
Light transport regimes in slow light photonic crystal waveguides

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, and R. Houdré
Institut de Photonique et d’Electronique Quantique, Ecole Polytechnique Fédérale de Lausanne (EPFL),

CH-1015 Lausanne, Switzerland

I. Sagnes and A. Talneau
CNRS/Laboratoire de Photonique et de Nanostructures, Route de Nozay, F-91460 Marcoussis, France
�Received 1 July 2009; revised manuscript received 26 August 2009; published 28 September 2009�

The dispersive properties of waves are strongly affected by inevitable residual disorder in man-made propa-
gating media, in particular in the slow wave regime. By a direct measurement of the dispersion curve in k
space, we show that the nature of the guided modes in real photonic crystal waveguides undergoes an abrupt
transition in the vicinity of a band edge. Such a transition that is not highlighted by standard optical transmis-
sion measurement, defines the limit where k can be considered as a good quantum number. In the framework
of a mean-field theory we propose a qualitative description of this effect and attribute it to the transition from
the “dispersive” regime to the diffusive regime. In particular we prove that a scaling law exists between the
strength of the disorder and the group velocity. As a result, for group velocities vg smaller than c /25 the
diffusive contribution to the light transport is predominant. In this regime the group velocity vg loses its
relevance and the energy transport velocity vE is the proper light speed to consider.

DOI: 10.1103/PhysRevB.80.125332 PACS number�s�: 42.70.Qs, 72.15.Rn, 42.30.Kq, 42.25.Dd

I. INTRODUCTION

The transport properties of waves, such as electromag-
netic waves, matter waves, electronic waves, or acoustic
waves, are strongly affected by the disorder present in the
propagating medium.1,2 The different regimes of wave
propagation that can set up due to disorder-induced scatter-
ing depend on the relative values of the mean-free path l of
the wave, the sample size L and the wavelength �.

When l�L the medium can be considered as homoge-
neous and the propagating wave undergoes rare scattering
events: the corresponding wave transport regime is often am-
biguously called the “coherent” regime.1,2 In this case, wave
equations such as the Schrödinger or the Helmoltz equations
offer a straightforward determination of the eigenstates of the
wave field, with the wave number k as a good quantum num-
ber. This gives access to a well defined dispersion relations
��k� between k and the frequency �. We will prefer here to
name this propagating regime the “dispersive” regime. As
transport properties are deterministically predicted from the
knowledge of such dispersion relations, the dispersive re-
gime is favored for information transmission in modern com-
munication systems.

When �� l�L, the spatial phase of the field is strongly
affected by the disordered potential in the medium. After a
propagation over several mean-free paths, the multiple-
scattering regime takes place. This regime is governed by a
diffusion equation for the energy transport of the wave. In-
vestigation of such diffusive or multiple-scattering regime
was initiated in astrophysics to understand the electromag-
netic wave transport through stellar and interstellar
atmospheres.3 In contrast to classical diffusion, the wave dif-
fusive regime is subject to the presence of interference ef-
fects with backscattered field contributions as revealed by
the enhanced backscattered cone.4,5 From the self-consistent
theory of localization, these interference effects can be incor-
porated in a renormalized extensive diffusion constant
D�L , l� that depends on the sample size.2

In general, the scattering approach considers only con-
stant index dispersion. However, the dispersive properties of
the underlying unperturbed medium can affect a particular
wave transport regime.6 For instance, anomalous diffusive
transmission and reduction of the diffusion constant near the
band edge of partially disordered photonic crystals �PhCs�
were reported in Refs. 7 and 8, respectively.

In ideal line-defect photonic crystal waveguides, the
group velocity vg=d� /dk of guided Bloch modes theoreti-
cally vanishes at band edges. This behavior is currently of
high interest to develop slow light based devices. Neverthe-
less, as shown in Refs. 9 and 10, the presence of residual
disorder in actual structures strongly affects the group veloc-
ity at the band edges. Some of the first experimental inves-
tigations of the speed of light transport in line-defect photo-
nic crystal waveguides reported group velocity of c /50 and
c /150,11,12 whereas in other types of experiments group ve-
locities lower than c /1000 were claimed.13,14 Time-of-flight
experiments revealed that the lower group velocity was only
c /7 near band edges in two-dimensional �2D� PhC
structures.15 More recently, some theoretical calculations
predicted that group velocities smaller than c /100 could not
be achieved in so-called W1 or W3 waveguides, �1 and 3
lines defect, respectively�, with the current state-of-the-art
technology.10,16 In addition Engelen et al. highlighted two
regimes of light propagation featuring a “group-velocity
range of c /7 down to c /200” in chirped W1 waveguides.17

