
Stability of spintronic devices based on quantum ring networks

Péter Földi,1,* Orsolya Kálmán,2 and F. M. Peeters3

1Department of Theoretical Physics, University of Szeged, Tisza Lajos körút 84, H-6720 Szeged, Hungary
2Department of Quantum Optics and Quantum Information, Research Institute for Solid State Physics and Optics,

Hungarian Academy of Sciences, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
3Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium

�Received 26 June 2009; revised manuscript received 11 August 2009; published 21 September 2009�

Transport properties in mesoscopic networks are investigated, where the strength of the �Rashba-type�
spin-orbit coupling is tuned with external gate voltages. We analyze in detail to what extent the ideal behavior
and functionality of some promising network-based devices are modified by random �spin-dependent� scatter-
ing events and by thermal fluctuations. It is found that although the functionality of these devices is obviously
based on the quantum coherence of the transmitted electrons, there is a certain stability: moderate level of
errors can be tolerated. For mesoscopic networks made of typical semiconductor materials, we found that when
the energy distribution of the input carriers is narrow enough, the devices can operate close to their ideal limits
even at relatively high temperature. As an example, we present results for two different networks: one that
realizes a Stern-Gerlach device and another that simulates a spin quantum walker. Finally we propose a simple
network that can act as a narrow band energy filter even in the presence of random scatterers.
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I. INTRODUCTION

Mesoscopic networks with Rashba-type1 spin-orbit cou-
pling have recently gained considerable attention due to their
remarkable spin transformation properties. Theoretical pro-
posals for using these networks2–9 as specific spintronic de-
vices often focus on the ballistic regime at low �zero� tem-
peratures. Obviously, important features as well as
fundamental aspects of the spin-dependent transport problem
can be found using this approach but it is also desirable to
investigate the stability of the results in a more realistic con-
text. In this paper we focus on some promising network-
based spintronic devices and study how random scatterers
modify the ballistic transport and investigate the extent to
which the functionality of these devices remains close to the
ideal one. In this aspect, the case when the input electrons
are in thermal equilibrium at a finite temperature, i.e., they
are not monoenergetic, is also investigated.

The concrete model systems we have chosen to analyze
consist of quantum rings that are made of semiconducting
materials exhibiting Rashba-type1 spin-orbit interaction10–13

�SOI�. The strength of the SOI that determines the spin-
sensitive behavior in these rings can be tuned with external
gate voltages,11 offering possible spintronic applications al-
ready with two- or three-terminal single quantum rings.14–32

Systems of quantum rings can operate as multipurpose, flex-
ible spintronic devices,2 and the concept of quantum walk
�QW� that inherently requires large systems can also be re-
alized in appropriate ring networks.3 In this paper we focus
on these latter proposals, investigate the stability of rectan-
gular networks of quantum rings as well as that of the net-
works that can realize QW with the spin degree of freedom
playing the role of the quantum coin.

The present paper is organized as follows. In Sec. II we
summarize the theoretical network model to be used and
describe the method for taking scattering events and finite
temperatures into account. The geometry and possible func-

tionality of the networks to be investigated is described
briefly in Sec. III. Questions related to the stability of these
arrays are investigated in detail in Secs. IV and V. We sum-
marize our results in Sec. VI.

II. MODEL

First we consider a single ring33 of radius a in the x-y
plane and assume a tunable electric field in the z direction
controlling the strength of the spin-orbit interaction charac-
terized by the parameter �.11 The Hamiltonian19,34 in the
presence of spin-orbit interaction for a charged particle of
effective mass m� is given by

H = ����− i
�

��
+

�

2�
�r�2

−
�2

4�2� , �1�

where � is the azimuthal angle of a point on the ring and the
radial spin operator is given by �r /2= ��x cos �
+�y sin �� /2. The frequency associated with the spin-orbit
interaction is denoted by �=� /�a while ��=�2 /2m�a2

gives the kinetic energy with m� being the effective mass of
the electron. The position-dependent eigenspinors and the
corresponding energies of this Hamiltonian can be deter-
mined analytically, see, e.g., Refs. 19 and 35 for details.

