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We performed numerical simulations of a quantum dot with nonideal contacts to obtain the probability
distributions of transport observables associated with the first four charge-transfer cumulants �CTCs�. For
particular cases, several known results of the recent literature were recovered from our simulations, such as
CTC distributions for systems with ideal contacts and CTC distributions for single-channel systems with
contacts of arbitrary transparency. We analyze how CTC distributions are affected by a change in the number
of open scattering channels in the leads and in the transparencies of the contacts. We found two remarkable
features in the CTC distributions in the extreme quantum limit of a small number of open channels: an
approximate similarity law for conductance distributions and the appearance of nonanalyticities in some CTC
distributions. We interpret the appearance of these singularities by means of a geometrical argument and derive
the exact values of the CTC at which the nonanalyticities in the corresponding distribution appear. Our
simulations were performed via three different and independent algorithms, whose relative efficiencies are duly
compared.
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I. INTRODUCTION

In mesoscopic physics it is now well established that the
quantum fluctuations of a transport observable, measured by
the cumulants of its distribution, are just as informative as its
average. This is particularly striking in charge-transfer phe-
nomena, where temporal quantum fluctuations of the current
have had many applications, such as measuring the charge of
the carriers,1,2 counting open transmission channels,3 detect-
ing entanglement4 and many others. These temporal fluctua-
tions are ultimately a direct consequence of the granularity of
the transmitted charge, which may differ from the electronic
unit of charge, e, in strongly correlated systems. The stochas-
tic process characterizing this transmission deviates from the
classical Poisson process because of the underlying quantum
temporal correlations. An efficient way to characterize the
stochastic quantum process of charge transfer is via the
theory of full counting statistics,5 which provides a generat-
ing function from which expressions for charge-transfer cu-
mulants �CTCs� can be obtained. Using the Levitov-Lesovik
formula,5 the mth CTC can be written as

qm = �
i=1

N

fm��i� , �1�

where fm is a degree m polynomial given by

fm��� = � dm

dxm ln�1 + ��ex − 1���
x=0

. �2�

The set ��i� contains the nonzero eigenvalues of tt†, t is the
N1�N2 transmission matrix of the conductor, N� is the num-
ber of open channels in lead � and N	min�N1 ,N2�.

The quantum interference phenomenon caused by the spa-
tial coherence of the charge carriers induces mesoscopic
sample to sample fluctuations of the measured current. This
implies that each CTC, qm, is an observable characterized by
its own distribution. We have thus a very nontrivial statistical
problem in which there are two sources of fluctuations with

quite different natures: �i� the charge counting statistics,
whose cumulants are characterized by the Levitov-Lesovic
formula and �ii� the fluctuation of each CTC due to chaotic
scattering inside the cavity. When the number of open chan-
nels is large, which corresponds to the semiclassical regime,
i.e., N�1, the distribution of any CTC tends to be approxi-
mately Gaussian6,7 and consequently the average and the
variance of the CTC give us most of the relevant informa-
tion. However, in the extreme quantum limit �EQL�, where
N
1, the system is nearly closed and the effect of quantum
interference is substantially enhanced, thus making EQL an
useful regime in which to understand nonperturbative quan-
tum effects in mesoscopic transport. Furthermore, since there
are strong CTC fluctuations in EQL, the average and the
variance of the CTC are insufficient to describe the system.
Consequently, we need to know the full CTC distributions
which may be quite broad and contain irregularities such as
nonanalyticities. For ideal contacts, these irregular distribu-
tions have been predicted theoretically8,9 and observed
experimentally10 in quantum dots. In addition, the nonanaly-
ticities of the CTC distributions are important to understand
the metal-insulator crossover in quasi-one-dimensional disor-
dered wires.11–14

A setup for studying electronic quantum transport through
a nanostructure can be modeled as a type of electrical circuit
by dividing it in connectors, nodes and reservoirs.15 Reser-
voirs are described by equilibrium distribution functions and
serve as source and drain to the physical current. The con-
nectors are characterized by a set ��i� of transmission coef-
ficients for each active scattering channel and may represent
barriers or quantum point contacts. These two elements
model the parts of the circuit that can be controlled by the
experimentalist. Nodes, on the other hand, are characterized
by uncontrollable phase shifts due to disorder �or chaos in
ballistic quantum dots�. So, the hardest technical step in cal-
culating any transport quantity is to eliminate the irrelevant
small scale degrees of freedom affected by the disorder and
keep only the relevant large scale modes. There are many
techniques that can handle such a difficulty, viz., the Keldysh
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quasiclassical Green’s function approach,15 the diagrammatic
perturbative expansion of the unitary group16,17 and the su-
persymmetric nonlinear sigma model.18,19 However, only
few of them can access the nonperturbative regime charac-
terized by the EQL. In this regime, statistical properties of
charge-transfer cumulants have been obtained for quantum
dots coupled ideally to electron reservoirs using both
random-matrix theory �RMT� �Refs. 8 and 16� and Selberg’s
integral.9,20,21 Inspired by recent work on the weak-
localization correction of the shot-noise power,22 we expect
that the introduction of barriers of arbitrary transparency
should affect qualitatively the interplay between the spatial
and the temporal coherences in the dot and therefore the
systems’ CTC statistics. This is the main conceptual motiva-
tion for our numerical simulations.

