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Enhanced spin Hall effect by tuning antidot potential: Proposal for a spin filter
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We propose an efficient spin filter including an antidot fabricated on semiconductor heterostructures with
strong spin-orbit interaction. The antidot creates a tunable potential on two-dimensional electron gas in the

heterostructures, which may be attractive as well as repulsive. Our idea is based on the enhancement of
extrinsic spin Hall effect by resonant scattering when the attractive potential is properly tuned. Numerical
studies for three- and four-terminal devices indicate that the efficiency of the spin filter can be more than 50%

by tuning the potential to the resonant condition.
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I. INTRODUCTION

The injection and manipulation of electron spins in semi-
conductors are important issues for spin-based electronics,
“spintronics.”! The spin-orbit (SO) interaction plays an im-
portant role in the manipulation of the spins. For conduction
electrons in direct-gap semiconductors, the SO interaction is
expressed in the same form as that in vacuum, that is,

Hyo= - [p X V], (1)

where V(r) is an external potential and o indicates the elec-
tron spin s=0/2. The coupling constant A is significantly
enhanced by the band effect, particularly in narrow-gap
semiconductors such as InAs,2 compared with that in
vacuum, )\| =h?/ (4m%c2), with my, as the electron mass and ¢
as the velocity of light.

In two-dimensional electron gas (2DEG) in semiconduc-
tor heterostructures, an electric field perpendicular to the
2DEG results in the Rashba SO interaction.? For the electric
field £ in the z direction, the substitution of V(r)=e&z into
Eq. (1) yields

o
HSO = %(pyo-x - pxo-_v) ’ (2)

with a=e&EN. Large values of a have been reported in
experiments.*~® In the spin transistor proposed by Datta and
Das,’ electron spins are injected into the semiconductor het-
erostructures from a ferromagnet and manipulated by tuning
the strength of Rashba SO interaction by adjusting the elec-
tric field £. The spins are detected by another ferromagnet. It
is well known, however, that the efficiency of spin injection
from a ferromagnetic metal to semiconductors is very poor,
less than 0.1%, due to the conductivity mismatch.® To over-
come this difficulty, the SO interaction may be useful for the
efficient spin injection, besides the spin manipulation, in the
spin transistor. Several spin filters have been proposed utiliz-
ing the SO interaction, e.g., three- or four-terminal devices
based on the spin Hall effect (SHE),’!? a triple-barrier tun-
nel diode,'3 a quantum point contact,'*!> a three-terminal
device for the Stern-Gerlach experiment using a nonuniform
SO interaction,'® and an open quantum dot.!” Yamamoto and
Kramer proposed a three-terminal spin filter with an antidot,
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using a SHE caused by the scattering of electrons at a repul-
sive potential created by the antidot.'®

The SHE is one of the phenomena to create a spin current
due to the SO interaction. There are two types of SHE. One
is an intrinsic SHE which creates a dissipationless spin cur-
rent in the perfect crystal.!®? Murakami et al., for example,
proposed that the drift motion of holes in SO-split valence
bands induces an intrinsic SHE.!” The SHE of the hole sys-
tem has been observed experimentally by Wunderlich et al.,
using a p-n junction light-emitting diode.?' The other type is
an extrinsic SHE caused by the spin-dependent scattering of
electrons by impurities.?>?> For a centrally symmetric poten-
tial around an impurity, V(r) (r=\x>+y*+z?), Eq. (1) is re-
written as

2dV
HSO=—)\__I‘S, (3)
rdr

where I=(r Xp)/#f is the angular momentum. This results in
the skew scattering: accompanied by the scattering from di-
rection n to n’, the spin is polarized in (n Xn')/|n X n'|.20%
In an optical experiment on the Kerr rotation, Kato et al.
observed a spin accumulation at sample edges along the elec-
tric current in n-type GaAs,?® which is ascribable to the ex-
trinsic SHE. The experimental result has been quantitatively
explained by a semiclassical theory considering the skew
scattering and “side jump” effects.?