When there are leads attached to the ring that connect it to
electric contacts, the usual question is the conductance as a
function of the SOI strength and/or the energy of the incom-
ing electrons. At zero temperature this latter has zero vari-
ance, it equals the Fermi energy EF of the system. Therefore
energy conservation requires finding eigenevalues of Hamil-
tonian �1� being equal to EF. As a consequence of the two
possible eigenspinor orientations as well as the possibility of
the current flowing clockwise and counterclockwise along
the ring, EF is usually fourfold degenerate. In order to com-
plete the solution of the scattering problem at a given energy,
the spinor-valued wave functions have to be joined together.
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The spinor components have to be continuous, and the spin
current19 that enters a junction, should also leave it, i.e., the
net current density at a certain junction has to vanish. Let us
note that besides Griffith’s boundary conditions36 that have
been described above �and will be used throughout this pa-
per� there are other physically realistic and often used possi-
bilities as well. The choice of the boundary conditions is in
fact shown to be related to the reduction of a two-
dimensional problem to one dimension.37

Note that the one-electron model described so far does not
take electron-electron interactions explicitly into account.
This approximation usually can be applied at low tempera-
tures, when spintronic and conductance properties are deter-
mined essentially by electrons at the Fermi level.38 �Note
also that in typical semiconductor rings the electron gas is
not in the Luttinger liquid regime.� As we shall see later, the
quantum-mechanical interference effects that are crucial for
the functionality of the devices we consider, disappear at
already relatively low temperatures �typically around a few
hundred mK�. Additionally, Griffith’s boundary conditions
mean strongly coupled rings, thus Coulomb blockade related
effects are not expected to appear either.

The procedure above is completely analytic, the transmis-
sion matrix T that connects the input and output spinors as
well as the conductance using the Landauer-Büttiker
formula38 can be given in closed forms. This method can be
transferred to systems consisting of several rings in a
straightforward way. A general scheme for networks to be
investigated can be mathematically represented as

��in� → 	
��out

1 � = T1��in� ,

��out
2 � = T2��in� ,

]

��out
N � = TN��in� ,


 �2�

thus the input state is transformed into N output spinors �and
a reflected one not shown above�. In general the transmission
matrices T1 , . . . ,TN are different for different outputs6 �see
Figs. 1 and 2 for concrete geometries�. Considering the size
of these networks, it turns out to be practical to solve the
related systems of linear equations numerically. In this way
one can determine the spin transformation properties of net-
works of considerable size and may find geometries with
possible spintronic applications.

However, in a large, or even mesoscopic system the trans-
port process will not be necessarily ballistic, the quantum-
mechanical coherence of the carrier wave functions may not
be maintained all along the device. In order to give account
for this issue, we introduce independent pointlike scattering
centers in the rings. That is, we assume the presence of an
additional potential

Uscatt
�1� ��� = �

n

Un�D�	�� − �n� , �3�

with uniformly distributed independent random positions �n
of the Dirac delta peaks. For the sake of simplicity, the den-
sity of the scatterers is chosen such that there is always a
single one between two neighboring junctions, that is, e.g.,
for a four-terminal ring we have four scatterers. The
strengths of the potentials, Un�D�, are random, they are
drawn from independent normal distributions, with zero
mean and root-mean-square deviation D. That is, the prob-
ability for Un�D� to have a value in a small interval around u
is given by p�u�du, where

p�u� = exp�− u2/2D2�/D�2
 . �4�

In this way, by tuning D we can model weak disturbances
�small D� as well as the case when frequent scattering events
completely change the character of the transport process
�corresponding to large values of D�.

As the interference phenomena that are responsible for the
desired behaviors of the devices are spin sensitive, we also
introduce spin-dependent �SD� scatterers

Uscatt
�2� ��� = �

n

Un�D�	�� − �n� , �5�

where Un�D� now represents a 2�2 diagonal matrix with
independent random diagonal elements Un1�D� and Un2�D�.

