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Wave packet dynamics in semiconductor quantum rings of finite width
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The time evolution of a wave packet injected into a semiconductor quantum ring is investigated in order to
obtain the transmission and reflection probabilities. Within the effective-mass approximation, the time-
dependent Schrodinger equation is solved for a system with nonzero width of the ring and leads and finite
potential-barrier heights, where we include smooth lead-ring connections. In the absence of a magnetic field, an
analysis of the projection of the wave function over the different subband states shows that when the injected
wave packet is within a single subband, the junction can scatter this wave packet into different subbands but
remarkably at the second junction the wave packet is scattered back into the subband state of the incoming
wave packet. If a magnetic field is applied perpendicularly to the ring plane, transmission and reflection
probabilities exhibit Aharonov-Bohm (AB) oscillations and the outgoing electrons may end up in different
subband states from those of the incoming electrons. Localized impurities, placed in the ring arms, influence
the AB oscillation period and amplitude. For a single impurity or potential barrier of sufficiently strong
strength, the period of the AB oscillations is halved while for two impurities localized in diametrically opposite
points of the ring, the original AB period is recovered. A theoretical investigation of the confined states and
time evolution of wave packets in T wires is also made, where a comparison between this system and the

lead-ring junction is drawn.
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I. INTRODUCTION

Aharonov-Bohm (AB) (Ref. 1) effect is a fundamental
problem at the heart of quantum mechanics. This effect can
be observed in an interference experiment, e.g., as an oscil-
lating current flowing through a loop that is threaded by a
magnetic flux. It was first observed in a metal ring? and
subsequently in a two-dimensional electron-gas ring® and has
been intensively studied over the years both experimentally
and theoretically. Due to recent advances in growth of semi-
conductor structures and nanolithography it has become pos-
sible to fabricate well-defined nanoring structures of high
quality with controllable dimensions.* Recently, Martins et
al’> combined scanning gate microscopy experiments and
simulations to demonstrate low-temperature imaging of the
electron probability density in InGaAs/InAlAs quantum
rings. It was also shown that a tip-induced modulation of the
conductance arises from electron wave-function interfer-
ences. A theoretical analysis of these AB rings was made
later, by Pala et al.,5 where a generalized Kramers-Kronig
relation was demonstrated between the local density of states
and the conductance variation due to the scanning tip. Van
der Wiel et al.” have studied the AB effect in a mesoscopic
semiconductor ring with tunnel barriers defined by metallic
gates on each ring arm, which enabled them to apply a well-
defined potential difference between the two halves of the
ring. By tuning the voltage, they were able to control the
amplitude and phase of the AB oscillations in the conduc-
tance. Interference effects of single electrons in a solid-state
environment were also observed experimentally by Gustavs-
son et al.,} the time-resolved detection of electrons passing
through a double quantum dot embedded in an Aharonov-
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Bohm interferometer was demonstrated, where it was ob-
served that, even though the electrons travel one-by-one
through the system, a well-pronounced AB interference is
still built up.

In a previous theoretical work by Szafran and Peeters,’ it
was shown that the Lorentz force leads to an asymmetric
injection of the electrons into the ring arms which resulted in
a smaller interference effect and, consequently, to a reduction
in the amplitude of the AB oscillations.!? In Refs. 9 and 10,
the leads and the ring were effectively one dimensional, i.e.,
the magnetic field cannot deflect the electron wave functions
in the leads and the ring, and the Lorentz deflection is only
active in the junction region. Furthermore, the electron was
locked in the lowest subband and higher subbands were not
taken into account.

In the present paper, we extend Refs. 9 and 10 as follows:
(1) we include the finite width of the leads and ring, (2) we
do not limit the number of subbands and, therefore, allow
transitions between subbands, and (3) the lead-ring connec-
tion is modeled more realistically, i.e., the broadening of the
junction is included, which is unavoidable in a real experi-
ment. We found that this adiabatic connection between the
leads and the ring has several consequences: (i) it influences
strongly the injection efficiency from the lead into the ring,
(i1) it leads to additional interferences, (iii) it acts as a scat-
tering center inducing transitions between the different sub-
bands, and (iv) it leads to localized and resonant states in the
junction. The finite width of the ring and the leads results in
subband selection effects which are absent in the pure one-
dimensional models. Although most of the experiments up to
now consider rings with typical radii and widths of order 100
nm, the present work is focused on narrower systems, where
the separation between subbands is larger, in order to get a
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FIG. 1. (Color online) Potential profiles for (a) rings and (b) T
wires, considering (top) right-angle and (bottom) smooth connec-
tions. The smooth connections are described by circles of radius
R,=300 A. The width in both systems is W=100 A and the aver-
age radius is R,,=600 A. The potential is defined as V(x,y)=0
inside ring and channel regions (blue) and V, outside (white).

better control on how many subbands are accessible for the
wave packets.

Our theoretical approach follows the one of Refs. 9 and
10, where we inject a Gaussian wave packet into the ring
from the left lead in a particular subband and calculate nu-
merically “exact” (i.e., the results can be calculated for a
given accuracy) its time evolution by solving the time-
dependent Schrodinger equation. This approach allows us to
find the transmission and reflection coefficient and also pos-
sible bound states in the junctions.

The paper is organized as follows: in Sec. II, we present
our theoretical model and discuss the numerical technique to
solve the time-dependent Schrodinger equation. Symmetric
rings are discussed in Sec. III. The influence of asymmetry
between the upper and lower arms of the ring on the AB
effect is studied in Sec. IV by inserting a Gaussian potential
barrier or an impurity in the ring arm. Our conclusions are
presented in Sec. V. The bound and resonant states in the
lead-arm junction are investigated in the Appendix.

II. THEORETICAL MODEL

Our system consists of a planar quantum ring and chan-
nels for electron injection so that the motion of the electrons
is constrained to be in the (x,y) plane (see Fig. 1). The elec-
trons are considered within the effective-mass approximation
and they are confined by a step potential, i.e., V(x,y)=0
inside the quantum ring and leads, and V(x,y)=V, otherwise,
where V, is the conduction-band offset. In order to under-
stand the dynamics of a wave packet passing through a
channel-ring connection, we made also a brief study of a
T-shaped wire.

Figure 1 shows a schematic view of our (a) rings and (b)
T wires. The quantum ring is defined by two concentric
circles of radii R;=550 A and R,=650 A so that the average
radius of the system is R,,=(R;+R,)/2=600 A and the
width is W=100 A. The same width W is considered for the
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left and right leads. For T wires, all channels have the same
width W. Two different lead-ring connections will be studied:
(1) a right-angle connection and (2) a smooth (adiabatic)
connection. The smooth connections are described by circles
of radius R, which are tangent to the walls of the channels
and to the external circle of the ring. In the examples of Fig.
1 (bottom), the circles describing the smooth connections
have radius R,=300 A.
An electron confined in a quasi-one-dimensional channel
of width W has subband energy
272
Bk =B+
2m,

(1)

where EY)=n?72h2/2m,W2, if V, is very large (for our nu-
merical results we calculated E,(}’) numerically for finite V,
value). In our approach, we inject a Gaussian wave packet,
propagating in the x direction, from left to right,

1 -x)°
Hx,y) = ,—GXP{—%H@X}%@), (2)

o\N2
where ¢,(y) is the wave function of the nth eigenstate of the
quantum well in the y direction, and ki: \2m,e;/ 1%, with m,
and g; as the electron effective mass and kinetic energy, re-
spectively. The parameter o gives the width of the wave
packet, in the x direction.