In our previous paper,”’ we have quantum-mechanically
formulated the extrinsic SHE for 2DEG in semiconductor
heterostructures. We have examined the SHE due to the scat-
tering by an artificial potential created by an antidot, scan-
ning tunnel microscope (STM) tip, etc. An antidot is a small
metallic electrode fabricated above 2DEG, which creates an
electrically tunable potential on 2DEG. The potential is usu-
ally repulsive, but it could be attractive when a positive volt-
age is applied to the antidot. We have found that the SHE is
significantly enhanced by resonant scattering when the at-
tractive potential is properly tuned.

We have stressed that the extrinsic SHE is easier to un-
derstand in 2DEG than in three-dimensional case. Let us
consider an axially symmetric potential V(r)(r=x*>+y?) cre-
ated by an antidot on conduction electrons in the xy plane.
The SO interaction in Eq. (1) becomes
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FIG. 1. Our model for (a) three- and (b) four-terminal devices
for the spin filter. They are fabricated on two-dimensional electron
gas in the xy plane. Both the devices include an antidot at the center
of junction, which is a square area surrounded by broken lines.
Three or four ideal leads connect the junction to reservoirs. Reser-
voir 1 is a source from which unpolarized electrons are injected into
the junction. The voltages are equal in the drains; reservoirs 2 and 3
in model (a) and reservoirs 2, 3, and 4 in model (b).

2dV
Hso=—N——Ls.=V(r)ls,, (4)
rdr

where [, and s, are the z component of angular momentum
and spin operators, respectively. V,(r)=—(2\/r)V’(r), which
has the same sign as V(r) if |V(r)| is a monotonically de-
creasing function of r and N>0. Assuming that V(r) is
smooth on the scale of the lattice constant, we adopt the
effective mass equation,

2

h
=3 A+ V(r)+ Vi(r)Ls. |(r) = Ey(r), (5)
m

for an envelope function (r) with m" as the effective mass.
In Eq. (5), I, and s, are conserved in contrast to the three-
dimensional case with Eq. (3). For s,==*1/2, an electron
experiences the potential of V(r) =V (r)l./2. As a conse-
quence, the scattering of components of /,>0(/,<0) is en-
hanced (suppressed) by the SO interaction for s.=1/2 when
V,(r) has the same sign as V(r). The effect is opposite to that
for s,=—1/2. This is the origin of the extrinsic SHE. We have
formulated the SHE in terms of phase shifts in the partial-
wave expansion for 2DEG and shown that the SHE is largely
enhanced by resonant scattering.”” These results are summa-
rized in Appendix A.

In the present paper, we consider three- and four-terminal
devices including an antidot, as shown in Fig. 1, and exam-
ine the enhancement of the SHE. We evaluate an efficiency
of the spin-filtering effect by resonant scattering in the case
of attractive potential. Although our three-terminal device is
very similar to the spin filter proposed by Yamamoto and
Kramer,'® they have only studied the case of repulsive po-
tential. We show that our device can be a spin filter with an
efficiency of more than 50% by tuning the potential to the
resonant condition.

We numerically solve the effective mass equation, Eq. (5)
with an appropriate boundary condition for our devices. A
confining potential for the leads (quantum wires) could in-
duce the SO interaction, following Eq. (1).3°33 However, its
effect on the electrons is much smaller than the SO interac-
tion induced by the antidot potential because the amplitude
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of the wave function is small around the edges of the leads.
Therefore, we consider the antidot-induced SO interaction
only. We also assume that the antidot potential V(r) is inde-
pendent of z. Otherwise, it would create the Rashba-type SO
interaction, Eq. (2) with a=\(dV/dz), in addition to Eq. (4).
The Dresselhaus SO interaction is also disregarded, which is
induced by the inversion asymmetry of the crystal.>* These
effects will be discussed in the final section.