11 12

21 22 23

31 32 33

In
pu

t/r
ef

le
ct

io
n

13
Outputs

1

2

3

FIG. 1. The geometry of a rectangular ring network. The arrows
indicate the possible directions of the currents.
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FIG. 2. Schematic representation of a device that can realize
coined quantum walk on the line. The example shown in the figure
corresponds to a QW with M =3 steps. Note that in the ideal case
the current flows in the network in the downward direction and the
input current is distributed among the numbered output ports. For
InGaAs/InAlAs heterostructures the radii of the A-type rings are
248 nm while a=266 nm for all other rings.
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In both cases, we use the same boundary conditions as at
the junctions, thus we require the continuity of the spinor-
valued wave functions �L���, �R��� at the left and right
side of the scatterer situated at �n. Then the requirement of
vanishing spin-current density reads


 �

��
�L���


�=�n

− 
 �

��
�R���


�=�n

= 
Un�D�
��

�R���

�=�n

.

�6�

These additional equations are still linear ones, thus we can
find analytical solutions for any random sets �Un�D��, ��n�.
That is, for any input state we can calculate the output spinor,
that we write symbolically as ��out�Un�D� ,�n��. When after
Mc computational runs, the estimated density operator


out�D� =
1

Mc
� ��out�Un�D�,�n����out�Un�D�,�n�� , �7�

converges, we have all the possible information needed to
describe what effects result from the disturbances character-
ized by the variable D. �Clearly, the sum above runs over
different positions ��n� and scatterer strengths �Un�, so that
the independent random variables in the latter case corre-
spond to normal distributions with the same root-mean-
square deviation D.� Note that 
out�D� is not normalized, we
can consider it as a conditional density operator that de-
scribes the state of the electron if it is transmitted at all.
Using the transmission probability T, we have
Tr�
out�D�� /T=1.

In the description of the process above it was implicitly
assumed that the incoming electrons are monoenergetic, but
usually, at finite temperatures, this is not the case. Therefore,
if we would like to take the energy distribution of the input
electrons also into account, we have to average over all pos-
sible input energies. In thermal equilibrium at temperature T,
the output density operator can be written as


out�T� =� p�E,T���out�E����out�E��dE , �8�

where p�E ,T�=− �
�E �1+exp�E−EF� /kBT�−1. �Note that this

expression corresponds to the Landauer-Büttiker formula for
the conductance at finite temperature and low bias.38� In
practice, we convert the integral, Eq. �8�, to a sum over the
possible energies, thus the expression for 
out�T� is similar to
Eq. �7�, but the weights of the projectors are not uniform,
they are determined by the Fermi distribution.

III. NETWORKS AND THEIR POSSIBLE APPLICATIONS

In this section we summarize briefly the properties of the
networks the stability of which will be analyzed later. The
first network can be seen in Fig. 1, it is a rectangular array of
N�N quantum rings, with one input lead and N outputs.
This geometry has already been realized experimentally39

and the conductance properties have also been investigated
in theoretical works.6,7 It has been shown in Ref. 2 that if the
strength of the SOI can be modulated locally �ring by ring�,
then relatively small �N=3, N=5� networks are remarkably

versatile from the viewpoint of spin transformations. Work-
ing in a given network geometry, the input current can be
directed to any of the output ports simply by changing the
SOI strengths. This kind of operation can already be
achieved by a 3�3 geometry in a practically reflectionless
way and the probability for an electron to leave the device
through a lead other than the distinguished one is less than
1%. A slightly larger network �N=5� can also be made com-
pletely analogous to the Stern-Gerlach device: If the input is
one of the eigenstates of �z �e.g., spin up in this direction�
the output will have the same spin direction at a certain out-
put port �with probability higher than 99%�. When spin di-
rection of the input is the opposite �e.g., spin down�, it is
directed toward a different output port, with its final spin
direction being the same as the initial one.2 Note that if we
consider networks fabricated, e.g., with InGaAs/InAlAs het-
erostructures, the radii of the constituent rings are 252 and
314 nm for N=3 and N=5, respectively.