The time evolution of the wave packet is studied by
means of the split-operator technique, which consists in
separating kinetic and potential terms in the time-evolution
operator,

iHAt
W(r,t+Af) = exp[— T] W(r,1)
= VA2 =T AR =T AT =iV (v 1)

+0(AP), (3)

where T, is the kinetic-energy operator for x(y) direction
and the error O(A#%) is a consequence of the noncommuta-
tivity of kinetic and potential terms.!" If a magnetic field is
present, an additional O(A#?) error appears in this expression
because of the position-dependent vector potential in the ki-
netic terms. The potential terms are directly multiplied by the
functions whereas the kinetic terms are rewritten in the Cay-
ley form'2 and a finite difference scheme is used to calculate
the derivatives.!>"'> The main advantage of this technique
lies in the separation of the kinetic terms for each direction;
this separation allows one to study a system of many degrees
of freedom without dealing with gigantic matrices; instead,
only a set of small matrices, one for each direction, appears
in this approach.

Special care has to be taken for the boundary conditions at
the entrance and exit of the leads. The main problem is that,
as the wave packet reaches the edges of the computational
box, it undergoes a spurious reflection, when one imposes
that the wave function is zero at the boundaries. One possible
way to overcome this problem is to consider a very long
channel so that the wave packet would take a long time to
reach the edge of the system, as was done in Refs. 9 and 10.
However, this would lead to large computational costs,
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hence, alternative ways to deal with this problem have been
developed. Kosloff and Kosloff'® suggested the use of ab-
sorbing (imaginary) potentials at the edges, in addition to the
real confinement potential of the system. Such an imaginary
potential gradually absorbs the wave function before it
reaches the edges, avoiding spurious reflection effects. Sev-
eral forms of imaginary potential has been suggested and
analyzed.'”!® Another interesting way to solve this problem
was suggested by Arnold et al.,'® where completely transpar-
ent discrete boundary conditions were developed, based on
the Laplace method for solving the time-dependent
Schrodinger equation. However, the method was developed
only for one-dimensional problems, using the Cayley form
and the Crank-Nicolson scheme. A generalization of this
method to two dimensions within the split-operator treatment
would be needed in our case. Therefore, in this paper we
considered the imaginary potential suggested by
Manolopoulos,20 which can be tuned to be free of reflections
on the edge of the system and also at the beginning of the
imaginary potential region, for a wide range of initial ener-
gies. This imaginary potential, which depends only on the
direction of propagation x, is given by

4 4
(c—f)f(cm)z}’ @

where a=1-16/c3, b=(1-17/c%)/c?, ¢=2.62206 and E,, is
the lowest electron energy allowed to be considered, which
can be calculated from Eq. (2.27) of Ref. 20 as

52 { c ]2
E in— ~ | ~, . 5 5
M m, | 2(xy —x) 8 )

for an imaginary potential localized between x; and x,. The
accuracy parameter o is chosen as 0.2, to minimize reflec-
tions at x;. The variable x depends on x as

Vi (%) = — iEmm[af— b +

xX= kain5/(x—x1), (6)

where  kp,=V2m,E;,/h%.  With these expressions, we
choose x, as the edge of the system and x;=420 A before
the edge, leading to a minimum energy E,;,~25 meV for
m,/my=0.041.

The transmission 7 and reflection R probabilities are cal-
culated by integrating the component of the probability cur-
rent in the direction of propagation, at some fixed points xp
and x;, localized in the right and left channels, respectively,

o0 400
Tzf dlf dyJ (xg,y,t) (7)
0 —o0
and
o 400
R=- f dtJ dny(xL’y’t)7 (8)
0 —00

where the x component of the probability current is defined
as
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h .0 a . e N
J ey, t)=—i— | V' =V -V —V" | + —A PV,
2m, ax ax m,

)

The time integrals in Egs. (7) and (8) are performed numeri-
cally up to a large value of time, in order to let the wave
packet pass entirely through the point where J, is measured.
We checked carefully that the sum of transmission and re-
flection probabilities is 7+R=1 with an accuracy of at least
0.1%. The wave packets passing through the points x and x;
travel in opposite directions, hence, a minus sign is put in the
expression for R [Eq. (8)]. The magnetic field is always con-
sidered perpendicular to the plane of motion, i.e., in the z
direction and the vector potential is taken in the Coulomb
gauge A=(-y,x,0)B/2.

In order to study the scattering of the electron into differ-
ent subbands, we project the wave function on the jth eigen-
state of the quantum well at a fixed point x;,

2

J dyW(x;,y,t) ;(y)

—o0

Pi(x;,1) = |<‘I’|¢]>|2 =

This is the probability to find the electron in the jth subband
at position x; per length in x direction. The contribution of
each subband state to the probability current can be calcu-
lated by

. . J
I (x,1) = - i—(P"f—P - P-—P’i‘>, (10)
2m, 0.

where the function Isj(x,t)=<¢j|‘1'> gives the part of the

time-dependent wave function which is in the jth subband.
The quantity

)= f ) dtd¥(x,.1) (11)
0

is the total (or time averaged) current in the jth subband
passing through the cross section of the channel at x=x,.

Noﬁce that, since the function Isj(x, t) is not normalized,
<J§’)> is not a probability and therefore, its value can be larger
than one. Finally, the time-dependent probability current at a
point x; is given by

+o0

J (x;,y,0)dy (12)

-0

JT(-xis t) =

and will help to understand the trajectory of the wave packet
through the channels. Notice, however, that the time-
dependent probability current J; defined in Eq. (12) mea-
sures only the propagation of a pulse in a system in the
absence of a bias between the leads, hence it is not related to
a steady-state current, but rather to a transient current, which
is different from the currents defined in previous papers,>!
which were obtained by means of Green’s functions.

With the present approach, we are also able to find bound
states, by propagating an arbitrary initial wave function in
the imaginary time domain.'3 Since any wave function can
be written as a linear combination of eigenstates
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W)= 2 a,e 5 D,), (13)
n=0

where @, and E, are, respectively, the eigenfunctions and
eigenenergies of the nth eigenstate. If one takes 7=it, with
T— o, the term corresponding to the ground state will domi-
nate over the others and the function must converge to the
ground state of the system as 7 increases. Excited states can
also be obtained by using Gram-Schmidt orthonormalization
by choosing as an initial wave-function one that is orthonor-
mal to the ground state. Consequently, the ground-state wave
function will be absent in the sum of Eq. (13), thus, the
lowest-energy term in the sum is E; and hence, the wave
function will converge to |®,) as 7— . To obtain ®,, one
starts with a function which is orthogonal to ®; and ®,, and
SO on.