The electron-electron interaction is not taken into account.
The Coulomb blockade is not relevant to the case of antidot,
in contrast to that of conventional quantum dot which is
connected to the leads via tunnel barriers.?> In our model,
therefore, the influence of the electron-electron interaction is
only quantitative and could be considered by the mean-field
level, as discussed in the final section. Note that there have
been several researches for the spin-current generation based
on the electron-electron interaction in the absence of SO in-
teraction, e.g., using single or double quantum dots**-3® and
quantum wires.3-4

The organization of the present paper is as follows. In
Sec. II, we describe our model for three- and four-terminal
devices and calculation method. The calculation of spin-
dependent conductance in multiterminal devices is formu-
lated using the Green’s function in the tight-binding
model.**~#7 In Sec. III, we present numerical results of the
conductance and spin-filtering effect when the strength of
antidot potential is tuned. We also investigate the density of
states (DOS) in the junction area of the devices to illustrate
virtual bound states. The existence of the virtual bound states
at the Fermi level is a strong evidence that a resonant scat-
tering takes place when the spin-filtering effect is remarkably
enhanced. In addition, we perform a channel analysis of the
spin-dependent conductance to closely examine the reso-
nance. The final section (Sec. IV) is devoted to the conclu-
sions and discussion.

II. MODEL AND CALCULATION METHOD

In this section, we explain our model and calculation
method. We numerically solve the effective mass equation in
the tight-binding model for the devices. In the presence of
the SO interaction in Eq. (4), the z component of electron
spin s, is conserved although [, is not a good quantum num-
ber owing to the lack of rotational symmetry in our devices.
Hence we can solve the equation for s,= = 1/2 separately.

A. Model

We consider three- and four-terminal devices with an an-
tidot, fabricated on semiconductor heterostructures, as shown
in Fig. 1. Three or four leads (quantum wires) of width W are
joined to one another at a junction, which is a square area
surrounded by broken lines in the figure. The leads are
formed by hard-wall potential and connected to the reser-
voirs. Reservoir 1 is a source from which unpolarized elec-
trons are injected into the junction. The electrons are outgo-
ing to the drains; reservoirs 2 and 3 (2, 3, and 4) in the
three-terminal (four-terminal) device. The voltages are equal
in all the drains.
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An antidot creates an axially symmetric potential V(r),
where r is the distance from the center of the junction. It is
assumed to be attractive and given by a smooth potential
well,

p
: -
0 r 0 >
\% -R AR
V(r) =9 f{l—sin(erRoo)} <|r—Ro|sTO>
( ARO)
0 r—=Ry>—1,
L 2

(6)

with V;<<0. The radius of the potential well is Ry=W/4, and
we choose ARy=0.7R,. The gradient of V(r) gives rise to the
SO interaction in Eq. (4).

For the numerical study, we discretize the two-
dimensional space with lattice constant a (tight-binding
model with a square lattice). The width of the leads is W
=(N+1)a with N=29; the wave function becomes zero at the
zeroth and (N+1)th sites in the transverse direction of the
leads. The Hamiltonian is

H=t2(4+ )Cl]o-zj(r IE( jl+1]0‘cl](rl+1j(7'

ij,o i,j,o
+T]l]+10'cl]0'lj+lO'+HC) (7)

where c* - and ¢; ;., are creation and annihilation operators

of an electron at site (i,j) with spin o. Here, t=h?%/2m"a*

where m™ is the effective mass of electrons. V is the poten-
tial energy at site (i,/) in units of ¢. The transfer term in the
x direction is given by

Tijirrjix =1 £ INVigojer = Vieraj-1)s (®)
whereas that in the y direction is
Tijijere =1 % iINVigjuz = Vicrja0)s ©)

where N=\/(44?) is the dimensionless coupling constant of
the SO interaction. VM 1, is the average of the potential

energy at sites (i,j) and (i+1,/), and 17,-,j+1/2 is that at sites
(i,j) and (i,j+1).

The SO interaction is absent in the leads. The wave func-
tion of conduction channel w in the leads is written as

(i",j") = explik,aj")u,(i"), (10)

2 4
ui') =\ lsin<;’fl), (11)

where i’ and j’ denote the site numbers in the transverse and
longitudinal directions of the leads, respectively. The wave
number k, is determined from the condition that the disper-
sion relation
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E (k) =4t =21 cos<N7Tf 1 ) “2tcostka)  (12)
is identical to the Fermi energy Ey. The band edge of channel
 is defined by E ,(k=0). The band edge is located below Ep
for the conduction channel. For E M(k:O) > Ef, on the other
hand, mode wu is an evanescent mode. The wave function of
the evanescent mode is given by

(i'j") = exp(= k,aj u,(i'), (13)

where aj’ is the distance from the junction along the lead
and «,, satisfies E,(ix,)=Ep.