Having chosen a certain N�N network, one may want to
realize a given spin transformation �function of the device�.
In order to achieve the desired way of operation, there are N2

parameters to adjust, namely, the SOI strengths in the rings.
At this point, it is reasonable to define a real-valued �prefer-
ably experimentally measurable� function over this N2 di-
mensional parameter space that has �a global� minimum
when the desired goal is achieved. Using this function, an
appropriate multidimensional minimum searching algorithm
can find the relevant parameter values. �Note that, in prin-
ciple, this procedure can also be applied in experimental situ-
ations.� Clearly, the key point here is the choice of the func-
tion to be minimized. It was found that rather straightforward
definitions work properly with a “downhill simplex” multi-
dimensional minimizing routine.40 If the purpose is to direct
the input current into output port k, irrespectively from the
spin state, then

f1 = 2 − Pk�in:↑� − Pk�in:↓� �9�

is an appropriate choice for the function to be minimized.
Here Pk�in:↑��Pk�in:↓�� is the probability of transmission
into the distinguished output port, provided the input was
spin up �down� in the z direction. That is, f1 is zero if a
spin-up input wave leaves the network through the distin-
guished output with 100% probability and the same holds for
the orthogonal �spin-down� input. �Note that considering the
two different inputs, two computational/experimental runs
are needed to obtain f1.� It is also worth noting that f1 de-
pends on the SOI strengths in a complex way, via the trans-
mission probabilities, which can be measured.

When our aim is a device that can be the spintronic ana-
log of the Stern-Gerlach apparatus, we can use the function

f2 = 2 − P1�in:↑,out:↑� − P5�in:↓,out:↓� , �10�

where P1�in: ↑ ,out:↑��P5�in: ↓ ,out:↓�� denotes the trans-
mission probability of a spin-up �down� state through output
port 1 �5�, provided the input was spin up �down�. Note that
the theoretical minimum of both f1 and f2 is zero and values
below 0.05 can be reached with SOI strengths in the experi-
mentally achievable range.
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The second network geometry we will analyze is shown
in Fig. 2. The aim of this device is the realization of QW, so
that spin degree of freedom plays the role of the quantum
coin, i.e., it determines the direction of the steps taken by the
walker. The scheme itself is similar to the classical random
walk on the line, when the walker tosses a coin and takes a
step to the left if the coin is heads or to the right if the coin
is tails �or vice versa�. In the quantum analog of such a walk
a quantum coin �electron spin, in our case� is used, the state
of which can be a linear combination of the classical heads
and tails, or mathematically, any state of a “coin” Hilbert
space HC, spanned by the two basis states �L� and �R�, where
L�R� stand for “left” �“right”�. The positions of the walker
also span a Hilbert space HP= ��i� : i�Z� with �i� correspond-
ing to the walker localized in position i. The states of the
total system are in the space H=HC � HP, which can be
identified with spinor-valued wave functions in our case. The
conditional step of the walker depends on the state of the
coin, it can be described by the unitary operation

S = �L��L� � �
i

�i + 1��i� + �R��R� � �
i

�i − 1��i� . �11�

The coin toss is realized by a unitary operation C acting on
the spin states. The QW of N steps is defined as the transfor-
mation UN, where U, acting on H=HC � HP is given by

U = S · �C � I� . �12�

The network shown in Fig. 2 realizes this scheme in the
following manner: first A-type rings perform Hadamard op-
eration on the spin states. �In other words, the operator C in
this scheme is a frequently used, so-called balanced unitary
coin, which is represented by a matrix in which each element
is of equal magnitude.� With appropriately chosen param-
eters, there are two input spin states �L� and �R� for B-type
rings so that �L���R�� has zero probability to be transmitted
into the right �left� output arm. C-type rings have double role
in the scheme, first they undo the rotation performed by the
B-type rings �B-type rings direct the input states �L� and �R�
into their appropriate output, but meanwhile they also rotate
them� as well as allowing for the interference of subsequent
steps by accepting two inputs. Using these three types of
rings, coined QW on a line can be implemented. The actual
direction of the walk is horizontal in Fig. 2 while the number
of steps increases vertically. A network for QW of M steps
has M +1 outputs and it consists of M�3M +5� /2 elementary
rings.

Let us note that the possible QW realization summarized
above uses reflectionless rings as building blocks. The
scheme does not involve optimization, it is based on analytic
results obtained for single rings.21,35,41 All types of rings can
be realized with several parameter pairs �size and SOI
strength�, although these optimal parameters form discrete
sets. Therefore the system can tolerate geometrical errors to
some extent, but the optimization of a certain, not necessarily
perfect geometry can be more difficult in this case than for
rectangular networks.