In this work we consider a quantum dot coupled to two
electron reservoirs through nonideal contacts of arbitrary
transparencies and with only a few open scattering channels,
see Fig. 1. The dwell time of the electrons in the dot is
assumed to be much bigger than both the Ehrenfest time and
the ergodic time, so that the cavity can be considered to be in
a universal chaotic regime and the use of random-matrix
theory can be justified. We employ three different numerical
techniques to generate the CTC statistics and their relative
efficiencies are carefully compared. We study the effects of
varying the transparency of the barriers in the CTC distribu-
tions for the three standard Wigner-Dyson �WD�
ensembles.23,24 We observe several nonanalyticies in the
CTC distributions, which we explain, following Ref. 9, with
a simple geometrical argument. We also determine the spe-
cial values of the CTC at which these singularities appear.
We believe that the occurrence of these special features in
the CTC distributions in the EQL is an important universal
feature of mesoscopic quantum transport.

This paper is organized as follows. In Sec. II we present a
brief description of two equivalent RMT techniques:25–28 the
Hamiltonian approach and the scattering matrix formalism.
In Sec. III we explain how to implement three different nu-
merical algorithms based on these two approaches. We also
present results for the distributions of the first four CTC. In
order to explain the nonanalyticity in the CTC distributions,
we generalize the geometrical argument of Ref. 9 in Sec. V.
A summary and conclusions are presented in Sec. VI.

II. RANDOM-MATRIX TECHNIQUES

For the calculations of the CTC distributions, we need to
generate numerically with great efficiency the scattering ma-

trix S of an open chaotic quantum dot connected to two ideal
leads by nonideal contacts. As we show below, this can be
done basically through two different approaches.

A. Hamiltonian approach

The Hamiltonian matrix H used to model the dynamics of
noninteracting particles in the ballistic chaotic cavity26 is
usually taken to be a member from the Gaussian random
matrix ensemble with probability distribution given by

P�H� = N exp�−
�

4C
tr�H2�� , �3�

where N is a normalization factor, C=�2 /M, M is the num-
ber of resonances inside the cavity, � is a variance related
parameter and �=1 �GOE�, 2 �GUE�, or 4 �GSE� is a uni-
versality index accounting for the presence or the absence of
fundamental physical symmetries in the electron dynamics
inside the cavity, such as time-reversal and spin-rotation
invariances.23 A crucial feature of this approach is that the
limit M→� must to be taken in the end of the calculation to
assure the universality of the observables, such as the CTC
distributions. The scattering matrix is constructed using the
formula

S�E� = INT
− 2	iW† 1

EIM − H + i	WW†W . �4�

Here W is an M �NT coupling matrix that contains informa-
tion about the total number of open channels NT=N1+N2 in
the two leads, the mean level spacing in the cavity and the
transparencies of the barriers. It can be separated into two
parts: an M �N1 matrix W1 and an M �N2 matrix W2 as
follows:

W = �W1 W2� �5�

In order to neglect direct processes such as a prompt trans-
mission from one lead to the other without forming an inter-
mediate resonant state, we impose the following orthogonal-
ity condition:26,27

W�
† W� = ��

M


	2 ��,�, �6�

where 
 is the mean level spacing in the dot and �� is a
diagonal matrix given by

�� = diag�
�,1,
�,2, . . . ,
�,N� , �7�

which is related to the transmission probability ��,j of the
channel j in the lead � by the relations

��,j 	 − ln�
�,j� ,

��,j = sech2���,j/2� . �8�

This model provides a stochastic description of electron
transfer through a chaotic ballistic cavity coupled to two res-
ervoirs via imperfect contacts, i.e., barriers of arbitrary trans-
parencies. In the next section, we present an alternative but
equivalent approach that has some advantages from a nu-
merical efficiency point of view.

N
1

N
2��

1

�
2

FIG. 1. Schematic view of a chaotic quantum dot with two
leads. Each lead is characterized by the number of open channels N1

and N2. �1 and �2 are the barriers’ transparency. The physical sym-
metries of the electron dynamics inside the chaotic cavity is indexed
by �.
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B. Scattering matrix formalism

It is also possible to construct the scattering matrix of the
double barrier quantum dot by a composition of the scatter-
ing matrices of the barriers and the scattering matrix of the
cavity. Following Ref. 28, we employ the stub parametriza-
tion

S = S + T��INT
− S0R��−1S0T . �9�

Here

S = 
r1 0

0 r2
� , �10�

where r� is the N��N� reflection matrix of the contact �, S0
is an NT�NT random matrix belonging to a circular en-
semble �circular orthogonal ensemble �COE�, circular uni-
tary ensemble �CUE�, or circular symplectic ensemble
�CSE��23 which represents the scattering matrix of the cavity
connected to the leads via ideal contacts.25 R�, T�, and T are
NT�NT matrices chosen in such a way that the matrix

� = 
S T�

T R�
� �11�

is unitary, symmetric or unitary self-dual, depending on the
symmetry of the ensemble. This parametrization redundancy
is due to the fact that S is distributed according to the Pois-
son kernel29

P�S� � �det�INT
− S†S��−��NT+2−�� �12�

and thus, by specifying S and � we have sufficient informa-
tion to determine the statistical properties of any transport
observable of the system.