B. Calculation method

For numerical studies, we introduce the Green’s function.
The Green’s function for the junction area is defined by

G (E) = [EI—H,,—E Epr, (14)

where H,; is the truncated matrix of the Hamiltonian for the
junction area (N? X N?) with spin o, and 27 is the self-energy
due to the coupling to the lead p:

— ¥ —1
Ep——tTpUAU T, (15)

Here U is a unitary matrix, U=(u,,u,, ... ,uy), where u,
=[u,(1),u,2),....u,(N)]. A=diag(\;,\,,...,\y), where
A —exp(zk a) for conductron channels and )\ n=exp(=k,a)
for evanescent modes. T is a coupling matrix (N X N?) be—
tween lead p and the junction: 7,(p;,i)=1 for p; being an
adjacent site in lead p to site i in the junction; 7,(p;,i)=0
otherwise.**

The spin-dependent conductance from reservoir p to res-
ervoir g is obtained from the Landauer-Biittiker formula. It is
written as

2
G = %Tr[rqég(E)F"éZ(E)], (16)
where
I =i[3r-3pf. (17)

The total conductance is G”=G¥+G%, whereas the spin
polarization in the z direction is defined by

ap _ ar
P;II’ - G:I'I)—G— (1 8)
G+ G?
for the current from reservoir p to q.
To elucidate the virtual bound states in the potential well,
we calculate the DOS in the junction area. It is evaluated
from the Green’s function (14) as*®

D(E)=— iE Im[TrG ,(E)]. (19)

We assume that X\=0.1 for the strength of SO interaction,
which corresponds to the value for InAs, A\=117.1 Az’z with
a=W/30 and width of the leads W=50 nm. The tempera-
ture T=0. We focus on the transport from reservoir 1 to 2
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and omit the superscript 21 of Gzi1 and P?l, otherwise stated.
Note that the conductance from reservoir 1 to 3 is related to
G3il=G§1 from the symmetry of the system, for both three-
and four-terminal devices. The current from reservoir 1 to 4
is not spin polarized in the four-terminal device.

III. CALCULATED RESULTS

We calculate the conductance G- for spin s,= *1/2 and
spin polarization P, when the potential depth |V| is tuned.
We examine three cases of kpRy=1, 2, and 3, where the
Fermi wave number kg is defined by the Fermi energy Ef as
Ep/t=(kpa)>*° In the three cases, the Fermi energy Ep is
different, whereas the radius of the potential well R is fixed.
The number of conduction channels in the leads is 1, 2, and
3, respectively.

Here we discuss the cases of kgRy=2 and 3. The numeri-
cal result with kgR,=1 is given in Appendix B. (Surprisingly,
we find a perfect spin polarization P,=1 in the case of
keRy=1. However, the transport properties seem quite spe-
cific. This is due to a strong interference effect in the case of
single conduction channel.)

A. Case of kpRy=2

We begin with the three-terminal device in the presence of
two conduction channels in the leads (kpRy=2). Figures 2(a)
and 2(b) show the conductance G. for s,= *1/2 and spin
polarization P,, respectively, when the potential depth |V, is
gradually changed. As seen in Fig. 2(a), the conductance G .
shows three minima as a function of |V;|. At the first mini-
mum at |Vy|/Eg=0.6, the difference in the conductance for
s,=*1/2 is small. At the second and third minima at
|Vo|/Er=2 and 5, respectively, the difference is remarkable,
which results in a large spin polarization in the z direction
[Fig. 2(b)]. P, is enhanced to 25% around the second mini-
mum and 61% around the third minimum.

