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Recent experiment �S. I. Dorozhkin et al., Phys. Rev. Lett. 102, 036602 �2009�� on quantum Hall structures
with strongly asymmetric contact configuration discovered microwave-induced photocurrent and photovoltage
magneto-oscillations in the absence of dc driving. We show that in an irradiated sample the Landau quantiza-
tion leads to violation of the Einstein relation between the dc conductivity and diffusion coefficient. Then, in
the presence of a built-in electric field in a sample, the microwave illumination causes photogalvanic signals
which oscillate as a function of magnetic field with the period determined by the ratio of the microwave
frequency to the cyclotron frequency, as observed in the experiment.

DOI: 10.1103/PhysRevB.80.125418 PACS number�s�: 73.50.Pz, 73.43.Qt, 73.50.Fq, 78.67.�n

I. INTRODUCTION

Recent developments in the theory of nonequilibrium
magnetotransport of a two-dimensional electron gas �2DEG�
in high Landau levels are motivated by the discovery of sev-
eral novel kinds of quantum magneto-oscillations induced by
microwave radiation,1–32 by strong direct current,33–37 or by
phonons.38–41 A particular attention has been attracted by the
microwave-induced resistance oscillations �MIRO� �Refs. 1
and 2� governed by the ratio � /�c of the circular radiation
frequency � and the cyclotron frequency �c= �e�B /mc �here
B is the magnetic field and m the effective electron mass�.
Further experiments on MIRO led to spectacular observation
of the “zero resistance states” �ZRS� in which the dissipative
components of both the resistance and conductivity tend to
zero.3–7 These states were explained in Ref. 42 as a result of
instability leading to formation of domains carrying nondis-
sipative Hall current.

Initially MIRO were attributed to the “displacement”
mechanism which accounts for spatial displacements of
semiclassical electron orbits due to radiation-assisted scatter-
ing off disorder.43–46 Due to Landau quantization leading to
periodic modulation in the density of states �DOS� ����
����+�c�, the preferred direction of such displacements
with respect to symmetry-breaking dc field oscillates with
� /�c. This results in MIRO with the phase and period ob-
served in Refs. 1–6. Later it was realized that the dominant
contribution to MIRO in Refs. 1–6 is due to “inelastic”
mechanism associated with radiation-induced changes in oc-
cupation of electron states,6,47–49 while the displacement
mechanism can be relevant at higher temperatures and only
if sufficient amount of short-range impurities is present in the
system,31,46,50 or else, at a very strong dc field46 or micro-
wave power.49

So far, the theoretical research on nonequilibrium
magneto-oscillations in high Landau levels has been concen-
trated on the properties of systems which are spatially homo-
geneous on the macroscopic scale.43–63 Here we develop
more general transport theory applicable also for nonuniform
carrier and field distributions. From the experimental side,

the present study is motivated by recent experiment64 which
discovered alternating-sign magneto-oscillations of photo-
current and photovoltage induced by microwaves in the ab-
sence of dc driving. The magneto-oscillations with a phase
and period similar to MIRO were observed in a 2DEG with
a strongly asymmetric contact configuration. The effect was
related to the existence of built-in electric fields in a sample
in thermodynamic equilibrium, in particular, in vicinity of
doped contacts. As we show below, in an irradiated sample
the Landau quantization leads to violation of the Einstein
relation between the dc conductivity and diffusion coeffi-
cient. Then a finite photocurrent is driven by a built-in elec-
tric field even in the sample at a constant electrochemical
potential. In an open circuit, a photovoltage is produced.
Both these photogalvanic signals oscillate around zero as a
function of magnetic field as observed in the experiment.
Another motivation for the present study is the physics of
ZRS where the uniform charge and field distributions be-
come electrically unstable, and the knowledge of the trans-
port properties of inhomogeneous system is of central impor-
tance for determination of the configuration and dynamics of
the current domains.7,65–68

The paper is organized as follows. In next section we
formulate an approach applicable for description of the elec-
tron kinetics in the presence of nonuniformly varying poten-
tials. In Sec. III we discuss the steady state distributions and
current in the absence of the microwave illumination for dif-
ferent experimental setups. In Sec. IV the microwave-
induced magneto-oscillations in the local transport coeffi-
cients are calculated. In Sec. V we establish the relation
between the local transport coefficients and the photocurrent
or photovoltage oscillations observed in the experiments.
Main findings are summarized in Sec. VI.

II. ELECTRON KINETICS IN COORDINATE
AND ENERGY SPACE

We consider a 2DEG in a classically strong magnetic field
��c�tr�1, where �tr is the transport scattering time�, and in
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high Landau levels �chemical potential ���c�. Hereafter we
put �=1. Transport of electrons in such system is most con-
veniently formulated in terms of migration of the guiding
center R�t� of the cyclotron orbits. The dissipative compo-
nent of the dc current is given by the rate of changes of R�t�
due to collisions with impurities

j = en��tR�coll, �1�

where n is the 2D electron density, and e=−�e� is the electron
charge. We describe these collisions using a generic disorder
model characterized by an arbitrary dependence of the elastic
scattering rate

�	1−	2

−1 = �
n=−





�n
−1ein�	1−	2�, �n = �−n, �2�

on the momentum scattering angle 	2−	1. Every scattering
event is accompanied by the shift of the guiding center by
�R12=Rcez� �n1−n2�, where Rc=vF /�c is the cyclotron ra-
dius, vF the Fermi velocity, and nk= �cos 	k , sin 	k� the unit
vector in the direction of motion.