Alternatively, the transfer matrix M of the composite dot-
barriers system29 can be obtained from a simple multiplica-
tive rule, i.e., the product of the transfer matrices of each
object separately, viz., the first barrier, the quantum dot and
the second barrier, as follows:

M = M1MdotM2. �13�

Since the scattering matrix of any object can always be writ-
ten in block form as

S = 
r t�

t r�
� �14�

the corresponding transfer matrix can be obtained using the
following transformation rule:

M = 
 �t†�−1 r��t��−1

− �t��−1r �t��−1 � . �15�

In the next section we shall present three different numerical
methods, based on the Hamiltonian and the scattering matrix
approaches, to generate realizations of the charge-transfer
cumulants.

III. NUMERICAL SIMULATIONS

Using three distinct algorithms, described below, based on
the Hamiltonian and the scattering matrix formalisms dis-

cussed in the previews section, we show results from numeri-
cal simulations of a ballistic chaotic cavity coupled nonide-
ally to electron reservoirs and belonging to each one of the
WD ensembles. A comparison of the relative efficiency of
these three algorithms is presented in Appendix A.

A. Scattering matrix ensembles

We shall now describe how we have constructed the real-
izations of the random scattering matrix ensembles which
were used in our numerical simulations. We shall assume for
simplicity that all scattering channels have the same trans-
mission probability ��,j =��. For the case of symmetric
leads we use the notation �	�1=�2 and N=N1=N2.

1. Hamiltonian formalism

Since we aim at predictions for realistic chaotic systems,
only universal local in spectrum features will be
considered.19 Consequently, we neglect the energy depen-
dence of the scattering matrix by setting E=0 and in addition
we impose universality by implementing Dyson’s scaling
limit. The H elements can be real numbers �GOE�, complex
numbers �GUE�, or real quaternions �GSE� and are deter-
mined by � real random Gaussian variables in each case
�Hi,j

�n��n=0
�−1. In order to satisfy Eq. �3�, we have demanded the

following correlations:

�Hi,j
�n�� = 0,

�Hi,j
�n�Hk,l

�m�� = �n,m�i,k� j,l � C��i,j�2�n,0 − �−1� + �−1� .

�16�

The coupling matrices W� can be constructed by taking
advantage of the orthogonality relations of the discrete Fou-
rier basis. So, we have adopted the following parameteriza-
tion:

�W�� j,k = e−��/2� 2�

	�M + 1�
sin� j�N1��,2 + k�	

M + 1
� , �17�

which is in accordance with Eq. �6� due to the asymptotic
relation M
=	� for M �1.

Therefore, with a numerical routine that samples Gaussian
random numbers we can obtain realizations of the random
scattering matrix of the system by means of the Mahaux-
Weidenmüller �MW� formula �4�. We may thus call this pro-
cedure the MW method.

2. Scattering formalism

In this approach we use the Hurwitz parameterization30,31

to generate random unitary matrices S0
u=U belonging to the

CUE. Random matrices from the COE can be parametrized
in terms of CUE random matrices U as follows:

S0
o = UTU , �18�

where T stands for the transposition operation. For matrices
from the CSE, we have

S0
s = UDU , �19�

where the superscript D indicates the quaternion duality op-
eration.
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The scattering matrices of the contacts can be written in
block form as

S� = 
r� t��

t� r��
� �20�

where r�, r�� , t�, and t�� are N��N� matrices which we
assume to be given by

r� = r�� = �1 − ��IN�
,

t� = t�� = i���IN�
, �21�

where IN�
is a unit matrix. We have implemented two pro-

cedures, based on the scattering formalism, to concatenate
the cavity to the leads via nonideal contacts. The first one,
denoted the stub �ST� method, is based on the parameteriza-
tion Eq. �9�. Accordingly, we have chosen R�=S and

T = T� = 
t1 0

0 t2
� . �22�

The other procedure is the transfer matrix �TM� method,
in which the scattering matrices of the cavity and the barriers
are converted into transfer matrices by the transformation,
Eq. �15�, and using the multiplication law, Eq. �13�, the glo-
bal M is calculated, yielding the global S by the inverse
conversion.