III. SYMMETRIC RING

We used our model to study the quantum confinement and
the time evolution of a wave packet as described in the pre-
vious section, with xo=—1100 A, ¢=200 A, and n=1
(ground state for transverse motion) or 2 (first-excited state)
[see Eq. (2)], inside a InGaAs/InAlAs heterostructures,
where the conduction-band effective mass and band offset
are taken as m,=0.041 my and V,=600 meV, respectively.
For a channel with width W=100 A, this leads to subband
energies Eff’):53, 207, and 443 meV, for n=1, 2, and 3,
respectively. The corresponding values for V,— are 91.7,
366.8, and 825.3 meV. Notice that the results for finite V,
satisfies approximately E’~4EY) and EY) ~9EY,

A. Geometry-induced localized states

It is well known that a right-angle connection in T wires
leads to one, and only one, confined state.!3?% At the crossing
point, the confined state has a zero-point energy lower than
the ground-state energy of the quantum wells formed in the
leads, which then act like barrier potentials around the region
of the junction (see the Appendix for more details). Since the
connections between the leads and the ring are similar to
T-wire junctions, it is expected that two (degenerate), and
only two, confined states would be observed in the channel-
ring system, since, in this case, two connections are in-
volved, leading to symmetric and antisymmetric states. This
is observed, indeed, for simple channel-ring connections, as
shown in Fig. 2(a). No confined excited state is observed,
besides the practically degenerate antisymmetric state. The
binding energy of this degenerate state is found to be E
=46 meV, which is 7 meV lower than the ground-state en-
ergy of the quantum well mentioned earlier, EE)”)ZSS meV.

However, real systems have smooth connections, which
can result in several nondegenerate bound states. We found
that in this case, it is possible to have excited bound states
that are localized at the lead-arm crossing region, as illus-
trated in Figs. 2(b) and 2(c), where the wave functions for
the ground and second-excited states are shown, respectively,
for a smooth connection with R,=300 A.
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FIG. 2. (Color online) (a) Ground-state squared wave function
(ground and first-excited states are degenerate states with symmet-
ric and antisymmetric wave functions), for sharp channel-ring con-
nections. (b) Ground and (c) second-excited-states squared wave
functions, for smooth connections. Black lines illustrate the limits
of the channel-ring profiles.

B. Time evolution for B=0

Three wave packets were considered, with average kinetic
energies £;=70 meV, £,=120 meV, and £5=180 meV, and
¢,=1(y), i.e., localized in the lowest subband. The corre-
sponding average wave vector k is qualitatively illustrated
in Fig. 3, where the parabolic energy subbands of the quan-
tum well of width W created by the channels and ring arms
are also shown. For &3, we have deliberately chosen a value
larger than the energy of the second subband of the quantum
well, which is about 153 meV above the first subband. This
will allow us to observe the influence of this subband on the
wave packet and on the physical properties of the system as
well. As illustrated in Fig. 3, two values of k,, defined as k
and k(z), are possible for g3, one for each subband. Our re-
sults for &5 are for k(1> by default, except when explicitly
mentioned that we are dealing with k . Since we are con-
sidering a wave packet, the initial wave function does not
contain a single k, value but rather a distribution of k,’s
around k)(f), with width Ak,, as illustrated in the right part of
Fig. 3. This variation in k, yields an energy distribution AE,
as illustrated in Fig. 3. For an initial wave packet as given by
Eq. (2), the width in k, space can be easily obtained from a
Fourier transform of the wave function

Heoy) = S—ebetDnoe =722 () (14

2m
It is easily seen that in reciprocal space the squared wave
function is also a Gaussian but with a width proportional to
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FIG. 3. (Color online) Energy versus wave-vector k, diagram
for a quantum wire (solid curves). The average energies of the
considered three wave packets, £, &5, and &5 (thick dotted lines) are
indicated. The widths of k, and E distributions of the initial wave
packet €5 are represented by horizontal and vertical Gaussians, re-
spectively. The wave vector k( ) 1s related to the energy &5 of the
ground-state subband whereas k; is for the same energy but for the
first-excited subband.

1/ 0. For the parameters chosen in the present work, we ca cal-
culate from the full width at half maximum Ax= 2\2 In20
~470.96 A and Akx—ZVZ In2/0~0.011774 A~'. With the
later, we can calculate the width AE of the energy distribu-
tion of the wave packet

RAK+ Ak)? RAKY RPKAk,  RPAKS
( X X) — X + X X + X , (15)
2m, 2m, m, 2m,
where we identify ﬁ2k22/2me as the energy ¢; and
B2k Ak, RPAK
AE=—""—"+—. (16)
m, 2m,

From this expression and the value for Ak, mentioned previ-
ously, we obtain AE~72, 90, and 108 meV, for g;, &,, and
&3, respectively.

Solving the time-dependent Schrodinger equation gives us
W(x,y,t). The projections of the time-dependent wave func-
tion on the ground (black, P;) and first-excited (red, P,)
subband states of the channels were calculated numerically
as functions of time at three different points of the system:
x;=—1100 A (left channel), x,=0 A, (upper arm) and x,
=1100 A (right channel). The results are depicted in Figs.
4(a)-4(c), for &, €,, and &3, respectively. A few remarkable
facts are observed: (1) the electron is reflected and transmit-
ted through the channels in packages, which are a conse-
quence of the reflections at the lead-ring intersection points.
(2) The wave function in the left and right channels is re-
stricted to the lowest subband and thus has zero projection
over the first-excited state. Remarkably, inside the ring, the
wave function is partially scattered to the second subband.
For &5, the projection on the second subband can even be
dominant and larger than the projection on the ground state.
Although &, is below the second subband, there is still a
small nonzero projection P, on the second subband, due to
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FIG. 4. (Color online) Time evolution of the projection of the
wave function on the ground (black) and first-excited (red) sub-
bands of a quantum well of width W=100 ./DX, calculated at three
different locations: left channel, upper arm of the ring, and right
channel. The injected wave packet is in the lowest subband and has
average energy (a) €, (b) &,, and (c) &;. [see Fig. 3]

the wide distribution of k,’s of the initial wave functions.
Thus, the electron wave packet partly scatters to the second
subband at the first lead-arm connection but it scatters back
to the lowest subband at the second lead-arm connection,
leading to an outgoing wave function that fully resides in the
lowest subband. In Fig. 5, we consider a wave packet with
average energy &5 that is centered around kgz), in the second
subband, so that the projection P; is zero at both leads.
Again, the projections P; and P, are nonzero inside the
quantum ring arm. Although not shown in the figures, we
have also calculated the projections over the second-excited
state P; and we found zero for the three cases of energy,
inside the leads and the ring arms. However, as depicted in
Fig. 6, considering a wave packet in the second subband with
energy 430 meV, which is above the edge of the third sub-
band of the system, which is about 390 meV, the projection
P5 (blue) is nonzero inside the quantum ring arm. Notice that
the peaks of P, and P; are shifted to larger time as compared
to the peaks in P;. This time delay is a consequence of the
fact that ki1)>ki2 >k)(c3) so that the wave packets in higher
subbands move with lower velocity. These results clearly
show that, owing to the fact that we are dealing with a finite
width system, the wave function is not only allowed to re-
flect at the walls of the confinement potential of the ring and
channels but it is also allowed to access other subbands,
when it is inside the ring, as a consequence of scattering at
the arm-ring connections. At the connection between the in-
going lead and the ring the wave packet can scatter into other
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FIG. 5. (Color online) The same as Fig. 4(c) but now we con-
sider the wave packet with energy &3 to be in the second subband,
with wave vector k(32).