The behavior of G- should be ascribable to resonant scat-
tering at the potential well. The resonant scattering takes
place through a virtual bound state in the potential well,
which enhances the electron scattering to the unitary limit
(Appendix A). This makes the minima of G in our situation
of both three- and four-terminal devices. (It is not trivial
whether the resonant scattering makes minimum or maxi-
mum of the conductance in multiterminal devices. See the
discussion in Appendix A.) Around the minima of the con-
ductance, the difference between G, and G_ is magnified.
Look at the third minimum of the conductance around
|Vy|/ Ex=5. The minimum of G, is located at a smaller value
of |V,| than that of G_. In consequence, P, shows a pair of
negative dip (G, <G_) and a positive peak (G,>G_). This
dip-peak structure of P, can be understood in terms of phase
shifts when the resonance for s,=*=1/2 is well separated
from each other (Appendix A).

To confirm the above-mentioned scenario regarding the
resonant scattering, we calculate the DOS in the junction
area. Figure 2(c) shows a grayscale plot of the DOS D(E) in
the plane of |V,| and energy E of electron. The band edge for
the lowest and second conduction channels in the leads
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FIG. 2. (Color online) Numerical results for the three-terminal
device with kpRy=2, where R, is the radius of attractive potential.
(a) Conductance G, from reservoir 1 to 2 in Fig. 1(a) for s,
=*1/2 and (b) spin polarization P, of the output current in reser-
voir 2, as functions of the potential depth |V|. In (a), solid and
broken lines indicate G, and G_, respectively. A dotted line shows
the conductance per spin in the absence of the SO interaction. (c)
Grayscale plot of the density of states in the junction area, D(E), in
the plane of |V| and energy E of electron.

[E{(k=0) and E,(k=0) in Eq. (12)] are located at E/Eg
=0.154 and 0.615, respectively. The sharp peaks of D(E)
below the lowest band edge correspond to the bound states
inside the junction area. With an increase in the potential
depth | V|, several bound states appear one after another. The
first one is an S-like bound state (/,=0) although the angular
momentum /, is not a good quantum number in our device
because of the lack of rotational symmetry. The bound state
exists even without the potential well (|Vy|=0) in the junc-
tion area'® and changes to the S-like bound state in the po-
tential well with increasing |V,|. The state is doubly degen-
erate due to the Kramers degeneracy. The next are P-like
bound states (/.= *1). They are a pair of Kramers degener-
ate states. Then D-like bound states (/,= *2) appear, which
are clearly split into two by the SO interaction. Another
S-like state is located at approximately the same energy. Fi-
nally F-like bound states (/.= = 3) appear in Fig. 2(c). The
pair of Kramers degenerate states is largely separated for the
F-like states.

The peaks of the bound states in D(E) are broadened
above the band edge of the lowest conduction channel in the
leads, which significantly influence the electron scattering at
the Fermi level as virtual bound states. The second and third
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FIG. 3. (Color online) Numerical results for the four-terminal
device with kpRy=2, where R is the radius of attractive potential.
(a) Conductance G. from reservoir 1 to 2 in Fig. 1(b) for s,
=+1/2, (b) conductance G‘f_} from reservoir 1 to 4, and (c) spin
polarization P, of the output current in reservoir 2, as functions of
the potential depth |V,|. In (a) and (b), solid and broken lines indi-
cate G, and G_ or Gil and G*, respectively. A dotted line shows
the conductance per spin in the absence of the SO interaction. In
(b), solid and broken lines for G*' are completely overlapped. (d)
Grayscale plot of the density of states in the junction area, D(E), in
the plane of |V,| and energy E of electron.

minima of the conductance G. are located at the position of
D- and F-like virtual bound states at Ef, respectively. This is
a clear evidence of the resonant scattering through virtual
bound states. (At the first minimum of G. around |V|/Eg
=0.6, we cannot find any virtual bound state at the Fermi
level. The minimum of G+ may not be due to the resonant
scattering but due to some interference effect around the
junction.)