B. Sampling

We have performed samplings of the first four CTC from
the numerical realizations of the random scattering matrix.
From these samplings we extracted the CTC distributions for
arbitrary barrier transparencies, number of open scattering
channels and WD classes. We remind the reader that the first
CTC is the dimensionless conductance g=q1, the second is
the dimensionless shot-noise power p=q2, the third and the
fourth CTC are denoted q3 and q4, respectively. From Eq. �1�
we have the explicit expressions

f1��� = � ,

f2��� = ��1 − �� ,

f3��� = ��1 − ���1 − 2�� ,

f4��� = ��1 − ���1 − 6� + 6�2� . �23�

Our main focus in this work is the extreme quantum regime
�small number of scattering channels�, where to the CTC
distributions are broad and exhibit nonanalytical features,
which are in sharp contrast with the Gaussian profiles found
for a large number of open channels and with ideal contacts,9

although nonanalytic points have been found in this regime
as well.6

Before analyzing our results let us compare the simula-
tions with known exact results from the literature. In Fig. 2
we compare our data with exact analytical results for the
distributions of the conductance and the shot-noise power of
a ballistic chaotic cavity with two ideal contacts.9 Note the
excellent agreement in all curves. For a chaotic quantum dot
with a single nonideal contact, Ref. 32 gives an exact inte-
gral representation for the distribution of the transmission

(a) (b) (c)

(d)

FIG. 3. Distributions of the first four CTC for a single-channel chaotic quantum dot with barriers’ transparency �=2 /3 and �=1, 2, and
4. The scatter is the simulation data and the solid lines are exact results �Ref. 32�. All vertical axis are logarithmically scaled.

(a) (b)

FIG. 2. Distributions of the conductance, g, and shot-noise
power, p, of a quantum dot with ideal contacts. The numbers label-
ing the curves are values of N2, while N1=4 for both graphs. We
used �=1 for P1 and �=2 for P2. The scatter is the simulation data
and the solid lines are exact results �Ref. 9�.
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probability, ����, for all three WD ensembles. Using this re-
sult, the exact distributions of the CTC can be obtained �see
Eq. �24� with N=1�. In Fig. 3 we compare these exact results
with our simulations and an excellent agreement can again
be observed. Furthermore, exact integral expressions for the
statistical characteristics �average and variance� of the first
two CTC for imperfect multichannel contacts have been re-
cently obtained using the supersymmetry method for both
the orthogonal and unitary ensemble,33 which are also found
to be in perfect agreement with our simulation.

Let us now consider some illustrative examples of the
results. In Fig. 4 we show data from our simulations for the
average CTC of a quantum dot with two nonideal contacts
under various conditions. The analytical results for ideal con-
tacts obtained in Refs. 8 and 19 are shown as solid lines in

the panels. In Fig. 5, we illustrate the typical dependence of
the average CTC on the barriers’ transparencies, which are
always continuous and smooth functions. The CTC distribu-
tions for nonideal contacts with number of channels depen-
dence are showed in Fig. 6. We emphasize the tendency to
Gaussian shape as the number of channels increases. This
feature is also present in systems with ideal contacts as we
can see in Fig. 2. Finally, in Fig. 7 we illustrate the behavior
of the CTC distribution functions, more specifically the third
and the fourth CTC, as a function of the barrier transparency.
Note the disappearance of the Gaussian shape as the barrier
transparency decreases. In Secs. IV and V we shall describe
some striking features of the CTC distributions in the ex-
treme quantum limit, namely, a similarity law for conduc-

(a) (b) (c)

(d)

FIG. 4. Averages of the first four CTC versus N1 for various values of N2, �1, �2, and �. The scatter is the simulation data and the solid
lines are guides to eyes of the exact results for ideal contacts �Refs. 8 and 19�.

(a) (b) (c)

(d)

FIG. 5. Ensemble average of the first four charge-transfer cumulants versus �1 and �2 for a chaotic quantum dot with two scattering
channels in each lead and �=1.
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tance distributions and the appearance of nonanaliticities in
some CTC distributions.

IV. SIMILARITIES BETWEEN CONDUCTANCE
DISTRIBUTIONS

The decrease in the average conductance as the number of
channels, N, or the barriers’ transparency, �, reduces is
physically quite intuitive, because increasing N or � en-
hances the transmission probability which in turn increases
the average conductance. More specifically, let �g�N,� denote
the average conductance, then from the argument above if
we fix N and � we can always find for each N� a physically
meaningful value for �� such that �g�N,�= �g�N�,��. As a con-
crete example consider the semiclassical limit, where the av-
erage conductance is given by Ohm’s composition law of
two identical resistors in series, with resistance R=1 / �N��,
therefore �g�=1 / �2R�=N� /2 and thus ��=N� /N�. Never-
theless, the average is just the first moment of a distribution
and it would be interesting to investigate whether this rescal-
ing extends to the full conductance distribution.

We proceed by fixing N and �, setting N��N, and vary-
ing ����. We observed that provided N� is sufficiently
close to N some remarkable similarities between the conduc-
tance distributions emerged. Using the notation �N ,��, Fig. 8
shows strong similarities between the conductance distribu-
tion for the pairs ��3,0.63�,�2,1��, ��3,0.31�,�1,1��, and
��2,0.46�,�1,1�� which suggest an approximate scaling law for
the conductance distribution

P1�g;N,�� � P1�g;N�,�� = N�/N��

with N� close to N. Note that the relation ��=N� /N� is
reminiscent of Ohm’s law. We did not find similar approxi-

mate scaling laws for the other CTC distributions.