In view of the recent results in the literature, the light
transport in slow light structures has to be clarified, prompt-
ing a strong need for a convincing experimental signature of
the transition between �i� the dispersive regime, where the
concept of group velocity applies, and �ii� the diffusive re-
gime. In this paper, we unambiguously identify the disper-
sive regime and the diffusive regime by probing both the
spatial frequency spectra �k space� and the in-line transmis-
sion of the waveguide in the vicinity of a band edge. We
propose a qualitatively description of the experimental data
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based on a standard mean-field theory. We prove that a scal-
ing law exists between the strength of the disorder and the
group velocity of the unperturbed medium. As a result, the
smallest group velocity achieved among W1 membrane pho-
tonic crystal waveguides with different amounts of disorder
is around c /25. In particular, we highlight the region where
the group velocity loses its meaning in favor of the energy
transport velocity vE.

II. QUALITATIVE DISCUSSION OF THE TRANSITION
BETWEEN THE DISPERSIVE AND DIFFUSIVE

REGIME

In Fig. 1, we show the theoretical dispersion curve of the
fundamental guided mode �dashed line� propagating in an
ideal W1 photonic crystal waveguide near the boundary of
the first Brillouin zone. With this figure, we also give a sche-
matic representation of the expected dispersion curve modi-
fied due to an arbitrary residual disorder �dark line� as well
as the corresponding spatial frequency spectrum �represented
in gray�. This plot relies on a mean-field theory and antici-
pates the effect of the residual disorder on the propagation
properties, that we have experimentally measured. In particu-
lar, we correlate the dispersive, the diffusive and the strongly
spatially localized regimes with the different regions of the
modified dispersion curve.

A. Dispersive regime

The dispersive regime, which corresponds to a well de-
fined vg, is located far enough from the band edge at k
�0.4�2� /a where a is the PhC lattice constant. In this
regime, the spatial frequency spectrum �angular spectrum� is
approximated by a Dirac � function. When the normalized
frequency u=a /� approaches the band edge, the effect of the
disorder becomes significant as a result of the slowing down
of the light.2 It follows that the slope of the dispersion curve

is modified, which sets a lower bound for vg. Moreover the
linewidth of the angular spectrum broadens as a results of the
decrease of the mean-free path l, due to the random spatial
dephasing of the field. The corresponding shape of the modi-
fied dispersion curve can be predicted by analytical pertur-
bative approaches based on mean-field theories and diagram
techniques.18 In this framework, the first moment �	�� ,k��
of the wave field taken over different configurations of the
disorder is determined by the Dyson equation. The poles of
the corresponding mean Green’s function give access to the
dispersion curve via the equation ��0 /c�2= ���k� /c�2+
�k�,
where �0 is the excitation angular frequency. Compared to
the unperturbed case, the random dielectric potential leads to
an additional term 
, called the self-energy, which takes into
account the correlation induced by disorder in the averaging
process of the field. For a homogeneous random medium and
in the leading approximation,19 the self-energy is given by

�k�=−i��0 /cl�. In such media, the dispersion relation is all
the more affected that the mean-free path l is small; i.e., that
the random fluctuations of the disordered potential are large.
In a partially disordered periodic medium as investigated
here, 
�k���2 /vg0 with vg0 the group velocity of the unper-
turbed medium and � the amplitude of the centered Gaussian
random function used to model the disordered potential �see
the Appendix�. The presence of 
 in the equation that deter-
mines the dispersion curve sets the lower bound for the
group velocity vg of the perturbed medium. The value of this
bound depends on the amount of disorder. The direct relation
between 
�k� and vg0 reveals that the control parameter to
activate different wave transport regimes and to probe their
properties can be vg0, much like the concentration or average
particle size in powders20 controls the amount of scattering.