Additionally, we note that the modular structure of our
networks shows certain similarities with granular electronic
systems. These new artificial materials are composed of

close-packed granules or nanocrystals and have various pos-
sible applications due to the tunable interplay between indi-
vidual and cooperative effects. For a recent review on these
systems see Ref. 42. Granularity means that the conductance
between different nanocrystals is considerably smaller than
that of a single building block �intragrain conductance�. In
our case, Griffith’s boundary conditions mean that the “inter-
ring” conductance is maximal and—depending on their func-
tion in the network as a spintronic device—single-ring con-
ductances change in a wide range. When scatterers are
introduced, they have practically zero probability to be situ-
ated in junctions, they only affect �generally decrease� inter-
ring conductances. Thus in a strict sense our networks are
not granular. If different boundary conditions are used that
simulate lower transparency and if stronger disorder is as-
sumed, our system is expected to exhibit granular properties
that have been discussed in Ref. 42. Additionally, quantum-
mechanical effects mean usually corrections to the conduc-
tance of granular systems, while our approach is complemen-
tary by starting from the opposite direction, when the
conductance properties of the network is determined entirely
by �spin-dependent� quantum interferences. Then we intro-
duce impurities, but stay relatively close to the ideal quan-
tum limit, when investigating the stability of the networks as
spintronic devices.

IV. STABILITY: RANDOM SCATTERERS

When investigating the possible effects of scatterers, the
most obvious one is the decrease in the conductance of the
device. This consequence of the nonideal transport is inevi-
table, uncontrollable scattering events involve backscattering
as well, thus the devices themselves cannot be made reflec-
tionless. Therefore the decrease in the transmission probabil-
ity �or the efficiency of the device� as a function of the
strength of the scattering-induced disturbances is the first
question to investigate.

However, for some applications the most important point
can be whether the electron’s spatial and/or spin state is close
to the desired one, provided they are transmitted at all. Re-
flective losses are less crucial in this case, we are mainly
concerned in the transmitted wave function, and analyze to
what extent it can be considered to be acceptable from the
viewpoint of the functionality of the device. This brings us to
the question when does phase randomization �i.e., the second
effect of scattering� become important?

Clearly, the two issues above are not independent, as one
can check, e.g., for one-dimensional propagation along a
line, stronger dephasing means stronger reflection as well. In
a network, however, there is an additional, less direct con-
nection between �partial� reflections and effective dephasing.
Namely, when the functionality of a certain device strongly
relies on multiple coherent quantum-mechanical interfer-
ences, reflections at internal points modify the wave func-
tions that interfere at the junctions, leading to an additional,
dephasinglike effect.

Figure 3 can serve as a reference, it shows for various
values of D the transmission probability of a single quantum
ring as a function of the incoming wave number k multiplied
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by the ring radius a. �The input and output leads are con-
nected to this ring diametrically, and the strength of the SOI
is moderate: � /�=1.0� When the ratio of D �measured in
energy units� and the Fermi energy is about 0.1, the trans-
mission probability decreases from unity below 60%. The
contrast of the minimal and maximal transmission probabili-
ties also tends to disappear when D increases. For extremely
strong scattering effects the transmission probability be-
comes negligible.

Now let us investigate rectangular arrays. The decrease in
the transmission probability is shown by Fig. 4 for both 3
�3 and 5�5 arrays. The parameters used for these plots are
the optimal ones for the ideal case �without scatterers�, that
is, the intended operation of the smaller network is the direc-
tion of the input current to one of its output ports, while the
5�5 array should work analogously to the Stern-Gerlach
device. As we can see, in the range of moderate values of D
�which is of our primary interest�, SD scatterers cause the
transmission probabilities to decrease faster than in the
non-SD case. A weak size effect is also visible: the same

density of scatterers cause slightly stronger dephasing in a
larger network. It is important to mention here, that although
there are considerable number of rings in these networks, the
rate at which the transmission probabilities decrease as a
function of D, is not orders of magnitude higher than it is for
a single ring. As we mentioned in the introductory part of
this section, increasing reflection probability is an inevitable
consequence of the scattering events, but their presence does
not necessarily lead to a complete destruction of the func-
tionality of the device.