subbands if energy conservation is satisfied. When part of the
wave is scattered to the other subbands, a difference in phase
of 7 is picked up between the left- and right-going waves (as
viewed from the direction of the incoming wave) that leads
to a destructive interference at the outgoing lead.

Both characteristics can also be illustrated by the time
evolution of the contour plots of the squared wave functions.
They are shown in Figs. 7(a) and 7(b), for four different time
steps, starting with wave packets of energy &, and &,, respec-
tively. Figures 8(a) and 8(b) are for &5 in subbands kgl) and
k§2>, respectively. Right-angle (left panels) and smooth (right
panels) lead-ring connections were considered. For the
smooth case, the wave function exhibits a complicated inter-
ference pattern at the connections.

The presence of the packages observed in Fig. 4, due to
the reflections at the lead-ring intersection points, can be

0.6 T T T T T

<o
~

o
)

Sub-band projections (10°/A%)

o
o

upper arm]

0 200 400 600 800 1000 1200
t (fs)

FIG. 6. (Color online) Time evolution of the wave-function pro-
jections on the ground (black), first-excited (red), and second-
excited (blue) subband states of a quantum well of width W
=100 A, calculated at the upper arm of the ring, for a wave packet
in the second subband with energy 430 meV.
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FIG. 7. (Color online) Contour plots of the time evolution of the
squared wave function, for right-angle (left panels) and smooth
(right panels) lead-ring connections. The initial wave packet is in
the lowest subband with width 0=200 A and energy (a) &, and (b)
£5.

better understood if one looks at the time-dependent prob-
ability current in Fig. 9, which is calculated over the same
three points, x;, x,, and x,, where the wave-function projec-
tions were calculated previously, for &, (black, solid), &,
(red, dashed), and &5 (blue, dotted). It is easily seen that there
is more than one peak in the probability current in left and
right leads. At the left channel, the positive peak is due to the
incoming packet and the negative peaks are the reflected
waves, which are separated by a region of zero probability
current. This can also be understood from the time snapshots
of the electron density shown in Figs. 7 and 8. In the upper
arm of the ring, the probability current has both positive and
negative peaks, meaning that the wave function traveled
back and forth inside the ring arms. At the right lead, more
than one positive peak is observed. This effect can be under-
stood if one analyzes the trajectory of the wave packets
through the system; the parts of the wave function which
come from the first junction and travel through the upper and
lower arms of the ring interfere at the second junction, and
from this interference, part of the wave function is transmit-
ted to the right channel, giving a contribution to the trans-
mission probability while the other part travels back through
the arms to the first junction (see Figs. 7 and 8). Back at the
first junction, these waves interfere again, resulting in a wave
that is transmitted into the left channel, hence, contributing
to the reflection probability, and another pair of waves travels
through the upper and lower arms of the ring toward the
second junction again, and so on.

We estimate the times for a classical particle to perform
these trajectories and found good agreement with our quan-
tum simulations. For &, (black-solid lines) in Fig. 9, the first
negative peak in the left channel and the first positive peak in

125331-6



WAVE PACKET DYNAMICS IN SEMICONDUCTOR...

~

(a) b)

t=40fs

-
Il
IS
=)
74
-
|
o
S
@&
-
I
I
=)
@

50

Q
Q
@
Q

=50

t=80fs t=280fs t=280fs t=80fs

501

-50

Q
Q
@
Q

y (&)

t=120fs t=120fs

t=120fs

-
[
—
()
S
@

501

2
S
Q
Q

=501

t=200 fs t=200 fs

t=200 fs t=200 fs

501

5
5
Q
Q

=50

I
S
S
S

500 500 500
x (A) x (A) x (A) x (A)

I
S
S
S
.
I
S
S
S
I
S
S
S

500

FIG. 8. (Color online) Contour plots of the time evolution of the
squared wave function, for right-angle (left panels) and smooth
(right panels) lead-ring connections. The initial wave packet has
width =200 A, energy &3, and is in the (a) lowest subband with
v&g)ve vector kgl), and in the (b) second subband with wave vector
k3.

the right channel are found at 128.8 and 371.8 fs whereas for
a classical particle, the reflected and transmitted times are
129.0 and 372.3 fs, respectively. The first positive peak in the
upper arm of the ring is observed at 186.1 fs, which agrees
with the time for a classical electron to reach this point,
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FIG. 9. (Color online) Time-dependent probability current, cal-
culated at three points: left channel, upper arm of the ring, and right
channel, for wave packets with energies &, (black, solid), &, (red,
dashed), and &3 (blue, dotted) in the case of sharp lead-ring
connections.
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FIG. 10. (Color online) Transmission probabilities T for wave
packets with energies &; (black, dashed) and &, (red, dotted) in the
first subband, and with energy &5 in the first (blue, solid) and second
(green, dashed-dotted) subbands, as functions of the magnetic field,
for (a) right-angle and (b) smooth lead-ring connections.

estimated as 186.2 fs. For the second reflected and transmit-
ted packets, i.e., second negative (positive) peak in left
(right) channel, which occur, respectively, at 594.8 and 832.2
fs, the times for a classical particle are slightly larger, 615.5
fs for reflection and 858.7 fs for transmission. Besides, the
time for the second (negative) peak in the upper arm is 413.0
fs while for a classical particle, this time is estimated as
429.4 fs. Contrarily, considering a wave packet with energy
&5, the times for reflected (transmitted) classical particles are
found as 98.6 (284.3) fs, which are lower than the values
found for the first negative (positive) peak in left (right)
channel, which occurs at 112.4 (318.0) fs. The upper arm
first peak is at 161.0 fs while for a classical particle, this time
is also lower, 142.2 fs.

The snapshots shown in Figs. 7 and 8 illustrate clearly: (i)
wave interference at the junctions, (ii) the transmission of the
injection lead into the arms of the ring and the backscattering
into the leads, and (iii) the radial distribution of the electron
in the ring arm, i.e., with a maximum in the center of the
channel for an electron wave packet in the lowest subband or
a two-peak radial structure in case of an electron propagating
in the second subband [see, e.g., =120 fs pictures in Figs.
7(b), 8(a), and 8(b)]. In the latter case, the maxima of the
wave function traces the classical path of an electron bounc-
ing off the inner and outer ring boundaries.