Assuming weak one-dimensional spatial variations of n
=n�x� and of the electrostatic potential =�x�, we express
the migration of the guiding center in terms of the local
distribution function f�x and the local DOS �̃�x=�0

−1���
−e�x��, where �0=m /2� is the DOS at B=0. In equilib-
rium, the distribution function f depends only on the total
energy of electron � and is characterized by the position-
independent electrochemical potential ��x����x�+e�x�
=const�x�.69 By contrast, the DOS in high Landau levels is a
periodic function of the kinetic energy �−e�x�. Generaliz-
ing the approach of Refs. 45–50 to the present spatially in-
homogeneous case, we obtain

jx = 2�0e	
−


x

dx1	
x




dx2�Wx1→x2
− Wx2→x1

� , �3�

Wx1→x2
= 
Mx1x2

�1�2��x1 − x2 + �X	1	2
�

� ��	1	2

�el� ���1 − �2� + �	1	2

�ph� �
�

���1 − �2 � ��� .

�4�

Here �X	1	2
=ex ·�R12=Rc�sin 	1−sin 	2� is the x compo-

nent of the guiding center shift, factor 2 accounts for the spin
degree of freedom, the angular brackets denote averaging
over angles 	1,2 and integrations over �1,2, and

Mxx�
��� = �̃�x�̃��x�f�x�1 − f��x�� . �5�

The rates of elastic ��	1	2

�el� � and photon-assisted ��	1	2

�ph� � scat-
tering off disorder are given by

�		�
�el� =

1

�	−	�
−

P	+	�

�	−	�
sin2	 − 	�

2
, �6�

�		�
�ph� =

P	+	�

2�	−	�
sin2	 − 	�

2
. �7�

The microwave field �screened by the 2D electrons�70 is
taken in the form

E��t� = E��
�

Re�s�e�ei�t� , �8�

where 21/2e�=ex� iey and the complex vector �s+ ,s−� of unit
length characterizes the polarization. The dimensionless
power P� is

P� = P − 2 Re�E+E−
�ei�� , �9�

P = �E+�2 + �E−�2, �10�

E� = s�evFE��−1�� � �c�−1. �11�

Apart from the modification of the scattering integral, the
microwave illumination leads to a nonequilibrium energy
distribution f�x of electrons, which is controlled by inelastic
relaxation. The corresponding balance equation reads

f�x − f�x
�T�

�in
= 
�̃�x

−1�		�
�ph��

�

�Mx�x
���� − Mxx�

�����
		�

, �12�

where �in�T−2� is the energy relaxation time due to
electron-electron interaction,48 M is defined in Eq. �5�, x�
=x+�X		�, and f �T� is an equilibrium distribution function.
As we will see below, Eqs. �3� and �12� describe both the
displacement and the inelastic contributions to photovoltage
�or photocurrent� oscillations.71

III. DARK STEADY STATE

A. Infinite 2DEG in a constant electric field

Equations similar to Eqs. �3� and �12� were used in Refs.
45–50 for analysis of MIRO in a homogeneous case of a
constant electric field E in an infinite 2DEG. In this case, the
dark �nonequilibrium due to dc current� distribution

f�x
�T� = �exp

� − ��x�
T

+ 1�−1

, �13�

��x� = ��x� + e�x� �14�

is characterized by a coordinate-independent local chemical
potential �=const�x�. The occupation of all states having
equal kinetic energy �−e�x�=�+eEx is the same, see Fig.
1�a�.

B. Inhomogeneous equilibrium state

Let us now consider an equilibrium 2DEG in the absence
of the microwave field but in the presence of a built-in static
electric field. In the absence of external voltage applied to
the sample, this static field can be created, for instance, by a
metallic contact, as in Fig. 1�b�. The distribution function Eq.
�13� in this inhomogeneous equilibrium case is characterized
by a position-independent electrochemical potential
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� = const�x� , �15�

while both electron concentration and electrical potential
vary with x. By contrast to the previous case of a constant
electric field, here all states having equal total energy � are
equally occupied, f�x

�T�= f�
�T�.

In the absence of the microwave field, E�=0, the inelastic
part ��	1	2

�ph� =0 of the total current Eq. �3� is absent while the

elastic part proportional to Mx�x
�� −Mxx�

�� =0 vanishes as f�x�
= f�x, see Eq. �5�. We arrived at the trivial result that the
current does not flow when the 2DEG is in the equilibrium
state characterized by a given temperature T and electro-
chemical potential �.

