-V
curve �see Fig. 2�, a value of �=0.0012 eV fits reasonably
well to the points calculated using d=0.05 eV2, indicating
the above correspondence between parameters of the two
dephasing models to be reasonable.

Next, we study the effects of dephasing on a very thin Al
�001� nanowire �AlNW� using the Büttiker-probe model
within the NEGF-DFT formalism. The atomic structure of
the nanowire is shown in the inset of Fig. 4. It is a two probe
device with a specific cross section of area A=6.261
�10−19 m2. For all our calculations, the cross section of the
nanowire is kept constant whereas the length has been var-
ied. In Fig. 4, we present the current density as a function of

FIG. 3. �Color online� I-V plot for the gold QPC using two
different dephasing models: Büttiker probe and Datta model �purple
up-triangle� �Ref. 27� where � and d are the corresponding adjust-
able parameters of the two models, respectively. Inset: Current den-
sity as a function of energy at applied bias V=0.5 V.
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energy for different values of � at 0.05 V applied bias. We
notice that the current is going down with the increasing
dephasing strength, which is exactly the opposite behavior
observed for the molecular systems: Al-BDT-Al �Fig. 2� and
gold QPC �Fig. 3�. The increase in the resistance is mainly
due to backscattering effects, which is introduced in the sys-
tem by the Büttiker probes. We believe that the backscatter-
ing effects become more dominant in the metallic system
AlNW which has perfect interfaces with the leads at both
ends as opposed to the molecular systems of Al-BDT-Al and
gold QPC. The step in the current density near E−EF
=0.024 eV is due to the presence of an extra conducting
mode in the bias window at that energy. As the transmission
per mode goes down with the higher values of �, the step in
the current density becomes less apparent.

In Fig. 5�a�, we present the resistance �R� as a function of
length �L� of the AlNW for the different values of � at the
applied bias of V=0.05 V. We observe that the resistance
increases linearly with length following Ohm’s law. Without
dephasing �i.e., with �=0� the resistance is independent of
the length with a constant value of 1.72 k�� which is the
so-called contact resistance.17 In a nonequilibrium situation
when V�0, the contact resistance can be written as RC

=12.9 / T̄ k� where T̄ is the average transmission over the
energy range �L	E	�R. From the above relation we obtain

the value of T̄ as 7.5 which is, indeed, the average number of
bands or channels within the bias range as obtained from the
band structure calculations of AlNW �not presented here�.
From the slope of the R versus L curves we can obtain the
resistivity � as a function of the dephasing rate  �where 
=� /h�. The results are plotted in Fig. 5�b� which shows a
linear behavior, similar to that predicted by the Drude theory
of metals.46 We note in passing that dephasing is a compli-

cated effect influenced by inelastic scattering events. So far
we motivated our choice of the � parameter by e-ph interac-
tions. For metallic wires, e-ph scattering sets an inelastic
mean free path typically a few to tens of nanometers.
Dephasing effect is expected to operate when system sizes
approach this scale.

IV. CONCLUSION

In conclusion, we investigated effects of dephasing on
electron transport in molecular systems by including the
Büttiker-probe model into our first principles based atomistic
NEGF-DFT quantum transport formalism. The results
showed two types of distinct behaviors: �i� for the “low-
conductance” systems �namely, Al-BDT-Al and gold QPC�
where the conducting molecular eigenstates are located away
from EF, dephasing effects minimize the destructive interfer-
ence effects and increase the conduction; �ii� for the “high-
conductance” system �namely, AlNW�, we observe the oppo-
site effect where backscattering dominates over interference
effects resulting in an increase in the resistance and the re-
sistivity scales down linearly with the scattering rate simi-
larly to the Drude theory of metals. Finally, the elastic
Büttiker-probe model is compared to the Datta dephasing
model and it shows moderate differences in the current den-
sity while the I-V characteristics are nearly identical. With a
computation speed of roughly an order of magnitude higher,
the Büttiker-probe model is found to be a very practical and
efficient phenomenological method to qualitatively study
phase-breaking phenomena in molecular conductors.
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FIG. 4. �Color online� Current density as a function of energy
for AlNW at V=0.5 V for different values of �, where � is the
adjustable parameter of the Büttiker-probe model. The atomic struc-
ture of the AlNW used in our calculations is shown in the inset
where the length of the nanowire is L=3.44 nm, i.e., 16 atomic
layers.
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FIG. 5. �Color online� �a� Resistance as a function of length of
the AlNW for different values of �; �b� Resistivity as a function of
the dephasing rate �=� /h�. All the data are calculated at the ap-
plied bias V=0.05 V.
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