C. Time evolution for nonzero B

The interference of the electron wave packet can be influ-
enced by threading a magnetic flux through the ring. Figure
10 shows the calculated transmission probability 7 as a func-
tion of the applied magnetic field, for the previous three val-
ues of the wave packet energy. The well-known Aharonov-
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Bohm periodic oscillations in 7 are clearly seen and the
amplitude of such oscillations decreases as the magnetic field
increases, an effect that is due to the imbalance of injection
into the upper and lower arms of the ring as a consequence of
the Lorentz force.’

Comparing the results for right-angle and smooth lead-
ring connections in Figs. 10(a) and 10(b), respectively, we
notice that, depending on the energy of the wave packet, the
transmission probability and the amplitude of the AB oscil-
lations can be either increased or reduced by the smoothness
of the connection. This is surprising because one would in-
tuitively expect that a smooth connection should always in-
crease the transmission probability since the effective area in
the junction is larger for the smooth case. However, one must
remember that the lead-ring junction acts like a confining
potential, as discussed in Sec. III A, where quantum reso-
nance effects are present for some electron energies, and the
existence of a smooth junction changes this resonances spec-
trum, which suggests that both the wave packet energy and
the smoothness of the junction must play an important role in
the transmission probability. This effect is discussed in more
details in the Appendix, for a T-wire junction.

For &5 in the first subband, the oscillations in the trans-
mission probability have a very small amplitude and the av-
erage transmission in both cases of sharp and smooth junc-
tions are practically the same. In the case of a sharp junction,
the amplitude of the AB oscillations is very weak and more
minima are observed as compared to the results for &; and
&,. The fact that in this case the transmission probability is
far from 0 at ®=(n+1/2)¢,, where ¢, is the flux quantum
(although it shows a small minimum), as one would expect
for an ideal QR, suggests that the interference that occurs in
ideal rings, which is responsible for 7=0 at these points, is
not completely destructive in our system, specially for &s.
Thus, for these values of @, part of the wave packet under-
goes destructive interference, which reduces the transmission
probability and results in a small minimum but the other part
continues and circles again over the ring so that a new inter-
ference occurs at the other junction, resulting in a doubling
of the AB frequency or equivalently minima for @
=(n+1/2)¢y/2. This behavior can also be observed in Fig.
11(a), where the transmission probability 7 is shown as a
function of the magnetic field for three values of wave packet
energy, £=140 (black, dashed), 160 (red, dotted), and 170
(blue, solid) meV. The latter two energy values are higher
than the second subband energy. For e=140 meV, T exhibits
the common AB oscillations, but for the other energies, the
oscillation can be described by a superposition of two pat-
terns of oscillations, one with minima at ®=(n+1/2) ¢, and
the other at ®=(n+1/2)¢,/2 in case of sharp lead-ring con-
nection. For smooth lead-ring connections, this effect is not
observed, as shown in Fig. 11(b) because of a stronger inter-
ference effect at the junctions.

If a B=0.18 T magnetic field is applied Perpendicular to
the ring plane, as shown in Fig. 12(a) for k31) , the outgoing
wave function in the right lead exhibits two peaks. From this
result, one can infer that the outgoing wave function has a
large projection P, in the right channel, i.e., it can occupy the
second subband in this channel. Conversely, if we inject a
wave packet in the second subband with wave vector kff), as
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FIG. 11. (Color online) Transmission probabilities T for wave
packets injected in the lowest subband with different energies &
=140 (black, dashed), 160 (red, dotted), and 170 meV (blue, solid),
as functions of the magnetic field, considering (a) right-angle and
(b) smooth with R;=300 A lead-ring connections.

shown in Fig. 12(b), the outgoing wave function has a maxi-
mum in the center of the lead, which suggests that the pro-
jection P; is large in the right lead for this value of magnetic
field. This is an effect that was absent when B=0. For non-
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FIG. 12. (Color online) Contour plots of the time evolution of
the electron density, for right-angle (left panels) and smooth (right
panels) lead-ring connections, in the presence of an applied mag-
netic field B=0.18 T, perpendicular to the ring plane. The initial
wave packet has width 0=200 A, energy &5 and is in the (a) lowest
subband with wave vector kgl), and in the (b) second subband with
wave vector kgz).
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FIG. 13. (Color online) Contributions (Jy)) of the ground (black,
dashed), first-excited (red, dotted), and second-excited (green,
dashed-dotted) subband states to the transmission current, as func-
tions of the magnetic field B, calculated at the right channel, con-
sidering wave packets with energy &5 in the (a) first and (b) second
subband, and (c) with energy £=430 meV in the second subband.
The blue solid line is the sum of the contributions due to the three
subband states, <J)(C])>+(J)(c2) >+<J_(¥3)).

zero magnetic field the projection P, at the right channel for
wave packets with energies €, and &, are also nonzero but
they become strongly dominant over P; only for &, and &5.
Notice, however, that for &,, as well as for g, the transmis-
sion probability at this magnetic field intensity is almost zero
[see Fig. 10(a)] so that this effect is better observed for &5.
As the magnetic field increases, P, (P;) at the left channel
undergoes just very small fluctuations, even for &5 in the first
(second) subband.

The time-averaged contributions (Jff)) of the states of the
first (black, dashed), second (red, dotted), and third (green,
dashed-dotted) subbands to the probability current are plot-
ted in Fig. 13 as a function of the magnetic flux, for wave
packets with energy &5 in the first (a) and second (b) sub-
bands, and with energy 430 meV in the second subband (c).
Since in (a) and (b) the wave packet energy is much lower
than the third subband edge, the contribution (]f)) of this
state to the current is almost zero, then, it is not shown. The
sum of (JY) for these three subband states is shown as a blue
solid line, which mimics the transmission probabilities
shown in Fig. 10(a) for &3, in a qualitative way. In Fig. 13(a)
we observe that, considering a wave packet of energy &5 in
the first subband, for a magnetic field corresponding to a flux
equal to an integer (half integer) of the quantum flux, the
outgoing wave function on the right channel is predomi-
nantly in the first (second) subband. Similar conclusions can
be drawn by analyzing the results in Figs. 13(b) and 13(c). In
other words, these effects suggest that, besides the well-
known periodic AB oscillations in transmission probabilities,
observed in Fig. 10, when we consider a wave packet with
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energy higher than the second subband edge, the projections
of the outgoing wave packet over the subbands states in the
right lead also present AB oscillations with period ¢y=nh/e.
These results were obtained considering a right-angle lead-
ring connection but similar effects are also observed for
smooth junctions (not shown in this work).