We present the calculated results for the four-terminal de-
vice with kgRyp=2 in Fig. 3: (a) conductance G. for s,
= 1/2 from reservoir 1 to 2 in Fig. 1(b), (b) conductance
G‘f_,l from reservoir 1 to 4, and (c) spin polarization P, of the
output current in reservoir 2 as functions of the potential
depth |V|. As seen in Fig. 3(b), G1'=G*' because the SHE
does not make a spin polarization in the output current in
reservoir 4. The characters of conductance G. for s,
=*1/2 and spin polarization P, are almost the same as
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FIG. 4. (Color online) Numerical results for the three-terminal
device with kgRy=3, where R is the radius of attractive potential.
(a) Conductance G. from reservoir 1 to 2 in Fig. 1(a) for s,
=*1/2 and (b) spin polarization P, of the output current in reser-
voir 2, as functions of the potential depth |V,|. In (a), solid and
broken lines indicate G, and G_, respectively. A dotted line shows
the conductance per spin in the absence of the SO interaction. (c)
Grayscale plot of the density of states in the junction area, D(E), in
the plane of |V;| and energy E of electron. Regarding the result for
four-terminal device with kgRy=3, a broken line in (b) indicates the
spin polarization P, of the output current in reservoir 2 in Fig. 1(b).

those in Fig. 2 for three-terminal device. The conductance
shows three minima. The second and third minima are
clearly due to resonant scattering via D- or F-like virtual
bound states, as seen in the DOS in Fig. 3(d). Around the
minima, the conductance for s,= % 1/2 is largely split by the
SO interaction, which results in a large spin polarization P,.

B. Case of kgRy=3

Figure 4 shows the calculated results for the three-
terminal device in the presence of three conduction channels
in the leads (kgRy=3): (a) conductance G . for s,= = 1/2 and
(b) spin polarization P, in the z direction as functions of the
potential depth |V,|. Figure 4(c) shows a grayscale plot of the
density of states D(E) in the plane of |V,| and energy E of
electron. In Fig. 4(b), a broken line indicates the spin polar-
ization P, in the four-terminal device.

The conductance G shows several minima as a function
of potential depth |V|. The spin polarization P, is enhanced
around the minima of G.. These properties can be under-
stood in the same way as in the preceding subsection. The
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FIG. 5. A channel analysis for incident waves from reservoir 1
in the three-terminal device with kpRy=2. (a) Spin polarization P,
of the output current in reservoir 2 in Fig. 1(a), as a function of the
potential depth |V,|, for the incident electrons in the lowest channel
(solid line) and second channel (broken line). (b) Conductance G
from reservoir 1 to 2 for the incident electrons in the lowest channel
with s,=1/2 (solid line) and —1/2 (broken line). A dotted line in-
dicates the conductance per spin in the absence of the SO
interaction.

polarization P, is enhanced to 41% at |V|/Eg=3.1 in the
three-terminal device, and it is enhanced to 49% at |V,|/Eg
=3.2 in the four-terminal device. This is due to resonant
scattering via G-like virtual bound states (/.= £4).

Compared with the case of two conduction channels in
Figs. 2 and 3, the values of the conductance G are larger in
the case of three conduction channels (kpR,=3), whereas the
maximum value of spin polarization is almost the same. This
implies a more efficient spin filter in the case of three con-
duction channels than in the case of two conduction chan-
nels.

C. Channel analysis for spin filtering

In cases of krRy=2 and 3, there are two and three con-
duction channels in the leads, respectively. To examine the
resonant scattering in detail, we perform a channel analysis
of incident waves from reservoir 1. The results are given
only for the three-terminal device in this subsection.

In the case of kpR(=2, we plot the spin polarization P, for
the incident electrons in the lowest and second channels in
Fig. 5(a). At |V,|/Eg~2 (resonance by D-like virtual bound
state), P, is enhanced to 73% for the lowest channel while it
is to 18% for the second channel. Hence the former plays a
main role in the spin polarization. At |V,|/Eg~35 (resonance
by F-like virtual bound state), on the other hand, PZ| be-
comes 75% for the lowest channel while it becomes 83% for
the second channel. Then both channels are important for the
spin-dependent scattering.