V. NONANALYTICITIES IN THE CTC DISTRIBUTIONS

The presence of nonanalyticities in the CTC distribution
for ideal contacts has been noticed before in the
literature.8,9,11–14 We show in Fig. 9 our results for the first
four CTC distributions for a double channel chaotic cavity
with symmetric barriers in the orthogonal ensemble and for
several values of the barrier transparency. The presence of
nonanalytic points is clearly visible. In Ref. 9 a geometrical
interpretation was presented for the positions of the nonana-
lyticities in the distributions of the first two CTC. In this
section, we generalize this idea for any CTC distribution and
calculate the positions of all nonanalyticities.

Our starting point is the general formula for the distribu-
tion of the mth order CTC, qm, which is given by

Pm�qm� = �
C

d��������
qm − �
i=1

N

fm��i�� �24�

where we abbreviated �� 	��i�, C denotes the N-dimensional
hypercube of edge length 1 and ����� is the joint distribution
of transmission eigenvalues. The two factors in the integrand
of Eq. �24� carry very different types of physical informa-
tion. The joint distribution of transmission eigenvalues con-
tains all the statistically relevant physical information about
the system including the transparencies of the barriers and all
the effects of the underlying chaotic dynamics. The � func-
tion, on the other hand, does not express any physical feature
of the system except for the number of open channels N.
Geometrically, Eq. �1� describes a hypersurface in RN+1 if we
take qm as an additional variable or a hypersurface in RN if
we fix the value of qm. We will refer to these geometrical
objects as HSN+1

�m� and HSN
�m� for the first and the last case,

respectively. Differently from HSN+1
�m� which has just a single

branch, HSN
�m� can have several branches which can be trun-

cated by the N-dimensional hypercube 0��i�1. For the first
two CTC, HSN

�1� and HSN
�2� are represented by families of

hyperplanes and hyperspheres, respectively. However, for

(a) (b)

FIG. 6. Distributions of the conductance, g, and shot-noise
power, p, of a quantum dot with symmetric leads, barriers’ trans-
parency �=0.5 and �=4. The numbers labeling the curves are val-
ues of the number of channels in each lead.

(a) (b)

FIG. 7. Distributions of the third and fourth CTC of a chaotic
quantum dot with �=1, eight scattering channels in each lead and
barriers of transparency �.

FIG. 8. Conductance distributions for symmetric chaotic quan-
tum dots with �=1. Each distribution is characterized by the pa-
rameters �N ,��. Note the similarities between distributions for cer-
tain systems with different �N ,��. The values for the nonideal
transparencies ���1� were estimated by the minimization of the
distance between the distributions, which was quantified by means
of the relative entropy �Ref. 34�.
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m�2 there is an intricate variety of geometrical shapes as
the value of qm is varied. In Fig. 10 we show the curves HS2

�3�

and HS2
�4� determined by some fixed values of q3 and q4,

respectively. Note that in some regions the curves are trun-
cated by the unit square represented by the area shown in the
figures. In the case of q3, HS2

�3� starts as a dot at the minimum
of HS2+1

�3� , located in the intersection of the loops in the right
upper part of Fig. 10�a�. Increasing q3 it reaches a configu-
ration with two saddle points of HS2+1

�3� and then it collapses
to a dot at the maximum of HS2+1

�3� , located in the left lower
part of Fig. 10�a�, through a series of shrinking loops. Simi-
larly, for the fourth CTC, HS2

�4� starts as a dot at the mini-
mum of HS2+1

�4� in the center of the square, reaches a configu-
ration containing four saddle points of HS2+1

�4� , and finally it
evolves toward four dots at the maxima of HS2+1

�4� , which are
located near the corners of the square.

In order to distinguish between the possible causes of the
nonanalitycities, we define the following “geometrical” dis-
tribution function:

Pm
G�qm� 	 �dVG

dqm
� = � d

dqm
�

C

d���
qm − �
i=1

N

fm��i��� ,

�25�

where VG is the volume limited by the hypersurface HSN
�m�.

Let us start our analysis with the first CTC, the conduc-
tance. When g increases the hyperplane HSN

�1� translates in
RN+1. When it crosses a vertex of the hypercube 0��i�1,
VG�g� changes its slope which in turn generates a disconti-
nuity in P1

G�g�= �dVG�g� /dg�. Therefore, the conductance dis-
tribution, P1�g�, exhibits �possibly weak� nonanalyticities at
g=�, with 0���N in agreement with Ref. 9.