It is worthy to point out that if one considers a strong
magnetic field or a wide lead, a mixing of subband states is
also expected in the leads because of the magnetic force,
which can deflect the wave function and make it move in a
zigzag trajectory along the channels. This effect could not be
observed in previous theoretical works,”!? where the travel-
ing wave packet was described as a sequence of Gaussian
basis functions centered along the same axis so that the mag-
netic force is not active in the leads and hence, the magnetic
field could not deflect the wave function in the leads. How-
ever, for our finite width channels the magnetic force is ac-
tive in the leads. Yet, for the weak magnetic fields we have
considered so far, our channels are narrow enough to sup-
press the deflection of the wave function due to the magnetic
field, and the period of a possible zigzag trajectory of the
wave packet would be much longer than the leads extent.

IV. ASYMMETRIC RING: EFFECTS OF GAUSSIAN
POTENTIALS AND IMPURITIES

As discussed in Sec. III C, in the absence of a magnetic
field and when the wave packet is injected in a single sub-
band, after it passes through the first lead-ring junction, it is
scattered to other accessible subband states. However, as it
reaches the second lead-ring junction, a completely destruc-
tive interference occurs for these other subband states so that
the wave function leaves the ring in the initial subband state.
This scenario no longer holds when a magnetic field is
present and the outgoing wave function can be distributed
over several subband states in the right lead. Actually, for
$=(n+1/2)¢, (n=integer), the AB effect is responsible for
a completely destructive interference of the initial subband
state of the wave function, consequently, the backscattered
wave function has no projection over this state and is there-
fore situated in the other subband states, as observed in Fig.
13. Any extra phase shift in the wave function when propa-
gating in the arms of the ring will disturb the destructive
interference at the second junction. Such an extra phase shift
can be induced by a magnetic field or through an electric
field, i.e., potential variations. In the latter case, it is called
the electrostatic AB effect. As an example, we consider a
Gaussian quantum-well potential that is localized in the arm
of the ring

_ 1
V(X,y) == VG CXP{— 2_[()6 _xarm)2 + (y _yarm)z]} .
Bl

(17)

First we take the potential in the middle of the upper arm of
the ring, i.e., at (X,m»Yarm)=(0,R,,). The transmission prob-
abilities for this case are plotted as functions of the potential
depth V;; in Figs. 14(a) and 14(d), for rings with right-angle
and smooth (R;=300 A) lead-ring connections, respectively,
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FIG. 14. (Color online) [(a),(d)] Transmission probability as a
function of the depth Vg of the Gaussian well, for wave packets
with energy €3 in the first subband (k(l)) and in the second subband
(k( )), considering quantum rings with right-angle (left panels) and
smooth, with R,=300 A, (right panels) lead-ring connections. Two
values of the magnetic field B are considered: 0 T (solid) and 0.18
T (dotted). [(b),(e)] Time-averaged currents (J)(Cl)) and (J)(Cz)), of the
first and second subbands, re@pectlvely, considering a wave packet
initially in the first subband, with k% W, [(c),(f)] Time-averaged cur-
rents <J(1)) and <J(2)) for a wave packet initially in the second sub-
band, with k(z) The lines (J(1)> and (J(2)> for B=0.18 T (dotted)
were shifted by +0.5, for clarity [except in (c), where they were
shifted by +1.0].

considering wave packets with energy &5 initially in the first
(kgl)) and second (k(32)) subband. Two values of magnetic
field are considered, B=0 (solid, black) and 0.18 T (dotted,
red), where the later corresponds to ®=¢,/2. If the wave
packet starts in the first subband, with kgl) , for a system with
right-angle connections, the phase shift due to the Gaussian
well is not able to disturb too much the transmission prob-
abilities, and their values for both values of the magnetic
field are almost the same. However, for smooth junctions or
for wave packets with wave vector kgz)’ the Gaussian well
potential in one of the arms of the ring is responsible for
oscillations in the transmission probability, as its depth VG
increases. An analysis of the time-averaged currents (J} (D
(blue) and (J(z) (green) propagating in the subband state j
=1 and j=2, respectively, as illustrated in Figs. 14(b) and
14(e), for k(l), and (c¢) and (f), for k§2>, helps us to understand
the behavior of the transmission probabilities. As observed in
Fig. 14(b), for B=0 T (0.18 T), all the enhancement (reduc-
tion) in <J)((2)> as V; increases, is completely compensated by
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FIG. 15. (Color online) Transmission probability as a function
of the magnetic field for wave packets with energy (a) &, and (b) &3
in the first subband (kgl)), considering quantum rings with smooth
R,=300 A lead-ring connections, for several values of depth V; of
the Gaussian well: 0 (black, solid), 10 (red, dashed), 20 (blue, dot-
ted), 30 (green, dashed-dotted), and 40 V (yellow, dashed-dotted-
dotted). The latter four curves are shifted in order to help visualiza-
tion and the amount of shift is indicated on top of the curves.

a reduction (enhancement) in (J(1 ) so that the transmission
probability remains almost the same for any V. This effect
happens only for &5 in a structure with right-angle junction,
which is a system where the AB oscillations in 7 exhibit
halved period and small amplitudes (cf. Fig. 10 blue solid
curve). For all the other cases, such a compensation is not
present, so that the curves for B=0 and 0.18 T are strongly
dependent on V. In all cases, the phase shift between wave
functions traveling through the upper and lower ring arms is
responsible for disturbing the otherwise completely destruc-
tive interference for other subband states in the second lead-
ring junction, allowing for an outgoing wave function which
has projections over both subbands in the right channel when
Vg #0.

This effect can be verified using a similar experimental
setup as in Ref. 7. By tuning the back gate voltage one can
select electrons traveling with energy &, &,, or g5 through
the ring. The gate electrode localized over the center of one
of the ring arms induces a localized potential that is tunable
by the voltage applied on this gate. Besides, the experimental
results of Ref. 7 suggest that the presence of an electrostatic
potential in one of the ring arms induces a phase shift in the
AB oscillations. The transmission probabilities calculated
with our model for a smooth (R,=300 A) ring are shown as
functions of the magnetic field in Fig. 15 for several values
of Vg, considering incoming wave packets in the first sub-
band with energies (a) &, and (b) &5. In fact, a change in the
position of the transmission minima occurs as V increases
from 0 (black, solid) to 40 V (yellow, dashed-dotted-dotted),
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FIG. 16. (Color online) Transmission probabilities for a wave
packet with energy &,, as functions of the magnetic field, consider-
ing smooth channel-ring connections, in the presence of (a) one
impurity, localized at three different distances zjy,; from the ring
plane: 1 A (black, solid), 100 A (red, dashed), and 400 A (blue,
dotted), and (b) two impurities, each one localized symmetrlcally in
one arm of the ring, at distances zjy,; =1 A and Zimp2=1 A (black,
solid) or Zjmp =100 A (red, dashed).

which can be interpreted as a phase shift of 7 in the AB
oscillations. Actually, the results for intermediate values of
Vg, namely, 10 (red, dashed), 20 (blue, dotted), and 30 V
(green, dashed-dotted), show that the Gaussian potential is
responsible for a reduction (increase) in the transmission
probability at ®=ng, [G=(n+1/2)¢,] so that the oscilla-
tions are shifted over ¢, when V;=40 V. The reason for this
flip in the AB oscillations is owing to the fact that when the
wave function hits a resonance of the potential well, it picks
up a phase of 7, which turns the AB maxima into minima
and vice versa.>!?