In the case when a 3�3 rectangular network �see Fig. 1�
is intended to direct its output current, various measures of
the “distance” between its ideal and actual operation can be
formulated in terms of the relevant probabilities

M1 =
P1

R + P2 + P3
=

P1

1 − P1
,

M2 =
P1

P2 + P3
=

P1

T − P1
,

Sout = − �
k

Pk

T
log2�Pk

T
� , �13�

where R and T denote the reflection and transmission prob-
abilities, and Pk stands for the probability that the electron
leaves the device through output arm k �k=1 corresponds to
the distinguished output.� The measures M1 and M2 are
signal-to-noise ratios, with M1 being the more strict one in
the sense that M2 does not take reflective losses into account:
M2 compares the probability of the desired output to that of
the unwanted ones. Sout is the Shannon entropy of the output,
it should be zero in the ideal case, and has a maximum when
all Pk have the same values. The dependence of these mea-
sures on the strength of the disturbances caused by the scat-
terers is shown in Fig. 5. As we can see, these measures
decrease faster than the transmission probability but accept-
able signal-to-noise ratios can be seen even when the trans-
mission probability is below 80%. Note that the difference

FIG. 3. �Color online� The transmission probability of a single
quantum ring with diametrically coupled input and output leads for
different strengths of the scattering events. The strength of the SOI
is chosen such that � /�=1.0 �see Eq. �1��.

FIG. 4. �Color online� The transmission probability of rectangu-
lar N�N quantum ring arrays as a function of the strengths of the
scattering events. The ring sizes and the SOI strengths correspond
to the ideal operation described in the text.

FIG. 5. �Color online� The measures of functionality given by
Eq. �13� for a rectangular 3�3 quantum ring array as a function of
the strengths of the scattering events. The ring sizes and the SOI
strengths correspond to the ideal operation described in the text.
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between effects caused by SD and non-SD scatterers is sur-
prisingly small, they destroy quantum-mechanical coherence
at a similar rate. This is a general result for all the investi-
gated devices, in the following we will focus on the spin-
dependent case.

Next we focus on the spintronic analog of the Stern-
Gerlach device proposed in Ref. 2. According to the func-
tionality of this device, the relevant measures are spin depen-
dent

M1� =
P↑↑1

1 − P↑↑1
,

M2� =
P↑↑1

T − P↑↑1
,

Sout� = − �
k

P↑↑k

T
log2�P↑↑k

T
� +

P↑↓k

T
log2�P↑↓k

T
� , �14�

where we considered the case of spin-up input and P↑↑1
= P1�in: ↑ ,out:↑� is the probability of the desired output.
P↑↓k= Pk�in: ↑ ,out:↓� in the spin-resolved Shannon entropy
is related to spin-down output at the channel k for spin-up
input. �Note that similar measures can be defined also for the
orthogonal input, but due to symmetry, those measures give
the same numerical values as the ones above.�

Figure 6 shows the dependence of the measures given by
Eq. �14� on D. Note that the limiting value of Sout� for strong
scattering events �and also that of Sout shown in Fig. 5� is
essentially the maximum of the Shannon entropy, i.e., in this
limit the �weak� output current is distributed evenly among
the output channels. Comparing Figs. 5 and 6 it can be seen
that the same value of D induces considerably stronger ef-
fects in the larger network, although even the latter can be
functional for a moderate level of disturbances. Size effect,
however, can be analyzed best in QW networks, where the
desired functionality is the same, it is only the number of the
constituent rings that is different for networks that are de-
signed to realize different number of QW steps.