C. Electrical current and diffusion; Einstein relation

Vanishing of electrical current in an equilibrium state of
inhomogeneous system can be equivalently formulated as the
Einstein relation between the linear-response conductivity
and diffusion coefficient. It is instructive to derive this rela-
tion by considering weak perturbations of a spatially homo-
geneous equilibrium system with a fixed concentration of
electrons n=const�x� �and, therefore, �=const�x��.

According to Eq. �3�, the electric current induced in this
system by the infinitesimally small electric field E=−�
reads

j�dark���n=0 = − 2��dark� �  , �16�

��dark� = − �D	 d��̃�
2��f �T�. �17�

Here �D=e2�0Rc
2 /2�tr is the classical Drude conductivity per

spin orientation in a strong B��c�tr�1�, the transport relax-
ation time �tr is expressed in terms of the moments �n, Eq.
�2�, as �tr= ��0

−1−�1
−1�−1, and the superscript “�dark�” refers to

the equilibrium state in the absence of microwaves.

Now we put E=−�=0 and calculate the diffusion cur-
rent, i.e., the linear response to a small gradient �n of the
concentration

n�x� = 2�0	 d��̃���f�x. �18�

The diffusion current

j�dark���=0 = − eD�dark� � n , �19�

defines the dark diffusion coefficient

D�dark� = 2�0D�dark�/��dark�. �20�

Using n given by Eq. �18�, we express the dark compress-
ibility as

��dark� = �n/�� = − 2�0	 d��̃�����f �T�. �21�

The quantity D�dark� has the dimensionality of the diffusion
coefficient D�dark� and is defined through the relation

j�dark���=0 = − 2e�0D�dark� � ��x� �22�

as the current response to the gradient of the chemical po-
tential ���x�. Calculation using Eq. �3� gives

D�dark� = −
Rc

2

2�tr
	 d��̃�

2��f �T�. �23�

If we now allow for a generic weak perturbation of a
homogeneous equilibrium system, the local current takes the
form

j�dark� = − 2��dark� � �x� − eD�dark� � n�x� . �24�

According to Eqs. �16�–�23�, the diffusion coefficient D�dark�

and conductivity 2��dark� are related as

2��dark� = e2��dark�D�dark�. �25�

The Einstein relation Eq. �25� ensures the absence of the
electron flow in the equilibrium state Eq. �15� with

�� = �� + e �  = ���dark��−1 � n + e �  = 0. �26�

Related to Eq. �25� is a simpler identity

��dark� = e2�0D�dark�, �27�

which does not involve the compressibility.
An important consequence of the Einstein relation is that

the current response of any equilibrium system can be rep-
resented as

j�dark� = − 2e�0D�dark� � ��x� , �28�

i.e., the current is proportional to the gradient of the electro-
chemical potential independently of what kind of perturba-
tion causes the current flow.

In what follows we assume an experimentally relevant
range of high temperatures, 2�2T /�c�1, where
Shubnikov-de Haas oscillations are thermally suppressed and
transport properties are independent of the position of the
chemical potential with respect to Landau levels.69 In this
limit, Eq. �17� reduces to

FIG. 1. Illustration of the steady state distribution f�x
�T� �grayscale

plot� and position of the Landau levels at �N�x�=e�x�+ �N
+1 /2��c �dashed lines� in �a� a nonequilibrium state with a constant
electric field E in an infinite 2DEG and of �b� an equilibrium finite
2DEG with a built-in electric field near a contact.
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��dark� = �D��̃�
2��, 2�2T/�c � 1. �29�

Here � . . . �� implies energy averaging over the �c-periodic
DOS oscillations. In high-T limit, the dark compressibility
Eq. �21� reduces to 2�0,

��dark� = 2�0��̃��� = 2�0, 2�2T/�c � 1. �30�

A simple linear relation n�x�=2�0��x� makes two definitions
of the diffusion current Eqs. �19� and �22� identical,

D�dark� � D�dark� =
Rc

2

2�tr
��̃�

2��,
2�2T

�c
� 1. �31�

In the presence of microwaves, however, the two defini-
tions are not fully equivalent in view of the microwave-
induced magneto-oscillations in the compressibility,72 see
discussion in Sec. IV C and in Sec. V A.

IV. LOCAL CONDUCTIVITY AND DIFFUSION
COEFFICIENT IN ILLUMINATED 2DEG

A. Nonequilibrium current flow

We now turn to evaluation of the transport properties in
the presence of microwave radiation. The key observation is
that in the nonequilibrium steady state the Einstein relation
Eq. �27� between the dc conductivity � and diffusion coeffi-
cient D does not hold anymore, ��e2�0D. In other words,
the current cannot be represented in the form of Eq. �28� with
some modified transport coefficient and electrochemical po-
tential. According to our calculation based on Eqs. �3� and
�12�, the nonequilibrium dc current

jx = − 2�� �  − 2e�0D � � . �32�

necessarily contains an extra “anomalous term” −2���
violating the Einstein law. In these terms, the total conduc-
tivity �, which defines the dc current j=2�E in a homoge-
neous system �as in the case of MIRO, see Sec. III A�, is
given by

� = �� + e2�0D , �33�

while the diffusion coefficient D entering the current j �E=0
=−eD�n at E=0, is expressed through the nonequilibrium
compressibility �,72

D = 2�0�−1D , �34�

similar to Eq. �20�. In next two subsections we calculate the
anomalous conductivity �� and a photo-induced part of the
diffusion coefficient to the minimal order E�

2 .