Similarly, the influence of the presence of one negative
impurity, localized at rimpz(O,RaV,zimp) (i.e., in the middle
of the upper arm of the ring, at a distance zjy,, from the ring
plane) on the transmission 7 and reflection R probabilities is
illustrated in Fig. 16(a), for a wave packet with energy e,.
Smooth lead-ring connections are considered in Figs. 16(a)
and 16(b). If the impurity is close to the plane, at ziy,
=1 A (black, solid), the AB oscillations are significantly af-
fected; the period of such oscillations on the transmission
and the reflection probabilities as a function of the magnetic
field is halved. This behavior is similar to that found by
Szafran and Peeters’ in mesoscopic one-dimensional rings,
when a Gaussian potential is inserted in one of the ring arms.
As the impurity is put far from the ring plane, the original
period of AB oscillations is recovered, though the presence
of the impurity still affects the peak-to- valley difference in
these oscillations, as observed for z;,,=100 A (red, dashed)
and 400 A (blue, dotted), for instance. Actually, the presence
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of an impurity in only one of the ring arms strongly breaks
the azimuthal symmetry of the system, which is decisive for
AB oscillations. If one considers two impurities localized in
diametrically opposite sides of the ring, as rj,,
=(0,RyyZimp1) and Tipn=(0,-R,y,Zimpn), for instance, the
imbalance between the arms is removed and the original pe-
riod of AB oscillations is recovered, as shown in Fig. 16(b),
even if Ziyyi # Zimpo (red, dashed). The peak-to-valley differ-
ence is also almost recovered for zjp,) =Zimp2, €ven when the
impurities are very close to the ring plane, as can be ob-
served if one compares the results for zi,, =Zimp=1 A
(black, solid) with those for &, in smooth channel-ring sys-
tems in the absence of impurities [see Fig. 10(b), red-dashed
curve]. The recovering of AB oscillations when two impuri-
ties are localized in diametrically opposite sides of a quan-
tum ring confirms the recent results of Farias et al.'* for the
case of quantum rings without leads.

V. CONCLUSIONS

We presented a theoretical study of the time evolution of
a Gaussian wave packet in semiconductor quantum rings and
T wires, where we studied the effects due to smooth lead-
ring connections, magnetic fields, the presence of a Gaussian
potential or an impurity in the ring arm(s) on the transmis-
sion probabilities. Although one would intuitively expect that
a smooth connection will lead to a higher transmission prob-
ability, our results show that this depends strongly on the
wave packet energy since such connections act like confining
potentials, where quantum resonances are present, the trans-
mission probability is affected not only by the smoothness of
the junction but also by the energy of the incoming wave
packet.

In the absence of a magnetic field, for higher wave packet
energies, the electron is scattered at the first lead-ring con-
nection to other subbands states but remarkably it is scattered
back to the initial subband at the second lead-ring junction so
that the incoming and outgoing wave functions in the leads
are always in the same subband. However, a magnetic field
can influence strongly the interference at the second junction
such that at the AB resonances we found complete destruc-
tive interference of only the initial subband state, which re-
sults in incoming and outgoing electrons ending up in differ-
ent subbands. This effect strongly affects the transmission
probabilities, changing the amplitude and the period of AB
oscillations.

The effect of asymmetry is analyzed by considering a
negative impurity or a Gaussian potential localized in one of
the ring arms. In the presence of such an asymmetry, it is
possible to half the period of the AB oscillations and to re-
duce its amplitude. However, if two negative impurities are
localized in diametrically opposite sides of the ring, the sym-
metry of the system is recovered and so are the period and
the amplitude of the AB oscillations.

ACKNOWLEDGMENTS

This work was financially supported by the Brazilian Na-
tional Research Council (CNPq), under Contract No. Nano-

125331-11



CHAVES et al.

2 3
R /W

FIG. 17. (Color online) Energies of four low-lying bound states
of a T-wire junction [see Fig. 1(b)], as functions of the radius of the
circle describing the smooth junction. The insets show the probabil-
ity density of the four bound states in case of R,/ W=4.

BioEstruturas 555183/2005-0, Fundag¢ao Cearense de Apoio
ao Desenvolvimento Cientifico e Tecnolégico (Funcap),
CAPES, Pronex/CNPg/Funcap, the Bilateral program be-
tween Flanders and Brazil, and the Belgian Science Policy
(IAP).

APPENDIX: LOCALIZED STATES AND TIME
EVOLUTION IN T WIRES

To understand better the importance of the lead-ring con-
nection on the transmission, we study here the T-shaped wire
structure. This structure, as shown in Fig. 1(b), is formed by
a junction of two perpendicular quantum wells. Classically,
this system exhibits unbound motion but it has been shown
that this geometry can support one quantum bound state.'3
Other systems with classical unbound motion, such as cross-
shaped potentials, bend wires, and quantum cavities with
channels, have been studied previously,”> where quantum
bound states were also found. The origin of these quantum
bound states lies in the fact that the quantum wells forming
the channels are responsible for a discrete energy spectrum
in these regions, with nonzero ground-state energy. There-
fore, in the intersection between the channels, the electron
can occupy a state which has an energy lower than the zero-
point energy in the leads and, hence, it will not be able to
propagate through the leads.

In Fig. 17, the eigenenergies for T wires with smooth
connections are shown as functions of the radius R, of the
circle describing the connection, considering channels of
width W=100 A. The eigenstate energies are divided by the
ground-state energy E(IY) of the channels while the radii R;
are divided by the channel width W. Notice that, for a simple
connection, i.e., for R;=0 A, only one confined state can be
found, but, as R, increases, more states are localized at the
junction. The insets illustrate the squared modulus of the
wave functions for each confined state when R;=400 A. Re-
sults of Fig. 17 for T-shaped wires can be compared to the
results for the W=100 A lead-ring system, studied in Sec.
IIT A. For a right-angle connection, there is only one bound
state in both systems, which has energy E;=44(46) meV for

PHYSICAL REVIEW B 80, 125331 (2009)

a T T - T A. - b T T T
@O o7 ehrangemeion)]
1

200 300 400 500 600 200 400 600 8O 1000
t (fs) t (fs)

FIG. 18. (Color online) Time-dependent probability current, cal-
culated at the vertical (black, dotted) and horizontal (red, solid)
leads of a W=100 A T-shaped wire, at a distance 1400 A from the
center of the junction, considering right-angle and smooth, with
R,=300 A, connections. In (a), two values of wave packet energy
were considered, &, and &, while in (b), we consider &5 in subbands
K" and k)

3 3

the T-wire (lead-ring) case. The small difference in energy is
a consequence of the bending of the ring arms at the junc-
tion. For a smooth connection, with R;=300 A, the T-shaped
wire has four bound states, with energies £y=16 meV, E;
=33 meV, E,=38 meV, and E;=48 meV whereas the
lead-ring system presents two pairs of degenerated states,
with energies Ey=F;=26 meV and E,=FE;=50 meV. In
this case, the difference in energies is a consequence of the
fact that for a smooth lead-ring junction the effective area
where the bound state can reside is smaller than in the case
of a smooth T junction.