B. Diffusive regime

For sufficiently small unperturbed group velocity vg0, the
leading approximation does not hold and the dispersion
curve cannot be defined. The diffusive regime corresponds to
this region where the wave number k cannot be considered as
a good quantum number anymore. It results in the formation
of specklelike spatial frequency spectra for frequencies close
to the band edge �k0.42�2� /a�. The disappearance of a
dispersion relation between � and k does not mean that the
wave transport vanishes in the diffusive regime in contrast to
the strongly spatially localized state regime. In the so-called
ladder approximation, the determination of the second mo-
ment ����1 ,k1�����2 ,k2�� of the field from the Bethe-
Salpeter equation, shows that the average intensity at a given
spatial point is the sum of the Drude-Boltzmann contribution
and a contribution known as the ‘‘diffuson’’ contribution.19,21

The former contribution, that has an exponential decay and
can be neglected after several mean-free path l, corresponds
to the dispersive regime.2,18 The latter contribution corre-
sponds to the multiple-scattering regime and is associated
with the formation of speckles in the spatial frequency
spectrum.19 In this regime, the residual correlations between
the specklelike angular spectra over a given angular fre-
quency bandwidth �� allows the definition of an energy
transport velocity vE that can strongly deviate from vg.22,23

FIG. 1. Definition of the light transport regimes according to
their dispersion properties in an actual W1 photonic crystal wave-
guide �W1 means that one missing line of holes defines the core of
the waveguide�. Dashed line: dispersion band diagram of the fun-
damental mode of an ideal W1 waveguide. Black line: schematic
representation of the modified dispersion curve due to residual dis-
order. The corresponding expected angular spectra in the dispersive,
diffusive, and localized regimes are superimposed in gray.
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Although the spectral correlations are too weak to generate a
clear dispersion curve, the diffusive energy transport can still
be efficient in contrast to the strongly spatially localized re-
gime which appears at frequencies � located below the ideal
band edge. Note that waves are always localized in one-
dimensional �1D� system subject to a random Gaussian fluc-
tuation provided there are no losses. This means that what-
ever the energy of the wave, the envelope of the wave
function will be localized in space for a sufficiently large
length scale of the medium. Here we use the term localiza-
tion in a more pragmatic way to specify a regime where the
envelope of the field is spatially localized in the waveguide
with a spatial extension smaller than the length of the wave-
guide �the spatial extension is defined as the length corre-
sponding to a 1 /e decrease of the envelope of the field�.
Such a regime was recently highlighted in Ref. 24.

III. EXPERIMENTAL RESULTS

A. Structures and method

The W1 waveguides experimentally investigated have
been fabricated on indium phosphide �InP� semiconductor
suspended membrane. A 260-nm-thin InP guiding layer was
grown on top of a 1.5 �m InGaAs sacrificial layer, on InP
substrate. The W1 photonic crystal waveguides have been
patterned in polymethylmethacrylate �PMMA� resist with an
ultrahigh-resolution �1.25 nm� Vistec e-beam lithography
performed at EPFL. The pattern designed on PMMA was
then transferred at CNRS-LPN in an underlying SiO2 layer
used as a mask for N2 /BCl3 inductive coupled plasma �ICP�
process dry etching of the InP membrane layer. After ICP
etching and cleaving, the 1.5 �m sacrificial underlying
GaInAs layer was selectively etched away to produce the
membrane. Supercritical drying in CO2 was performed to
prevent any strain in the structures. The PhC structural pa-
rameters were chosen to operate near a wavelength of
1.5 �m. Typical losses reported for W1 waveguides are
around 25 dB/cm.25

In order to experimentally determine the dispersion curve
and the spatial frequency spectrum of the modes excited in
the structure, we have used a high numerical aperture optical
Fourier-space imaging technique. This technique, described
in details in Ref. 26, provides a direct 2D intensity plot of the
angular spectrum of the field emitted from the surface of the
sample, as shown in Figs. 2�b�–2�d�. As a result, the phase
velocities of the modes corresponding to spatial frequencies
located inside the bandwidth of the imaging setup are di-
rectly and uniquely inferred for a given wavelength. In addi-
tion, as the dispersive part of the spatial frequency spectrum
of the investigated W1 PhC waveguide is located below the
light cone, additional linear probe gratings �LPG� have been
implemented along the outer edges of the photonic crystal
structure in order to fold the spatial spectrum into the light
cone with minimal perturbation as explained in Ref. 27.