B. Anomalous component of conductivity

In this subsection we calculate the anomalous component
�� of the conductivity. For that purpose we put ��=0 and
use Eqs. �3� and �12� with the position-independent dark dis-
tribution,

f�
�T� = �e��−��/T + 1�−1, � = const�x� . �35�

Similar to the dark case, Sec. III B, the microwave correction
Eq. �6� to the elastic scattering rate gives no contribution to

the current Eq. �3� due to cancellation Mx�x
�� −Mxx�

�� =0.
Therefore, the current �E�

2 can be either due to �i� the
microwave-assisted scattering off disorder �represented by
the second term ���ph� in Eq. �3� with unperturbed f = f�

�T�,
displacement mechanism� or due to �ii� the position depen-
dence of the microwave-induced nonequilibrium distribution
Eq. �12� �modifying the elastic term in the total current Eq.
�3�, inelastic mechanism�. Correspondingly, the anomalous
conductivity �� is a sum of the displacement and inelastic
contributions

�� = ��
�dis� + ��

�in� �36�

Displacement contribution ��
�dis�. Using the position-

independent distribution Eq. �35�, the second term of Eq. �3�
can be represented as

j�
�dis� = 2e�0�

�
	 d��f�

�T� − f���
�T� �
�����		�

�ph�

� 	
x−�

x

dx��̃�� − e�x����̃�� � � − e�x� + ���
		�

.

�37�

where the Heaviside function ���� imposes the condition
���X		��0, see Eq. �3�. The electric field enters this ex-
pression only through the position dependence of the local
DOS �̃�x= �̃��−e�x��. In the absence of the local electric
field E=−��x�, two terms of Eq. �37� corresponding to
��� exactly cancel each other. The terms linear in E pro-
duce the displacement contribution to the current j�

�dis�

=��
�dis�E under condition Eq. �15�

��
�dis� = �D

�tr

4��

�P − Re�E+E−
���R1��� , �38�

R1��� = �����̃��̃�+���. �39�

Here we used 2�2T /�c�1, and

��
−1 = 3�0

−1 − 4�1
−1 + �2

−1 �40�

in terms of Eq. �2�. Function R1��� oscillating with the ratio
� /�c is specified in Sec. IV D for two limits of strongly
overlapping and well-separated Landau levels, together with
similar oscillatory functions entering Eqs. �44� and �47�.

Inelastic contribution ��
�in�. The inelastic contribution is

due to microwave-induced changes �f in the distribution
function. To the leading order E�

2 and in the limit ��x�
→0, Eqs. �12� and �15� give

�f�x = P �in

4�tr
�
�

�f�
�T� − f���

�T� ��̃�� � � − e�x�� . �41�

In contrast to the spatially independent f�
�T�, the microwave-

induced part �f of the electronic distribution oscillates in
coordinate space at a fixed total energy � due to spatial os-
cillations of DOS �̃�x in Landau levels tilted by the electric
field. As a result, the elastic contribution to the current
Eq. �3� does not vanish, Mx�x

�� −Mxx�
�� �0. Substitution of
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Eq. �41� for f�x in the elastic term of Eq. �3� with �		�
�el�

=�	−	�
−1 produces inelastic contribution to the current,

j�
�in� = 2e�0	 d�
�����	

x−�

x

dx�
�̃�x�

2 �x��f�x�

�	−	�


		�

,

�42�

where ���X		��0 as above in Eq. �37�. Assuming
2�2T /�c�1 and keeping the linear term ���x�, we obtain
j�
�in�=��

�in�E with

��
�in� = �D

�in

4�tr
PR2��� , �43�

R2��� = �����̃�
2��̃�+� + �̃�−����. �44�

It is worth mentioning that both ��
�dis� and ��

�in� originate
from the spatial dependence of the DOS which requires both
the Landau quantization and the presence of electric field. In
the absence of Landau quantization, �̃=1, functions R1���
and R2��� entering Eqs. �39� and �44� vanish �see Sec. IV D
�. Therefore, within our model the Einstein relation of the dc
conductivity and diffusion coefficient is restored in the
classical73 limit �c�0→0: ��=��

�dis�+��
�in�=0, see Eqs. �32�,

�36�, �38�, �43�, and �51�.