In the case of the quantum walk, however, determining
the spatial current distribution at the output �i.e., the prob-
abilities corresponding to the transmission through the re-
spective outputs� is not sufficient to quantify the effective-
ness of the device: phase relations are also of fundamental
importance. Therefore we calculate the overlaps

F1 = Tr�
out
i�, F2 =
Tr�
out
i�

T
, F3 =

Tr�
out
i�
T�

,

�15�

where 
out is given by Eq. �7� and 
i is the density operator
corresponding to the pure quantum-mechanical state that
would result from the ideal QW described by Eq. �12�. In
contrast to the transmission probability T, that does not dis-
tinguish the outputs, T� denotes the probability of transmis-
sion into “valid” output channels: in the ideal case there is no
output into the leads at the sides of the device, the input
current is distributed among the output leads located at the
bottom side of Fig. 2. However, scattering effects modify this
picture, and T−T�, the transmission probability into the side
leads �that is zero in the ideal case�, can also be considered
as a measure of the functionality of the device.

Considering transmission probabilities T of networks that
are designed to realize QW, the most remarkable point is that
the functions T�D� are quite similar for different network
sizes �relative errors are below 5% for M =1, . . . ,9 QW
steps�. If we recall that the input part of these devices of any
size is exactly the same, the conclusion is that a small sub-
network close to the input junction is responsible for the
reflection, i.e., scattering events in this small area determine
the reflection probability R=1−T. The measures F1, F2, and
F3, however, show stronger size dependence, thus the current
is distributed among the output channels in different ways
for networks of different sizes. The overlaps given by Eq.
�15� are shown in Fig. 7 as a function of the strength of the
scattering events. Recalling that the number of the elemen-
tary rings in a network to realize M QW steps is proportional

FIG. 6. �Color online� The measures of functionality given by
Eq. �14� for a rectangular 5�5 quantum ring array as a function of
the strengths of the scattering events. The ring sizes and the SOI
strengths correspond to the ideal operation described in the text.

FIG. 7. �Color online� The measures of functionality given by
Eq. �15� for quantum ring arrays to realize M step QW. The ring
sizes and the SOI strengths correspond to the ideal operation de-
scribed in the text.
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to M2, one might expect the overlaps Fk measuring the fault
tolerance of the devices to scale also as M2. However, choos-
ing a certain level of any of these measures �e.g., F2=0.9�,
we find that the D values corresponding to this level do not
decrease quadratically as the size of the networks increases.
Instead, this decrease is even weaker than a linear depen-
dence, thus the stability of the devices scale with size in a
promising way. Note that similar error analysis for the pos-
sible quantum-optical realizations of QW has been investi-
gated in Refs. 43 and 44.

V. STABILITY: TEMPERATURE-RELATED EFFECTS

The role of finite temperatures are taken into account here
as the appropriate broadening of the energy distribution of
the incoming electrons. In view of this, there is a natural
limit, describing the case when interference-related effects
are expected to appear at all. Namely, if there is a typical
wave number k, and a characteristic length a in a quantum-
interference device, then interference properties are �quasi�p-
eriodic as a function of ka. �In the case of a single ring with
moderate SOI strength, k can be the wave number of the
input wave, which is assumed to be monoenergetic at this
point, while a is the radius of the ring.� Obviously, if the
incoming wave numbers have a range of �k, a�k cannot be
too large �i.e., comparable to unity�, otherwise the interfer-
ences are smeared out. As we can see, there is a size effect
here: at a given temperature T, the width of the equilibrium
energy distribution is fixed, it has the order of kBT, and �k is
also given by the dispersion relation. Thus if we can decrease
a�k, e.g., by building smaller devices, then temperature-
related effects will become less pronounced. In other words,
miniaturization, besides its obvious advantages, can help to
avoid interferences to disappear �and also decrease dephas-
ing caused by random scattering, simply by increasing the
mean-free path—system size ratio�.

Before we analyze more complex systems, let us consider
again a single quantum ring with one input and one output
arm, with ka being in the experimentally achievable range
around 20. Figure 8 shows—in accordance with the introduc-

tory part of this section—that the transmission probabilities
are noticeably modified already when kBT is a small portion
of the Fermi energy. �Numerically, for EF being in the range
of 10 meV, the flat line that belongs to the highest tempera-
ture in Fig. 8, is still in the cryogenic range.� Comparing the
two limits when nonmonoenergetic input and strong scatter-
ing events completely change the transmission probabilities
�see Figs. 3 and 8�, an important difference becomes appar-
ent: high temperatures lead to finite transmission probabili-
ties while strong scattering events cause the device to be
opaque. The latter result can be understood readily but the
first one may need some explanation. High-temperature con-
ductance is an integral property in the sense of Eq. �8�, if the
input is normalized, we may write38