The real-space image of the field excited in the W1 PhC
waveguide �Fig. 2�a�� shows that the radiated parts mainly
come from the center of the waveguide and the probe grat-
ings. The intensity of these contributions is of the same order
of magnitude. For this specific image �Fig. 2�a��, the excita-

tion wavelength corresponds to a Bloch mode in the fast
light regime �see Fig. 1�. This mode is located below the
light cone, which implies that no emission from the central
part of the waveguide is expected. As shown at the bottom
images of Figs. 2�b�–2�d�, direct imaging of the angular
spectrum corresponding to the emission either from the
probe gratings or from the center of the waveguide, enlight-
ens the nature of the scattering processes involved. In par-
ticular, it allows us to determine the origin of the scattered
light at the center of the waveguide. In Fig. 2�b� the spatial
frequency spectrum of all the contributions is measured: it
consists of a sharp line and a speckle background that is
formed by a random field.28 In Fig. 2�c�, an experimental
spatial filtering is used to retrieve only the angular spectrum
of the field scattered from one of the probe gratings, whereas
in Fig. 2�d� only the angular spectrum of the central part is
measured. The outcome of this procedure indicates that the
sharp line is associated with the field scattered off the probe
grating as expected from the folding process of the disper-
sive part of the field,27 while the central part corresponds
only to the speckle part of the spectrum, associated with a
random spatial phase of the field.29 Note that the perturbation
imposed by the probe grating is less than the intrinsic pertur-

FIG. 2. �Color online� Far-field imaging of the light propagation
in a W1 waveguide with identification of the nature of the light
transport in k space. �a� Infrared emission pattern radiated from the
W1 waveguide �bottom� as well as the optical microscope image at
high numerical aperture �NA=0.9� of a typical photonic crystal W1
structure �top�. The thin dashed lines mark the optical image stitch-
ings. The large light intensity scattered at the input results from the
impedance mismatch at the interface between the access waveguide
and the PhC waveguide. �b�–�d� correspond to the real space �top�
and Fourier-space �bottom� images of the infrared light radiated
from the entire waveguide �b�, from only one probe grating, �c� and
from only the waveguide center �d�, respectively. The excitation
power P0 has been increased fivefold in the Fourier images of �c�
and �d�. �e� Electron microscopy image of the W1 waveguide �a
=440 nm� structure. The linear probe gratings �LPGs� consist of a
series of two lines of holes periodically spaced with three times the
PhC lattice constant �see �a� and �e��. They are located ten lines
apart from the waveguide core to ensure minimal perturbation of
the mode whose transverse intensity profile exponentially decreases
away from the core.
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bation of the residual disorder, as assessed by the intensity
levels of their respective contributions.

B. Frequency scanning of the modes

In Fig. 3, the signatures between the different light propa-
gation regimes are highlighted both with the near-field im-
ages and with the far-field spectra. These regimes are pro-
gressively activated/deactivated by scanning the frequency �
along the dispersion curve toward the band edge, i.e., by
continuously tuning vg0. From the top to the bottom near-
field images, we can observe a gradual disappearance of the
dispersive contribution at the probe grating in favor of an
increasing contribution of the central part.30 The central part
emission evolves from an intensity pattern extended along all
the waveguide length L�200 �m toward localized intensity
patterns identified as localized states. Some of these local-
ized states can be located more than 50 �m away from the
input of the waveguide with very large Q factors, that we
measured to be larger than 105. Such localized states corre-
sponds to states whose wave function is concentrated in a
tiny area which can be defined as a dielectric potential trap.
The tails of the wave function of these modes have a rela-
tively long penetration length into the dielectric barriers that
borders the shallow trap along the waveguide axis, as re-
vealed by the weak out-of-plane losses radiated off the bar-
riers. The spatially localized defect inside the W1 waveguide
that localized the mode can be considered similar to the per-
turbation successfully introduced to create high Q hetero-
structure PhC cavities.31 A second kind of localized states

has been identified as necklace states,32,33 for instance at
�=1490.3 nm and �=1491.84 nm: their particularity is to
exhibit an intensity pattern that begins at the input of the
waveguide but abruptly stops at a random position. Their Q
factors do not exceed 104. These states can be understood as
the onset of the weak localization regime in 1D systems that
results from the maximally crossed diagrams in the mean-
field perturbation calculation,2 while they are responsible for
enhanced backscattering in 2D and 3D.

The spatial frequency spectrum observed in the k space, is
composed of a main sharp peak in the dispersive fast light
regime, as anticipated in the Fig. 1. This peak exhibits a
positive first-order dispersion, in line with a forward propa-
gating wave as shown in the 2D map of the angular spec-
trum. The low intensity symmetric trace comes from the
back reflection at the cleaved facet of the output waveguide.
When the frequency � corresponds to the “renormalized”
dispersive regime,18 where the far-field peak broadens, the
back-reflection contribution vanishes in favor of speckles
contribution.34 Backscattering effects inside the PhC wave-
guide are not significantly observed in this regime. In the
pure diffusive regime, the spatial frequency spectrum exhib-
its speckles with an approximately constant mean level over
the spatial frequency bandwidth. Some residual correlations
can still be observed in the 2D map representation for this
regime as revealed by several lines that follow the same dis-
persion trend as the dispersive line of the underlying ideal
structure. The transition between the different propagation
regimes is not steep and these regimes can coexist inside a
given angular frequency bandwidth.