Consider now the CTC with m�1. The vertices of the
hypercube can cause nonanalyticities only at qm=0 because
when m�1 we have the following property:

fm�1� = fm�0� = 0. �26�

In addition to the vertices of the hypercube, we observed two
kinds of singular situations in which the second derivative of
VG does not exist. The first one occurs when HSN

�m� passes
through an extreme or a saddle point in HSN+1

�m� . This kind of
singularity is analogous to the Van Hove singularities in the
density of electronic states of a crystalline solid.35 The sec-
ond one corresponds to the situations when HSN

�m� touches a
boundary of the hypercube different from a vertex �see Fig.
10�. In the first case, the nonanalytic points are found by
demanding the gradient vector field of the hypersurface to
vanish. In the second one, the gradient is perpendicular to the
vectors that generate the boundaries of the hypercube �ex-
cluding vertices�, i.e., edges, faces, cubes, tesseracts, etc.
Note that as the dimension N of the hypercube increases by
one, there is another element which could be touched. So,
singularities of this kind are inherited as we move from N to
N+1 open channels.

Let us now be more specific. We start with the simple case
N=1, in which Eq. �1� defines a continuous set of points
given by qm= fm���. Equation �26� can then be expressed as

(a) (b)

FIG. 10. Level curves determined by the Levitov-Lesovic for-
mula, Eq. �1�, with N=2 and increasing values of �a� the third CTC,
q3, and �b� the fourth CTC, q4.

(a) (b) (c)

(d)

FIG. 9. Distributions of the first four CTC for a chaotic quantum dot in the orthogonal WD ensemble with two scattering channels in each
lead and barriers’ transparency �=0.2, 0.6, and 1.
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Pm
G�qm� = �

j=1

m
1

�dfm

d�
�� j

����0

1

d���� − � j
�� , �27�

where � j
� are roots of the polynomial equation qm− fm���=0.

Varying qm, some roots can enter or leave the interval �0,1�,
thus generating nonanalyticities in Pm

G. For arbitrary N, let
Z= ��i

��i=1
l , with �i

�� �0,1�, denote the set of the l roots of the
first derivative of fm���. Since the dimension of the elements
that can be touched takes values from 1 to N−1, the special
values of qm obtained from all the conditions explained pre-
viously must satisfy the relation

qm
� = �

i=1

l

�i fm��i
�� �28�

where

0 � �
i=1

l

�i � N �29�

To be more explicit, let us calculate the special values qm
�

for the second, third and fourth CTC when N�1. In the
shot-noise case Z= �1 /2� and f2�1 /2�=1 /4. From Eqs. �29�,
it is easy to see that q2

�=� /4 where 0���N, in agreement
with Ref. 9. For the third CTC Z= �1 /2��3 /6�,
f3�1 /2��3 /6�= ��3 /18 and so, we have q3

�= ��1
−�2��3 /18, where 0��1+�2�N. Analogously, we have for
the fourth CTC Z= �1 /2,1 /2�1 /�6�, f4�1 /2�=−1 /8,
f4�1 /2�1 /�6�=1 /24 and consequently q4

�= �−3�1+�2
+�3� /24 with 0��1+�2+�3�N.

The criteria established above locate all nonanalyticities
of Pm that we found in our simulations for the first four CTC.
We emphasize that the argument is mostly geometric with
the number of open channels being the only physical input.
This can be easily seen in Figs. 3 and 9, where nonanalytici-
ties appear at the same values of qm, regardless of the value
of the barriers’ transparency � or the symmetries of the cav-
ity. However, it must be understood that the existence of the
special points shown in Eq. �29� does not necessarily imply
strong nonanaliticities in Pm�qm�, since the joint distribution
of transmission eigenvalues might smooth out the irregular-
ity and also because the discontinuity in Pm

G�qm� may turn out
to be very weak. This is particularly evident in the semiclas-
sical regime where the number of open channels is large and
a self-averaging takes place turning all distributions into
Gaussians, albeit in this case nonanalyticities of a different
kind have recently been shown to appear6 both in the con-
ductance and in the shot-noise power distributions. The pos-
sible special points of the first four CTC distributions accord-
ing to the above described criteria are explicitly exhibited in
the Appendix B.

VI. SUMMARY AND CONCLUSIONS

We presented a detailed study of the most relevant fea-
tures of the distributions of the first four charge-transfer cu-
mulants �CTCs� of a chaotic quantum dot with nonideal con-
tacts. Physically, these distributions arise from the

underlying spatial quantum coherence of the charge transport
through the device. Our numerical analysis was performed
via simulations based on three different algorithms. We ob-
served two striking features in the extreme quantum limit: an
approximate scaling law for conductance distributions and
the appearance of a finite number of nonanalytical points in
some CTC distributions. These nonanalyticities have been
given a simple geometrical interpretation, which allowed for
a precise determination of its position. Recent remarkable
advances in the measurement techniques of high order CTC
�Refs. 36 and 37� give us hope that some of our predictions
might be experimentally verified in the future. The proper
separation of quantum noise from other sources of noise
within the experimental resolution is of course one of the
biggest technical challenges. Particularly subtle is the proper
control over dephasing effects, which may have several
physical origins, including electron-electron interactions, and
provides a natural drift toward Gaussian CTC distributions
even in the extreme quantum limit.10 Besides contributing to
dephasing, electron-electron interactions can also have a siz-
able effect in the phase-coherent regime by affecting the
skewness �third cumulant� of the conductance distribution, as
observed by Mohanty and Webb in quasi-one-dimensional
gold wires.38 In the random-matrix description of open quan-
tum dots, the effects of long-range Coulomb interactions can
be implemented via capacitive couplings, as described in de-
tail in Ref. 17.