We could selectively inject the lowest channel to the junc-
tion, e.g., using a quantum point contact fabricated on the
lead connected to reservoir 1. Then we could realize a spin
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FIG. 6. A channel analysis for incident waves from reservoir 1
in the three-terminal device with kgRy=3. (a) Spin polarization P,
of the output current in reservoir 2 in Fig. 1(a), as a function of the
potential depth |V, for the incident electrons in the lowest channel
(solid line), second channel (broken line), and third channel (dotted
line). (b) Conductance G.. from reservoir 1 to 2 for the incident
electrons in the lowest channel with s,=1/2 (solid line) and —1/2
(broken line). A dotted line indicates the conductance per spin in the
absence of the SO interaction.

filter with an efficiency of about 75%. In Fig. 5(b), we plot
the conductance G+ when only the lowest channel is injected
from reservoir 1. At |V,|/Eg~2, the conductance almost
vanishes although P, is enhanced to 73%. This is due to an
interference effect at the junction as in the case of single
conduction channel with kpRy=1 (Appendix B). At |V,|/E
~35, on the other hand, the total conductance is G, +G_
=0.4(e*/h) and P,=—75%. The latter situation is favorable to
application to a spin filter.

A similar channel analysis is given for the case of kpR)
=3 in Fig. 6. There are three incident channels in this case. It
is notable that, at |Vy|/Ep~2.8, a spin polarization of P,
=62% is realized for the incident electrons in the lowest
channel while the total conductance is as large as G, +G_
=0.8(e?/h).

D. Repulsive potential

We investigate the SHE caused by the scattering by a
repulsive potential, V>0 in Eq. (6). Figure 7 shows (a)
conductance G for s,= = 1/2 and (b) spin polarization P, in
the z direction when the potential height V, is gradually in-
creased. The extrinsic SHE is expected even with a repulsive
potential.'® However, the spin-filtering effect is much weaker
than the case with an attractive potential. In Fig. 7(b), the
spin polarization is at most P,~0.3% in the three-terminal
device and P,~0.45% in the four-terminal device. In this
case, the resonant scattering does not take place since virtual
bound states are hardly formed in the potential barrier. This
indicates an important role of resonant scattering in the en-
hancement of the SHE discussed in the preceding subsec-
tions.
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FIG. 7. Numerical results for the three-terminal device (curves
labeled by a) and four-terminal device (curves labeled by b) with
repulsive potential [Vy>0 in Eq. (6)]. kgRg=2, where R, is the
radius of the potential. (a) Conductance G- from reservoir 1 to 2 in
Fig. 1, as a function of potential height V,, for s,=1/2 (solid lines)
and —1/2 (broken lines). (b) Spin polarization P, of the output
current in reservoir 2.

IV. CONCLUSIONS AND DISCUSSION

We have numerically studied the extrinsic SHE in multi-
terminal devices including an antidot fabricated on semicon-
ductor heterostructures with strong SO interaction. The anti-
dot creates a tunable potential on two-dimensional electron
gas in the heterostructures, which may be attractive as well
as repulsive. When an attractive potential is tuned properly,
the resonant scattering via a virtual bound state takes place,
which makes minima of the conductance from reservoir 1 to
2 in Fig. 1. Then the difference between the conductances for
s,=*1/2 is enlarged, and as a result, the spin polarization is
significantly enhanced in the direction perpendicular to the
two-dimensional plane. The spin polarization can be more
than 50% in our three- and four-terminal devices.

The enhancement of the extrinsic SHE by resonant scat-
tering has been studied in different systems. Kiselev and Kim
proposed a three-terminal spin filter without antidot in the
presence of Rashba SO interaction [Eq. (2)].'%!" They have
pointed out that the spin-filtering effect is enhanced by reso-
nant scattering at the junction area when the Fermi energy of
2DEG is tuned. In their device, the direction of spin polar-
ization is tilted from the z direction perpendicular to the
plane. In our device, the spin is polarized in the z direction,
which is easier to detect by an optical experiment on the Kerr
rotation?® and, above all, more suitable to spintronic devices.