C. Comparison between the transmissions and
the dispersion properties

In order to correlate the dispersion properties with the
wave transport properties, the dispersion curve ��k�, the total
intensity IS��� of the emission scattered from the surface
along the waveguide as well as the transmitted intensity from
the input to the output port of the waveguide I��� are pre-
sented in Figs. 4 and 5 for two different waveguides of the
same length: the first �Fig. 4� has a large group-velocity cut-
off vg min=c /15 and a large bandwidth �u=9�10−4 for the
diffusive regime while for the second, a lower velocity can
be assessed vg min=c /25 and �u=6�10−4 �see Fig. 5�. These
differences evidence that the unintentional amount of disor-
der is lower for the second waveguide due to the fabrication
process. Note that each case corresponds to only one realiza-
tion of the disorder of the dielectric map. As a result no
comparison of these two structures can be carried out in or-
der to guess some hypothetical specificity of the disorder in
one or the other. In both cases, the frequency bandwidths
corresponding to the pure dispersive regime and the pure
diffusive regime are highlighted in light gray and dark gray
shades, respectively. The intermediate gray level region
points out the frequency range where the dispersion curves
starts to deviate from the theoretical dispersion curve of the
underlying ideal structure. The theoretical curve is the out-
come of a calculation based on the guided mode expansion
model.35

FIG. 3. �Color online� Scanning of the light transport regimes
along the dispersion curve. Left: the different light propagation re-
gimes in the W1 photonic crystal waveguide highlighted with the
real-space images of the radiated infrared field. Right: the corre-
sponding 2D map representation of the dispersion diagram �at the
bottom� as well as some of the angular spectrum profiles �at the
top�. The 2D representation consists in stacking the angular spectra
measured at different frequencies. The position of the intensity
maximum �color coded� reproduces the dispersion curve.
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To summarize, in the pure dispersive regime the far-field
spectrum consists of a sharp peak that follows the variation
of the dispersion curve of the ideal structure. In the renor-
malized regime, the far-field peak broadens, the correspond-
ing dispersion curve differs from the ideal one, with in
particular a lower group velocity lower, and a diffusive
contribution shows up. In the pure diffusive regime, the peak
that allows us to determine the dispersion curve disappears
and the far-field spectrum becomes a speckle pattern. As a
result, no dispersion curve can be retrieved, whereas the in-
line transmission is still efficient. Notes that the difference in
the out-of-plane losses between the two waveguides �Figs. 4
and 5� is negligible in the fast light regime, although that the

dispersive properties clearly indicate a difference in the
amount of disorder. This implies that the in-plane propaga-
tion properties are more sensitive to the residual disorder
than the out-of-plane scattering, in line with the recent theo-
retical results published in Ref. 36.

The direct measurement of the dispersion curve clearly
shows that the lower achievable group velocity is limited to
around c /25 in W1 waveguides subject to typical residual
disorder, which agrees with recent investigations based on
interferometric techniques.37–39 A striking features in the
evolution of the dispersive part of the field is its steep
extinction. This contrast with the progressive linewidth
broadening at the band edge expected when the disordered

FIG. 4. �Color online� From left to right: experimental dispersion curve �black line�, total intensity scattered from the surface of the
waveguide at different normalized frequencies u, in-line transmission and the 2D map representation of the unfolded dispersion diagram for
a W1 waveguide with lattice constant a=440 nm and filling factor f =0.295. The dotted line on the left panel corresponds to the theoretical
dispersion curve calculated with the guided mode expansion method. The dispersive regime and the diffusive regime are highlighted in light
and dark gray, respectively.