We can envisage several ways to extend our work: the
normal-metal terminals can be replaced by superconducting
or ferromagnetic ones, the number of terminals can be in-
creased, the single dot can be replaced by a network of dots
of arbitrary topology, external fields can be introduced to
drive the system to crossover regimes, dephasing can be
modeled by fictitious terminals or stubs, and so on. Our cen-
tral message is that the extreme quantum limit of mesoscopic
transport contains important nonperturbative physics and ap-
propriate tools to extract this information, numerical or ana-
lytical, still needs to be developed and constitutes a big chal-
lenge to the physicists working on this field.
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APPENDIX A: COMPARISON BETWEEN THE
SAMPLING METHODS

In this work we implemented three sampling methods
�MW, ST, and TM� to generate realizations of the scattering
matrix of an open chaotic cavity with nonideal contacts. The
realizations were generated by running a FORTRAN code on a
CPU with a clock rate of 2.6 GHz under a GNU/Linux op-
erating system. We shall now compare these methods assum-
ing, for simplicity, that the system consists of a chaotic cav-
ity with symmetric contacts. The main numerical difficulty in
the MW method comes from the fact that the number of
resonance levels M inside the cavity must be very large in
order to generate the Poison kernel. Nevertheless, the use of
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105 realizations and the “rule of thumb” M =4N is enough to
produce at least 98% of accuracy in the calculations of the
average conductance for ideal contacts and we have adopted
these as a standard for all MW simulations. Notwithstanding
this finite M approximation, Fig. 11 shows that the distribu-
tions obtained from the MW method are very close to the
distributions obtained from the TM and ST methods, which
can be shown to have only the usual statistical and numerical
errors.

We observed that the processing time per realizations
TCPU grows with the number of channels according to the
following power law:

TCPU�N� = �N�. �A1�

Using estimated values of the parameters � and � we ana-
lyzed the efficiency of the methods, with regard to the pro-
cessing time, and we concluded that the ST method is uni-
versally the most efficient. We can define a measure of the
efficiency of the ST method relative to the MW or TM meth-
ods as follows:

� 	
TCPU

�MW or TM�

TCPU
�ST� − 1. �A2�

In Fig. 12 we show that for 1�N�30 the efficiency of
the ST method is between 7.5% and 32.5%, relative to TM,
and between 150% and 310%, relative to MW.

APPENDIX B: SPECIAL VALUES OF THE CUMULANTS

Define Qm,N as the set of values of qm, with N
=min�N1 ,N2�, at which a nonanalyticity may appear in the
corresponding distribution. From the geometrical analysis
explained in Sec. V, the possible values of Qm,N for the first
four CTC are given by

Q1,N = �0,1, . . . ,N� ,

Q2,N = �0,1/4, . . . ,N/4� ,

Q3,N = �0, � �3/18, . . . , � �3N/18� ,

Q4,1 = �− 1/8,0,1/24� ,

Q4,2 = Q4,1 � �− 1/4,− 1/12,1/12� ,

Q4,3 = Q4,2 � �− 3/8,− 5/24,− 1/24,1/8� ,

Q4,4 = Q4,3 � �− 1/2,− 1/3,− 1/6,1/6� ,

Q4,5 = Q4,4 � �− 5/8,− 11/24,− 7/24,5/24� ,

Q4,6 = Q4,5 � �− 3/4,− 7/12,− 5/12,1/4� ,

Q4,7 = Q4,6 � �− 21/24,− 17/24,− 13/24,7/24� ,

Q4,8 = Q4,7 � �− 1,− 5/6,− 2/3,1/3� ,

Q4,9 = Q4,8 � �− 9/8,− 23/24,− 19/24,3/8� ,

Q4,10 = Q4,9 � �− 5/4,− 13/12,− 11/12,5/12� .

1 F. Lefloch, C. Hoffmann, M. Sanquer, and D. Quirion, Phys.
Rev. Lett. 90, 067002 �2003�.

2 L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev.
Lett. 79, 2526 �1997�.

3 A. H. Steinbach, J. M. Martinis, and M. H. Devoret, Phys. Rev.
Lett. 76, 3806 �1996�; R. J. Schoelkopf, P. J. Burke, A. A.
Kozhevnikov, D. E. Prober, and M. J. Rooks, ibid. 78, 3370
�1997�.

4 G. Burkard, D. Loss, and E. V. Sukhorukov, Phys. Rev. B 61,
R16303 �2000�.

5 L. S. Levitov and G. B. Lesovik, Pis’ma Zh. Eksp. Teor. Fiz. 58,
225 �1993� �JETP Lett. 58, 230 �1993��; L. S. Levitov, H. W.
Lee, and G. B. Lesovik, J. Math. Phys. 37, 4845 �1996�; L. S.
Levitov, in Quantum Noise in Mesoscopic Systems, edited by
Yu. V. Nazarov �Kluwer, Dordrecht, 2003�.