G�T� =
2e2

�
� p�E,T���out�E���out�E��dE . �16�

Thus all monoenergetic transmission probabilities contribute
to the conductance with a weight determined by the energy
distribution. Recalling that the transmission probability is a
quasiperiodic function of ka, for wide enough input energy
distribution �being almost constant during a period� the av-
eraged conductance is proportional to the integral of the
transmission probability over a period divided by the length
of the period. For a given geometry, this quantity is a con-
stant but it can change when the strength of the SOI is modi-
fied.

Figure 9 shows that a 3�3 rectangular array can direct its
input current to one of its output ports with M2=2 signal-to-
noise ratio at a temperature, where the transmission probabil-
ity of a single ring reduces already below 80% of its initial
value �see Fig. 8 as well.� The spintronic analog of the Stern-
Gerlach device based on a 5�5 network is more sensitive to
thermal fluctuations, which is due to its larger size and dif-
ferent functionality. �It is worth noting that the Shannon en-
tropies reach their maxima in the high-temperature limit as
well.� According to Fig. 10, the stability of the QW networks

FIG. 8. �Color online� The transmission probability of a single
quantum ring with diametrically coupled input and output leads for
different temperatures. The strength of the SOI is characterized by
� /�=1.0 �see Eq. �1��. FIG. 9. �Color online� The measures of functionality given by

Eqs. �13� and �14� for rectangular 3�3 and 5�5 quantum ring
arrays as a function of temperature. The ring sizes and the SOI
strengths correspond to the ideal operation described in the text.
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scale with their size M similarly to the case of random scat-
terers: given values of F2 is reached at temperatures that
decrease as a function of M slower than linearly.

These results, however, still mean that quantum-
interference devices require quasimonoenergetic input elec-
trons, otherwise interference effects are smeared out. In usual
semiconductors, the limit temperature is quite low, meaning
an obstacle in many practical applications. This effect can be
decreased by building smaller devices or decreasing the
width of the input energy distribution below the thermal
equilibrium. Note that in this latter case nonelastic scattering
events will eventually lead to thermal equilibrium again but
the thermalization length being relevant here can be consid-
erably larger than, e.g., the dephasing length.

As a final point, we investigated whether simple network-
based devices can provide sufficiently narrow transmission
peaks, i.e., whether they can deliver quasimonoenergetic
electrons. �We note that this might not be the most effective
method to overcome the problem caused by thermal broad-
ening of the input energies but it can serve demonstrative
purposes.� We found that an ideal linear chain consisting of

five rings of linearly increasing sizes �+0.5% for the con-
secutive rings� has a transmission peak the width of which
corresponds to kBT=10−5�EF. The transmission probability
is essentially zero in an energy interval of kB /EF=0.06 �At
the peak it is around 60%.� These ideal properties are of
course modified with introducing scatterers like we did in the
current paper. However, it was found that for moderate
strength of the scattering effects �e.g., when the overlap F3 is
around 0.5 for a nine step QW�, the height of the transmis-
sion peak is still above 10%, and its characteristic width
corresponds to kBT=10−4�EF, which is remarkable as we
did not optimize the geometry for these values.

VI. SUMMARY

In this paper we investigated the stability of network-
based spintronic devices against random scattering events
and thermal fluctuations. We focused on the question to what
extent the functionality of certain proposed networks remains
close to the ideal behavior when temperature or the intensity
of the scattering-induced disturbance increases. We consid-
ered two different network types, a rectangular array that can
serve as a spintronic analog of the Stern-Gerlach apparatus
as well as networks that can realize quantum walk with the
spin degree of freedom playing the role of the quantum coin.
We introduced appropriate measures to quantify the “dis-
tance” between the ideal and the realistic behavior of these
devices and found that the functionality can tolerate moder-
ate level of errors. It was demonstrated that although net-
works of increasing size are less stable but fortunately this
decrease in stability is slow with increasing the size of the
networks.
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