FIG. 5. �Color online� Same as Fig. 4 for a W1 waveguide with a shorter lattice constant a=420 nm.
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potential and the physical origin of the band edge are
uncorrelated.40,41 Such an effect for the W1 band edge is
directly related with the particular spatial frequency power
spectrum S�k� associated with the residual lattice disorder.
The S�k� distribution is mainly centered around wave vectors
equal to the PhC reciprocal wave vectors.42 As a result, when
the wave number scales with spatial frequencies located in-
side the bandwidth of S�k� at half maximum, the coupling of
the forward and backward propagating fields located near k
=−� /a and k=+� /a, respectively, takes place. Based on this
interpretation, the impact of the disorder can be partly over-
come with PhC designs where the slow region of the disper-
sion curve �vg�c /150� is located sufficiently far away from
the Brillouin-zone boundaries, such as in coupled-cavity
waveguides where group indices larger than 150 have been
reported.43–45

The second major striking result confirms the consistency
of our interpretation: the light transmission through the
waveguide is still large in the Pure diffusive regime, espe-
cially near the transition where the dispersive part disappears
and where no dispersion relation ��k� exists anymore. This
regime, where the light transport cannot be quantified by the
group velocity vg, is characterized by large fluctuations in the
transmitted and scattered intensities.

The perturbative approach is convenient to describe the
corresponding intensity transport as the result of multiple-
scattering events. It relies however on the eigenstates of the
ideal waveguide. In contrast, the present experimental ap-
proach allows us to directly measure the spatial frequency
spectrum of the actual eigenstates of the disordered dielectric
map. These eigenstates exhibit complex wave-vector distri-
butions in k space, especially in the slow light regime. In
such a regime, the speed of propagation of a light pulse
depends on the correlations between the different k-space
spectra inside the angular frequency bandwidth of the
incoming pulse. The main correlation effects, that govern
the evolution of a wave packet, are included in the
two-frequency mutual coherence function ��r ,� ,��
= �u�+��/2�r�u�−��/2

� �r��,46 where u��r� is the complex ampli-
tude of the field. When vg0 enters the slow light regime,
correlations between the k-space spectra of the eigenstates
are strongly affected: the concept of group velocity, where
the correlations are maximal, loses its meaning, even before
the onset of light localization. Nevertheless, the presence of
correlations among the spatial frequency spectra still defines
a diffusive regime with a transport velocity vE. With the data
stemming from interferometric methods based on Fabry-
Perot oscillations,11,12 we speculate that these correlations
can still produce a fringe pattern, albeit with a low degree of
visibility, like in low coherence interference experiments. In
this case, vg is not expected to be the relevant parameter
associated to this fringe pattern, leading possibly to spurious
evaluation and overestimated group indices ng=c /vg. This
situation strongly supports the need of a truly experimental
determination of the dispersion curve, as presented here, in
order to unambiguously settle the lowest achievable group
velocity in a given slow light structure and a given techno-
logical degree of perfection.

IV. CONCLUSION

In conclusion, the presence of residual disorder generates
different light transports near a band edge depending on the
value of the group velocity of the underlying ideal structure.
In particular, a light transport regime associated with a con-
tinuous transmission band is present even when the disper-
sion curve vanishes. Therefore, a careful distinction between
vg and vE is required to determine the actual slow-down
capability of a specific device for data information manage-
ment. The direct imaging of the k space in the far field is a
reliable approach in order to investigate the lowest group
velocity achievable in a photonic structure. Finally, in the
same spirit as the investigation of the disorder with matter
waves,47,48 our approach can be advantageously extended for
studying the interplay between disorder and nonlinear inter-
action, by incorporating for instance quantum wells in the
core of the waveguide. Such an approach can also be advan-
tageously extended to 2D systems.49
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APPENDIX: RELATIONSHIP BETWEEN THE SELF-
ENERGY AND THE GROUP VELOCITY

In the mean-field calculation of the modal dispersive
properties, we assume that the fluctuating part ��r�� of the
dielectric constant resulting from the disorder is a centered
homogeneous random function whose correlation function is
expressed as

���r����r�� �� = �2 exp�	r − r�	/�� = ���	r − r�	� �A1�

with � the correlation length and �� the correlation function.
Within the tight-binding model, the dispersion curve of the
mode is given by

���k�/c�2 = ��m/c�2 + 2T cos�k�� = ��0/c�2, �A2�

with �m the mean frequency of the band, T the transfer in-
tegral, and � the period of the 1D chain. The Green’s func-
tion of the unperturbed Helmholtz equation is given by

G�0��r,r�;k0
2� =

1

T

�x − 
x2 − 1�	l−m	

2
x2 − 1
�A3�

as calculated in Ref. 50, with k0=�0 /c the free space
wave number, the normalized energy of the band x= �k0