C. Microwave-induced oscillations of the diffusion coefficient

Now we assume �=0 and ��=���0, and calculate
the microwave-induced correction Dph=D−D�dark� to the dif-
fusion coefficient, see Eqs. �32� and �34�. In contrast to the
previous subsection, now the DOS is position independent,
while the dark distribution varies in space. Using the linear
approximation f�x+�x

�T� = f�x
�T�−�x����f�x

�T� in Eq. �3�, we obtain
jx=−2e�0D�� with

D =	 d��− ��f�x
�T������X		���X		�

2

���̃�
2�		�

�el� + �̃���̃�−� + �̃�+���		�
�ph���		�. �45�

Performing the angular and thermal averaging for 2�2T /�c
�1, we get similar to Eqs. �38�–�40�,

Dph =
Rc

2

8��

�P − Re�E+E−
���R3��� , �46�

R3��� = ��̃�
2 − �̃��̃�+���, �47�

where Dph=D−D�dark� and D�dark� is given by Eq. �31�.
In Eqs. �45� and �46�, the microwave-induced changes in

the distribution function Eq. �41� were not taken into ac-
count. The reason is that in the limit 2�2T /�c�1 the corre-
sponding contribution to the diffusion coefficient is exponen-
tially suppressed. The inelastic contribution Dph

�in�, obtained
from Eqs. �41� and �42� using �=0 and ��→0, reads

Dph
�in� =

P�inRc
2

8�tr
2 �

�
	 d��̃�

2�̃������f�x
�T� − f���x

�T� � . �48�

In the limit 2�2T /�c�1, this expression vanishes similar to
the Shubnikov-de Haas oscillations. Therefore, the
microwave-induced oscillations in the distribution function
�41� produce the contribution Eq. �43� to the anomalous con-
ductivity �� only, while the displacement mechanism pro-
vide similar oscillations both in ��, Eq. �38�, and in D, Eq.
�46�.

While the dark quantities D�dark� and D�dark� are identical
at 2�2T /�c�1, see Eq. �31�, in the presence of microwaves
they are not equivalent in view of the microwave-induced
compressibility oscillations �MICO�.72 MICO do not enter
the quantity D since it is defined through ��, but modify the
diffusion coefficient D defined through �n=���, which
gives

Dph � D − D�dark� = 2�0�−1Dph. �49�

However, since we are interested in linear in E�
2 corrections

to D�dark� and D�dark� in the present work, we can approximate
the compressibility by its dark value ��dark�=2�0 �thus ne-
glecting MICO that lead to terms �E�

4 in Dph�. Moreover,
even at high orders in E�, the compressibility can be ap-
proximated as �=�n /��=2�0 assuming spatial variations of
n�x� are smooth on a scale of the inelastic length. At shorter
length scales, MICO can be strong �of order �0�. This situa-
tion arises, in particular, in the regime of ZRS,72 see Sec.
V A.

So far we considered the two cases ��=0 and �=0
which give, correspondingly, the anomalous conductivity ��

and the photo-induced correction to the diffusion coefficient
D=D�dark�+Dph. The sum �ph=��+e2�0Dph, given by Eqs.
�36�, �38�, �43�, and �46�, reproduces the results45–50 obtained
earlier for the homogeneous case of the MIRO,1–6 which
corresponds to ��=0 and to the constant −�=−�� /e=E,
see also Sec. V C.

D. Form of the oscillations for overlapping and separated
Landau levels

The form and the phase of the magneto-oscillations in the
anomalous conductivity �� and in the diffusion coefficient
D, Eqs. �39�, �44�, and �47�, as well as the quantum correc-
tion to the dark conductivity, Eqs. �29�, are expressed
through the certain energy averages Rn��� over the period
�c of the DOS oscillations,

R0 = ��̃�
2��,

R1��� = �����̃��̃�+���,

R2��� = �����̃�
2��̃�+� + �̃�+����,

R3��� = ��̃�
2 − �̃��̃�+���. �50�

Here we specify these functions in two limits of strongly
overlapping and of well-separated Landau levels �LLs�
within the self-consistent Born approximation �SCBA�. At
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high LLs, �F�� ,�c, disorder can be treated within the
SCBA provided the disorder correlation length satisfies d
� lB and d�vF�q,74 where lB= �c /eB�1/2 is the magnetic
length and �q the quantum relaxation time ��q��0 in terms
of the moments �n, Eq. �2��.45–47,74

In moderate magnetic field, �=exp�−� /�c�q��1, LLs
strongly overlap and the DOS is only weakly modulated by
the magnetic field, �̃���=1−2� cos�2�� /�c�. In this limit

R0 = 1 + 2�2,

R1 = − 2�22��

�c
sin

2��

�c
,

R2 = − 8�22��

�c
sin

2��

�c
,

R3 = 4�2 sin2��

�c
. �51�

In the limit of separated LLs, �c�q�1, the DOS is a se-
quence of semicircles of width 2�=2�2�c /��q�1/2��c, i.e.,
�̃���=�q Re��2− ����2, where �� is the detuning from the
center of the nearest LL. In this limit, calculation yields

R0 = 16�c/3�2� , �52�

R1 = R0
�

�
�

n

sgn��n�H2���n�� , �53�

R2 = − R0
4��c

�2 �
n

sgn��n��2���n�� �54�

R3 = R0�1 − �
n

H1���n��� . �55�

The parameterless functions of �n= ��−n�c� /� are nonzero
at 0� ��n��2, where they are expressed as

H1�x� = �2 + x���4 + x2�E�X� − 4xK�X��/8, �56�

H2�x� = 3x��2 + x�E�X� − 4K�X��/8, �57�

4��2�x� = 3x arccos�x − 1� − x�1 + x��x�2 − x� . �58�

Here X��2−x�2 / �2+x�2 and the functions E and K are the
complete elliptic integrals of the first and second kind, re-
spectively. Graphical representation of the functions
�56�–�58� can be found in Ref. 75.