T-shaped wires has attracted much interest also because
these structures provide the possibility of constructing tran-
sistors acting by quantum modulation. The transport proper-
ties of T-shaped wires was theoretically studied by Sols et
al.,”> where they calculated the transmission probability as a
function of the electron energy and effective length of the
lead perpendicular to the electrons motion for straight junc-
tions. In Fig. 18, the time-dependent probability current is
calculated at the horizontal (red, solid) and vertical (black,
dotted) leads, at a distance of 1400 A from the center of the
junction. The probability current in the horizontal (vertical)
lead is related to the reflected (transmitted) part of the wave
packet. The initial wave packet starts in the horizontal lead,
at x,=—1100 A. For a right-angle connection, sharp peaks
for transmitted (dotted) and reflected (solid) packets are ob-
served in Fig. 18(a) for &; and &,. Since the distance from the
junction is the same for the points where J; is computed in
vertical or horizontal leads, both peaks were expected to
present maximum values at the same time. However, a small
time delay of about 6 fs, between the transmitted and re-
flected maxima is observed. Besides, the time for a classical
particle with energy &; (g,) traveling through the same dis-
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FIG. 19. (Color online) (a) Calculated transmission times for a
classical particle traveling in a T-shaped wire (black circles) and the
time where the maximum value of J; occur in the vertical lead (red
triangles), as functions of the wave packet energy &, for leads of
W=100 A width, considering right-angle connections. (b) Time-
averaged currents in the first ((Ji“}, black) and second ((Jj(cz)), red)
subbands.

tances is about 322 (247) fs whereas the times where the
peaks of transmitted and reflected waves occur are both
lower (higher). The times for the classical approximation are
shown as vertical dashed lines in Fig. 18 (top), for compari-
son. Actually, lower (higher) values for classical times, for a
particle with energy &,(&,), were found also for the lead-ring
system, as mentioned in Sec. III B. A comparison between
the times where the maxima of the transmission peaks occur
(red triangles) and the transmission times for classical par-
ticles (black circles), as functions of the wave packet energy,
ina W=100 A T wire, is shown in Fig. 19(a). It is observed
that, for energies higher than ~75 meV, the classical ap-
proach underestimates the transmission time in these sys-
tems. Actually, as the energy increases, the projection of the
transmitted wave packet over the second subband state be-
comes larger, as observed in Fig. 19(b) and since the wave
vector k for this subband is lower than that of the first sub-
band, for the same energy, the wave function slows down,
which explains the higher transmission time, as the classical
approach accounts only for the first subband state. For a
smooth connection with R,=300 A, as well as for energy &3,
due to interferences at the junction, the outgoing waves do
not yield sharp peaks in J7, thus it becomes difficult to dis-
cuss the problem in comparison with a classical traveling
particle in this case.

The transmission probability 7" as a function of the wave
packet energy e for a T-shaped wire with leads of width W
=100 A is shown in Fig. 20(a), for several values of the
radius R, of the circle describing the smoothness of the junc-

PHYSICAL REVIEW B 80, 125331 (2009)

=
*/ v.‘ ; .
02K ¥ - R =300A R =150 A T
1 -'I al : | I U T R N
80 120 160 200 240 280 320 360 400 440
T
/”
- .-V
>
Q -
Né R=0A
“w R =50 A
R =100 A
R =150A[
1
6

FIG. 20. (Color online) (a) Transmission probability as a func-
tion of the wave packet energy & (in the lowest subband) for a
T-shaped wire with leads of W=100 A, considering several values
of radius R for smooth connections. (b) Square root of the energies
of the peaks and valleys for each curve shown in (a). The straight
lines are linear fits to the symbols. Similar types of curves in (a) and
(b) correspond to the same R;.

tion. In Fig. 10, if one compares the results for (a) right-
angle and (b) R,=300 A lead-ring connections, one observes
that, for &; (&,), the presence of smooth connections reduces
(increases) the transmission probability. This is also observed
for the T-wire case, if we analyze the results for right angle
(black solid) and R,=300 A (yellow dashed-dotted-dotted),
for energies e=70 and 120 meV. Moreover, the transmission
probability as a function of the wave packet energy exhibits
an oscillatory behavior, which strongly depends on the radius
R, of the smooth connection. This oscillatory behavior re-
sembles the one observed in the transmission coefficients for
a one-dimensional quantum-well structure, when one consid-
ers electron energies which are higher than the barriers
height. Indeed, our T-wire structure can be interpreted as a
system consisting of two barriers, created by the zero-point
energy of the channels, and a well, localized at the junction
so that the incoming wave packet in the horizontal channel
has energies which are, by definition, higher than these bar-
rier heights. For a one-dimensional square well of width L
and considering electrons with energy higher than the barrier
height, a maximum of transmission probability is obtained
when half the wavelength fits the well width L, i.e., n\/2
=L, resulting in the resonant energy

h? (nﬂ')z
g,=—\(—1/,
2m,\ L
for the nth transmission peak. From this expression, it is
expected that e, increases linearly with n.
Such a linear trend is observed in the results for T wires,

as shown in Fig. 20(b), where the square root of the wave
packet energies &'"/? for the nth maximum or minimum of

(A1)
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transmission probability, observed in Fig. 20(a), are plotted
as symbols, for several values of radius R, of the smooth
connection between leads. Actually, the analogy between our
T-wire system and a one-dimensional square well is of
course not perfect, specially when smooth connections are
considered. Also, we are dealing with a wave packet, not
with a simple plane wave, and the resonances obtained by
means of Eq. (A1) for a square well are not expected to be
the same as for a Gaussian wave packet. Nevertheless, the
linear fits of the symbols in Fig. 20(b), which are shown as
curves, are an interesting tool to understand qualitatively the
behavior of transmission probabilities in T wires, in compari-
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son to a one-dimensional well. From these linear fits, one can
estimate the effective width of the confinement potential of
the T-wire junction in this quantum-well picture. The slopes
s of the £'?xn curves can be obtained from Eq. (A1), for a
square well, as s=\%A?/2mm/L. For R,=0 (black, solid), 50
(red, dashed), 100 (blue, dotted), and 150 (green, dashed-
dotted) in the T-wire system, the slopes of the lines shown in
Fig. 20(b) correspond to one-dimensional quantum-well
widths L of ~255.9, 302.4, 402.0, and 496.5 A, respec-
tively. The increase in L with R, is intuitively expected be-
cause of the increasing area of the connection with R,.
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