2

− ��m /c�2� /2T, r= l�� and r�=m��, and l and m integers.
As a result of the diagrammatic method, the self-energy can
be expressed as


�k� = �2k0
4FT�G�0��	r − r�	����	r − r�	�� , �A4�

where FT� . . . � stands for Fourier transform. With the hypoth-
esis ���, we find
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�k� =
�

�
�

�2��0/c�4

T
x2 − 1
. �A5�

In addition the group velocity can be simply linked to the
normalized energy as follows:

vg0 = � i
T�c


��m/c�2 + 2T cos�k��

x2 − 1. �A6�

With the assumption 2T��m /c, this last expression can
be further simplified as vg0� � i T�c

��m/c�

x2−1, which provides

the intended result,


�k� = �
�2c��0/c�4�

��m/c�vg0
i � �

�2c��m/c�3�

vg0
i . �A7�

From this tight-binding approximation, the dispersion ef-
fects are included in the self-energy via vg0. By taking the
Fourier transform of the Dyson equation, the dispersion re-
lation defined as the poles of the Green’s function of the
disordered system is given by:

x − cos�k�� −
1

2T

�k,x� = 0. �A8�

This equation points out that the deviation of the disper-
sion curve from the ideal case is contained in the self-energy
whose value diverges near the band edges, i.e., at x=0 or
vg0=0. It also implies that the influence of the residual dis-
order increases when either the bandwidth B=4T or the
group velocity vg0 decrease.

1 A. Ishimaru, Wave Propagation and Scattering in Random Me-
dia �Academic Press, New York, 1978�, Vols. 1 and 2.

2 P. Sheng, Introduction to Wave Scattering, Localization, and Me-
soscopic Phenomena �Academic Press, Boston, 1995�.

3 H. C. van de Hulst, Multiple Light Scattering �Academic Press,
New York, 1980�, Vols. 1 and 2.

4 M. P. Van Albada and A. Lagendijk, Phys. Rev. Lett. 55, 2692
�1985�.

5 P.-E. Wolf and G. Maret, Phys. Rev. Lett. 55, 2696 �1985�.
6 S. John, Phys. Rev. Lett. 58, 2486 �1987�; Phys. Today 44 �5�,

32 �1991�; Comments Condens. Matter Phys. 14, 193 �1988�.
7 A. F. Koenderink and W. L. Vos, J. Opt. Soc. Am. B 22, 1075

�2005�.
8 C. Toninelli, E. Vekris, G. A. Ozin, S. John, and D. S. Wiersma,

Phys. Rev. Lett. 101, 123901 �2008�.
9 S. Mookherjea and A. Oh, Opt. Lett. 32, 289 �2007�.

10 N. Le Thomas, V. Zabelin, R. Houdré, M. V. Kotlyar, and T. F.
Krauss, Phys. Rev. B 78, 125301 �2008�.

11 M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi,
and I. Yokohama, Phys. Rev. Lett. 87, 253902 �2001�.

12 Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. NcNab,
Nature �London� 438, 65 �2005�.

13 H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Kor-
terik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, Phys. Rev.
Lett. 94, 073903 �2005�.

14 M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, L. C.
Andreani, M. Belotti, and Y. Chen, Phys. Rev. B 72, 125322
�2005�.

15 C. E. Finlayson, F. Cattaneo, N. M. B. Perney, J. J. Baumberg,
M. C. Netti, M. E. Zoorob, M. D. B. Charlton, and G. J. Parker,
Phys. Rev. E 73, 016619 �2006�.

16 B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, Phys. Rev.
B 78, 245108 �2008�.

17 R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, Phys. Rev.
Lett. 101, 103901 �2008�.

18 U. Frish, in Probabilistic Methods in Applied Mathematics, ed-
ited by A. T. Bharucha-Reid �Academic, New York, 1968�, Vol.
1, pp. 75–198.

19 B. Shapiro, Phys. Rev. Lett. 57, 2168 �1986�.
20 D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Na-

ture �London� 390, 671 �1997�.
21 E. Akkermans and G. Montambaux, Mesoscopic Physics of Elec-

trons and Photons �Cambridge University Press, Cambridge,
UK, 2006�.