In the crossover magnetic field, �c�q�1, functions �50�
obtained using analytical expressions for the DOS become
very cumbersome. In this crossover region, the form of the
oscillations can be obtained using numerical solution of the
SCBA equations.70 In particular, such numerical solution is
used in the calculation illustrated in Fig. 2�b� below.

V. PHOTOCURRENT AND PHOTOVOLTAGE
OSCILLATIONS

In this section, we use the obtained local transport coeffi-
cients for calculation of the electrical current in different
experimental situations. The effects related to microwave-
induced modifications of the spatial distribution of carriers
and fields are considered in Sec. V A. The current-voltage
characteristics �CVC� of an infinite 2DEG stripe between
two metallic contacts are obtained in Sec. V B. Using these
CVC, in Sec. V C we calculate the photocurrent and photo-
voltage and compare our findings with the experiment of
Ref. 64. In Sec. V D, nonlinear effects in the photovoltage
�with respect to the microwave power� are discussed, which
were observed experimentally64 and are also well reproduced
by the theory.

A. Photo-induced changes in the field and charge distribution

In the presence of nonuniform carrier and field distribu-
tions, as in Fig. 1�b�, the local transport coefficients �� and
D entering the local current Eq. �32� do not completely de-
termine the transport. The full theory should include a self-
consistent solution of the Poisson and continuity equations
for a given experimental setup. Indeed, the photo-induced
current density, given by Eq. �32� with the dark profile of the
electrostatic potential �dark� and with ��=0, is jx=

FIG. 2. �a� Photocurrent between the Corbino-like internal and
striplike external contact �see Fig. 3�c�� vs magnetic field measured
in experimental setup of Ref. 64 for T=1.5 K �solid line� and T
=0.5 K �dashed line�; �b� Photocurrent �calculated using numerical
solution of the SCBA equations according to Eqs. �12� and �42�, see
Ref. 70 for details� for ��q=10 and for a linear polarization of the
microwaves. Here we took into account the screening of the incom-
ing radiation by the 2DEG which results in a strong B dependence
of the internal microwave field E� �entering Eq. �8�� in the vicinity
of the cyclotron resonance �Ref. 70�.
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−2����dark�. In general, such jx does not satisfy the conti-
nuity equation �jx=0 in view of a nonlinear spatial variation
of �dark�, as, for instance, in Fig. 1�b�. Therefore, the photo-
induced variation of the electron density �n�x�=n−ndark
�we assume ��n�x���n� and of the electrostatic potential
��x�=−�dark� should be taken into account. The latter are

related to each other by the inverse capacitance matrix Ŵ as

�x = e	 dxWxx��nx�. �59�

Using the relation

�� = e� + �−1�n �60�

valid at 2�2T /�c�1, we represent the Poisson equation in
the form

�� = �1 + �e2�Ŵ�−1�e� . �61�

Using Eqs. �32� and �61� for a fixed current density jx= j
=const�x�, one arrives to a formal solution for the local
variation ���x� of the electrochemical potential,

�� = − e�2�� � �1 + �e2�Ŵ�−1�−1 + 2e2�0D��−1

��j + 2�� � �dark�� . �62�

Solution of the above nonlocal equation is required if the
amplitude of oscillations in �� becomes of order ��dark�

=e2�0D�dark� �otherwise one can neglect the photo-induced
changes �n�x� in view of the smallness of ���E�

2 �. In con-
ventional magnetoresistivity experiments this corresponds
to the regime where the zero resistance states are
formed7,65–68,72 �both theory and experiments show that the
ZRS appear still in the linear regime in the microwave power
where Eqs. �36�, �38�, �43�, and �46� still apply�. According
to the theory of Ref. 42, the ZRS is a manifestation of a
spontaneous symmetry breaking of a homogeneous state
with negative resistivity leading to the formation of the cur-
rent domains. In this picture, the residual resistivity in the
ZRS, which is observed in part of experiments, is due to the
electron transport across the domain walls and near the
boundary of the 2DEG. Inside the domains, the transport is
dissipationless.

The boundaries of the domains are characterized by
strongly nonuniform carrier and field distributions. There-
fore, the results of the present work, in particular, the viola-
tion of the Einstein relation and the appearance of the
anomalous component of conductivity ��, should play an
important role for development of microscopic theory of
transport in the ZRS regime.