6 P. Vivo, S. N. Majumdar, and O. Bohigas, Phys. Rev. Lett. 101,
216809 �2008�.

7 V. A. Osipov and E. Kanzieper, Phys. Rev. Lett. 101, 176804
�2008�.

8 H. U. Baranger and P. A. Mello, Phys. Rev. Lett. 73, 142 �1994�.

(a) (b)

FIG. 11. Distributions of the conductance and the fourth CTC of
a chaotic quantum dot with two scattering channels in each lead,
barriers’ transparency �=0.4 and �=4 using the three numerical
methods explained in the text with 105 realizations.

(a) (b)

FIG. 12. Number of channels dependence of the efficiency of
the ST method relative to the MW and TM methods based on Eq.
�A2�. The numbers labeling the curves are the values of �.

DISTRIBUTION OF CHARGE CUMULANTS OF A CHAOTIC… PHYSICAL REVIEW B 80, 125320 �2009�

125320-9



9 H.-J. Sommers, W. Wieczorek, and D. V. Savin, Acta Phys. Pol.
A 112, 691 �2007�.

10 A. G. Huibers, S. R. Patel, C. M. Marcus, P. W. Brouwer, C. I.
Duruöz, and J. S. Harris, Phys. Rev. Lett. 81, 1917 �1998�.

11 K. A. Muttalib, P. Wölfle, A. García-Martín, and V. A. Gopar,
Europhys. Lett. 61, 95 �2003�.

12 K. A. Muttalib and P. Wölfle, Phys. Rev. Lett. 83, 3013 �1999�.
13 P. Markos, Phys. Rev. Lett. 83, 588 �1999�.
14 A. García-Martín and J. J. Sáenz, Phys. Rev. Lett. 87, 116603

�2001�.
15 Yu. V. Nazarov, Superlattices Microstruct. 25, 1221 �1999�.
16 P. W. Brouwer and C. W. J. Beenakker, J. Math. Phys. 37, 4904

�1996�.
17 J. N. Kupferschmidt and P. W. Brouwer, Phys. Rev. B 78,

125313 �2008�.
18 K. B. Efetov, Supersymmetry in Disorder and Chaos �Cam-

bridge University Press, Cambridge, 1997�.
19 G. C. Duarte-Filho, A. F. Macedo-Junior, and A. M. S. Macêdo,

Phys. Rev. B 76, 075342 �2007�.
20 D. V. Savin, H.-J. Sommers, and W. Wieczorek, Phys. Rev. B

77, 125332 �2008�.
21 M. Novaes, Phys. Rev. B 75, 073304 �2007�; 78, 035337

�2008�.
22 J. G. G. S. Ramos, A. L. R. Barbosa, and A. M. S. Macêdo,

Phys. Rev. B 78, 235305 �2008�.

23 M. L. Metha, Random Matrices �Academic, New York, 1991�.
24 F. Haake, Quantum Signatures of Chaos �Springer, Berlin, 1991�.
25 C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 �1997�.
26 J. J. M. Verbaarschot, H. A. Weidenmüller, and M. R. Zirnbauer,

Phys. Rep. 129, 367 �1985�.
27 A. M. S. Macêdo, Phys. Rev. B 63, 115309 �2001�.
28 P. W. Brouwer, Phys. Rev. B 51, 016878 �1995�.
29 P. A. Mello and N. Kumar, Quantum Transport in Mesoscopic

Systems: Complexity and Statistical Fluctuations �Oxford Uni-
versity Press, New York, 2004�.

30 A. Hurwitz, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. 71,
309 �1898�.

31 K. Zyczkowski and M. Kus, J. Phys. A 27, 4235 �1994�.
32 P. W. Brouwer and C. W. J. Beenakker, Phys. Rev. B 50, 11263

�1994�.
33 J. G. G. S. Ramos, F. A. G. Almeida, and A. M. S. Macêdo

�unpublished�.
34 S. Kullback and R. Leibler, Ann. Math. Stat. 22, 79 �1951�.
35 L. Van Hove, Phys. Rev. 89, 1189 �1953�.
36 S. Gustavsson, R. Leturcq, B. Simovic, R. Schleser, T. Ihn, P.

Studerus, K. Ensslin, D. C. Driscoll, and A. C. Gossard, Phys.
Rev. Lett. 96, 076605 �2006�.

37 S. Gustavsson, R. Leturcq, T. Ihn, K. Ensslin, M. Reinwald, and
W. Wegscheider, Phys. Rev. B 75, 075314 �2007�.

38 P. Mohanty and R. A. Webb, Phys. Rev. Lett. 88, 146601 �2002�.

ALMEIDA, RODRÍGUEZ-PÉREZ, AND MACÊDO PHYSICAL REVIEW B 80, 125320 �2009�

125320-10