22 M. C. W. van Rossum and T. M. Nieuwenhuizen, Rev. Mod.
Phys. 71, 313 �1999�.

23 B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip,
Phys. Rev. B 45, 12233 �1992�.

24 J. Topolancik, B. Ilic, and F. Vollmer, Phys. Rev. Lett. 99,
253901 �2007�.

25 A. Talneau, K. H. Lee, S. Guilet, and I. Sagnes, Appl. Phys. Lett.
92, 061105 �2008�.

26 N. Le Thomas, R. Houdré, M. V. Kotlyar, D. O’Brien, and T. F.
Krauss, J. Opt. Soc. Am. B 24, 2964 �2007�.

27 N. Le Thomas, R. Houdré, L. H. Frandsen, J. Fage-Pedersen, A.
V. Lavrinenko, and P. I. Borel, Phys. Rev. B 76, 035103 �2007�.

28 J. W. Goodman, Speckle Phenomena in Optics �Roberts, Green-
wood Village, CO, 2007�.

29 The scattering process that is associated with this spatially inho-
mogeneous emission occurs mainly at the nonideal row of holes
bordering the line defect.

30 The images in Fig. 3 are typical illustrations of light transport
independent of the material used �silicon or indium phosphide
waveguide� or technology �e-beam lithography or deep UV li-
thography�, as we know from our several previous experiments.

31 B.-S. Song, S. Noda, and T. Asano, Science 300, 1537 �2003�.
32 J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L.

Pavesi, Phys. Rev. Lett. 94, 113903 �2005�.
33 P. Sebbah, B. Hu, J. M. Klosner, and A. Z. Genack, Phys. Rev.

Lett. 96, 183902 �2006�.
34 In the angular spectrum C, the small line at positive k is not

related to the back reflection as confirmed by its slope on the 2D
map of the angular spectrum.

35 L. C. Andreani and D. Gerace, Phys. Rev. B 73, 235114 �2006�.
36 S. Mazoyer, J. P. Hugonin, and P. Lalanne, Phys. Rev. Lett. 103,

063903 �2009�.
37 N. Ozaki, Y. Kitagawa, Y. Takata, N. Ikeda, Y. Watanabe, A.

Mizutani, Y. Sugimoto, and K. Asakawa, Opt. Express 15, 7974
�2007�.

38 A. Parini, P. Hamel, A. De Rossi, S. Combrié, N.-V.-Q. Tran, Y.

LIGHT TRANSPORT REGIMES IN SLOW LIGHT… PHYSICAL REVIEW B 80, 125332 �2009�

125332-7



Gottesman, R. Gabet, A. Talneau, Y. Jaouën, and G. Vadalà, J.
Lightwave Technol. 26, 3794 �2008�.

39 M. Patterson, S. Hughes, S. Combrié, N.-V.-Quynh Tran, A. De
Rossi, R. Gabet, and Y. Jaouën, Phys. Rev. Lett. 102, 253903
�2009�.

40 V. Savona, J. Phys.: Condens. Matter 19, 295208 �2007�.
41 R. Zimmermann, E. Runge, and V. Savona, in Theory of Reso-

nant Secondary Emission: Rayleigh Scattering Versus Lumines-
cence Quantum Coherence, Correlation, and Decoherence in
Semiconductor Nanostructures, edited by T. Takagahara �Aca-
demic, New York, 2003�, pp. 89–159.

42 D. Nau, A. Schönhardt, Ch. Bauer, A. Christ, T. Zentgraf, J.
Kuhl, M. W. Klein, and H. Giessen, Phys. Rev. Lett. 98, 133902
�2007�.

43 J. Jágerská, N. Le Thomas, V. Zabelin, R. Houdré, W. Bogaerts,
P. Dumon, and R. Baets, Opt. Lett. 34, 359 �2009�.

44 M. Notomi, E. Kuramochi, and T. Tanabe, Nat. Photonics 2, 741
�2008�.

45 D. P. Fussell, S. Hughes, and M. M. Dignam, Phys. Rev. B 78,
144201 �2008�.

46 G. Samelsohn and V. Freilikher, Phys. Rev. E 65, 046617
�2002�.

47 J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,
D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect,
Nature �London� 453, 891 �2008�.

48 R. C. Kuhn, O. Sigwarth, C. Miniatura, D. Delande, and C. A.
Müller, New J. Phys. 9, 161 �2007�.

49 N. Le Thomas, R. Houdré, D. M. Beggs, and T. F. Krauss, Phys.
Rev. B 79, 033305 �2009�.

50 E. N. Economou, Green’s Functions in Quantum Physics, 2nd
ed. �Springer-Verlag, Berlin, Heidelberg, New York, 1979�.

LE THOMAS et al. PHYSICAL REVIEW B 80, 125332 �2009�

125332-8