B. Boundary conditions and current-voltage characteristics

We now consider the photocurrent and photovoltage os-
cillations in a 2DEG with metallic contacts. As we show
below, specific boundary conditions Eq. �64� at the interface
with metallic contacts make the details of the potential and
carrier distributions inside the sample irrelevant �thus, one
need not solve a complicated electrostatical problem Eq.
�62��. More precisely, as long as simple one-dimensional

�1D� or Corbino geometry is considered �see Fig. 3� and the
built-in electric field is not too strong, the current and voltage
between the contacts are fully determined by the difference
of the work functions of the contacts and by the local trans-
port coefficients �� and D, see Eq. �65� below.

Indeed, using the fact that in the linear approximation
with respect to the dc field not only jx but also �� and D are
position independent, and integrating both parts of Eq. �32�
along a contour connecting two contacts at x=0 and x=L, we
obtain the relation

jL = 2����0� − �L�� + 2e�0D���0� − ��L�� . �63�

It is natural to assume that microwave radiation does not
change the electron concentration on the metallic side of the
interfaces due to a huge density of states there. Since both
the electrochemical and electrostatic potentials are continu-
ous at the interface, this fixes the chemical potential in the
2DEG near the interfaces. Introducing the voltage V= ���0�
−��L�� /e and the difference of the work functions of the two
contacts eUc, we write the boundary condition in the form

�0� − �L� − V = ���L� − ��0��/e � Uc. �64�

Equations �63� and �64� yield the desired CVC,

jL = 2��Uc + 2�V , �65�

where 2�=2��+2e2�0D is the total conductivity. We em-
phasize that the CVC retains the form Eq. �65� for arbitrary
microwave power �provided the transport coefficients �� and
D are calculated to all orders in P�. Also, Eq. �65� is appli-
cable in the case when the microwave-induced redistribution
of carriers is significant, �����dark�, see Eq. �62� �provided
the relative change of the electron density across the sample
remains small�. The CVC Eq. �65� is modified only when the
linear approximation with respect to the dc field breaks
down. For such strong dc fields, the transport coefficients ��

FIG. 3. Illustration of different contact geometries. �a� 1D ge-
ometry: 2DEG between two long striplike contacts. �b� Corbino
geometry: as long as the axial symmetry is preserved, can be re-
duced to the 1D case. �c� Combined geometry used in the experi-
ment of Ref. 64. The experiment shows that the photogalvanic sig-
nal forms near the internal contact having the Corbino geometry
while the external striplike contact plays no role. In such conditions,
the theory for geometry �b� is also applicable to the case �c�.
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and D become field and coordinate dependent �and, there-
fore, are no longer uniquely defined�. Only such strong dc
field makes important the details of the electrochemical and
electrostatic potential distribution in the interior of the
sample, which necessitates the full solution of the Poisson
and continuity equations with the boundary conditions �64�.

C. Photocurrent and photovoltage

If the geometry of two contacts is identical and the differ-
ence of the contact potentials is zero, Uc=0, the CVC Eq.
�65� reproduces the Ohm law in the bulk, j=2�V /L. Here �
contains the displacement and inelastic contributions to the
MIRO, Eqs. �36�, �38�, �43�, and �46�, reproducing the re-
sults of previous calculations.45–50 An asymmetric contact

configuration results in a nonzero average electric field Ē
=Uc /L inside the sample in the absence of the bias voltage,
V=0. In the presence of the microwave-induced anomalous

conductivity, ���0, the built-in electric field Ē=Uc /L leads
to the photocurrent at zero bias voltage,

jph � j�V=0 = 2��Uc/L , �66�

or, in the open circuit, to the photovoltage

Vph � V� j=0 = −
��

�
Uc, �67�

as observed in the experiment.64 Two experimental traces of
the photocurrent for different temperatures are shown in Fig.
2�a�. Figure 2�b� illustrates the inelastic contribution Eq. �43�
to the anomalous conductivity Eq. �36�, which demonstrates
an excellent agreement between the theory and experiment.
A typical small shift of the zeros of the photocurrent from the
integer and half-integer values of � /�c in experimental
traces is similar to observations8,9 for MIRO and can be
attributed8 to a slight deviation of the electron effective mass
from the standard value m=0,067m0 used in Fig. 2�a�.

In the case of overlapping LLs, the phase and the form of
the photocurrent oscillations is identical for the displacement
and inelastic contributions to ��, see Eqs. �36�, �38�, �43�,
and �51�. Therefore, one can distinguish between them only
owing to a strong temperature dependence of the inelastic
scattering rate. The temperature dependence in Fig. 2�a�
shows that the inelastic contribution to the anomalous con-
ductivity �� is substantial. At the same time, this dependence
is weaker than ��

in��in�T−2 predicted by the theory48 at the
leading order in both the dc and microwave fields, see Eq.
�43�. The weaker T dependence can be attributed either to a
strong admixture of the displacement contribution31,46,50 at
T=1.5 K or to nonlinear effects45,46,48,49 �in the microwave
power or in the dc field�. Alternatively, it can be the mani-
festation of a noticeable heating of the electron gas49,73 at
T=0.5 K, since the inelastic scattering time is a function of
the electron temperature rather than the bath �phonon� tem-
perature.

Let us emphasize that the analysis of the 1D geometry
considered above �Fig. 3�a�� is directly applicable to the case
of the Corbino geometry �Fig. 3�b�� for which the Hall con-
ductivity does not enter the local relation Eq. �32�. In the

case of Corbino geometry, the current density j�r��r−1 is
inversely proportional to the distance from the center, so that
the total current J=2�rj�r� is conserved. Therefore, integrat-
ing both parts of Eq. �32� along a contour connecting two
contacts at r=a and r=b one obtains a modified CVC in the
form

J
1

2�
ln

b

a
= 2��Uc + 2�V . �68�

Comparison of Eqs. �68� and �65� shows that results for 1D
geometry �Fig. 2�a�� transform into results for Corbino ge-
ometry �Fig. 2�b�� after replacement jL→J 1

2� lnb
a . In both

cases of 1D and Corbino geometry, the photogalvanic signals
result from nonzero average built-in electric field which re-
quires either different work functions of metallic contacts or
different electron densities under capacitively coupled gated
probes.64 A further possible source of the asymmetry is dif-
ferent geometry of the contacts, e.g. the Corbino-like geom-
etry of the internal contact and the striplike geometry of the
external contact located on the perimeter of the sample, see
Fig. 2�c� �as in the part of the experiment of Ref. 64 that
utilized heavily doped ohmic contacts�. For such geometry,
the photogalvanic signals were shown64 to be formed in the
vicinity the internal Corbino-like contact and the above con-
sideration should be valid if one puts the difference of work
functions of the doped internal contact and 2DEG instead of
Uc in Eqs. �65�–�67�.

D. Nonlinear effects in the photovoltage; Photoresistance

The magneto-oscillations in the photocurrent Eq. �66� are
fully determined by the anomalous conductivity �� and,
therefore, the oscillations are symmetric with respect to the
average value j=0, see Fig. 2. By contrast, the experimental
traces of the photovoltage oscillations show64 a strong asym-
metry with respect to Vph=0 value. This asymmetry is due to
additional microwave-induced oscillations in the denomina-
tor �=��dark�+��+e2�0Dph of Eq. �67�. From previous stud-
ies of the MIRO �Refs. 45 and 48� it is known that contribu-
tions to �� of second order in the microwave power are still
small when the magnitude of the first-order terms approaches
the dark conductivity ��dark�. This legitimates the use of Eq.
�67� in the nonlinear regime. Neglecting inessential correc-
tion Dph �which is a factor ��� /�c smaller than the dis-
placement contribution Eq. �38� to �� even in the absence of
the inelastic contribution Eq. �43��, one can rewrite Eq. �67�
as

Vph �
− 1

1 + ��dark�/��

Uc. �69�

Equation �69� explains a strong asymmetry of the photovolt-
age oscillations observed in the experiment.64 Further, the
nonlinearity of Eq. �69� makes possible the experimental de-
termination of the value of the contact potential difference
Uc, since in the formal limit �������dark� one has simply
Vph=−Uc.

Apart from the photocurrent and photovoltage, one can
measure the two-point differential photoresistance Rph
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=�V /�I by driving a small current through the sample. Such
measurements were also done in Ref. 64 and the results were
compared to the ratio Vph / Iph taken from two independent
measurements of Vph and Iph. The comparison demonstrated
very good agreement, as can be expected from Eq. �65� giv-
ing

�V

� j
=

L

2�
�70�

and Eqs. �66� and �67� yielding

−
Vph

jph
=

L

2�
. �71�

The measured photoresistance showed clear magneto-
oscillations with the phase opposite to the MIRO. The phase
shift of oscillations by � is in agreement with Eqs. �70� and
�71� predicting Rph��−1, which should be compared with
�xx�� in conventional magnetoresistivity measurements of
the MIRO.1–6

VI. CONCLUSION

Summarizing, we have presented a quantum transport
theory for a 2DEG in high Landau levels illuminated by the
microwave radiation in the presence of a spatially inhomo-
geneous dc electric field. The theory explains the
microwave-induced photocurrent and photovoltage oscilla-
tions observed in the recent experiment.64

We have shown that in an irradiated sample the Landau
quantization leads to violation of the Einstein relation be-
tween the dc conductivity and the diffusion coefficient. As a
result, a nonzero average electric field leads to the electric
current which is not compensated by the diffusion flow even
for the electrochemical potential remaining constant in
space. The experimental observation of the effect requires an
asymmetry �for instance, in contact geometry, as in Ref. 64,
or in material composition of two contacts� which deter-
mines the direction of the current. At the same time, the
obtained current-voltage characteristics are shown to be in-
dependent of detailed potential profile in the sample pro-
vided the relative change in the electron density across the
sample remains small.

The effects discussed in this work should also play an
essential role for the transport in the zero resistance states.3–6

In this regime, the uniform charge and field distributions
become electrically unstable.42 The system breaks into cur-
rent domains and peculiarities of the transport properties of
the inhomogeneous system become of central importance.
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