The extrinsic SHE enhanced by (many-body) resonant
scattering has been examined for metallic systems with mag-
netic impurities.>®*? In the case of semiconductor hetero-
structures, however, we have a great advantage in the tun-
ability of scattering potential. The enhanced SHE caused by
resonant scattering at a single potential can be investigated in
details.
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We make some comments regarding our calculations. (i)
The electron-electron interaction has been neglected. Below
the band edge of the lowest conduction channel in the leads,
we have observed bound states in the density of states in the
potential well. Since the bound states are occupied by elec-
trons, we have to consider the electron-electron interaction
between the electrons and conduction electrons at the Fermi
level. The Hartree potential from the trapped electrons
should be taken into account although the Coulomb blockade
is irrelevant to the case of antidot potential without tunnel
barriers, in contrast to the case of conventional quantum
dots.* In our calculated results, therefore, the values of |V
at the resonance are underestimated.

(ii) It is necessary to create such a deep potential as |V,
~ Eg in designing the devices. This might be difficult with a
usual antidot structure fabricated on semiconductor hetero-
structures. Alternatively, we could make such a deep poten-
tial using a STM tip, a charged impurity under the antidot,
etc.

(iii) We have assumed that the antidot potential V(r) is
independent of z. Otherwise, the Rashba-type SO interaction,
Eq. (2) with a=\(dV/dz), must be added to Eq. (4). This
would create an effective magnetic field in the xy plane and
thus decrease the spin polarization in the z direction. The
Dresselhaus SO interaction has also been disregarded. The
SO interaction is induced by the inversion asymmetry of the

crystal’* and expressed as
B
Hgo = %(— POy + py0y). (20)

This would also result in an effective magnetic field in the xy
plane and lessen the spin polarization in the z direction.

ACKNOWLEDGMENTS

This work was partially supported by the Strategic Infor-
mation and Communications R&D Promotion Program
(SCOPE) from the Ministry of Internal Affairs and Commu-
nications of Japan and by a Grant-in-Aid for Scientific Re-
search from the Japan Society for the Promotion of Science.

APPENDIX A: FORMULATION OF SPIN HALL EFFECT
IN 2DEG

Here, we summarize our previous study in Ref. 29. First,
we give a quantum mechanical formulation of the extrinsic
SHE for 2DEG. For the scattering problem with Eq. (5), we
adopt  the  partial-wave  expansion with [ =m
=0, *+ 1, *2,....5% As an incident wave, we consider a plane
wave propagating in the x direction, ™, with spin s.=1/2 or
—1/2. E=hk*/(2m*). The plane wave is expanded as

oo

eikx= eikr cos 0 _ E i'”Jm(kr)ei'”o,

m=—%

(A1)

where 6 is the angle from the x direction and J,, is the mth
Bessel function. Its asymptotic form at r— is given by
J(kr) ~ 2/ (m7kr)cos(kr—mar/2—1r/4). In the solution of
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Eq. (5), J,(kr) in Eq. (Al) is replaced by R, (r) for s.
=*1/2,

©

Y= 2 Ry

m=—w

(A2)

for spin s.= =+ 1/2, where R, (r) satisfies
h? ( & 1d mz) m .
——| S-S V) = V() (R
{ 2m*\dr*  rdr 1 ) 2 1) | Ry (1)

=ER, (r).

(A3)

Its asymptotic form determines the phase shift 5;:

. [2 . .
R, (r) ~ —ke”sm cos(kr—mTW—jIT+5—m>. (A4)
wkr

From Egs. (A3) and (A4), we immediately obtain the relation
of &,,=6,, indicating the time-reversal symmetry. The SO
interaction is not relevant to the S wave (m=0): &=4,
= 50.

The scattering amplitude f=(6) for spin s,= *1/2 is ex-
pressed in terms of phase shifts. The asymptotic form of the
wave function in Eq. (A2) is given by

) gi(kr+ﬂ'/4)
l,[li — eth_'_fi(a) = , (AS)
\r
where f=(6) is related to the S matrix by
(0 =2 fre™, (A6)
SE=1+iN2mkfE = e¥0n. (A7)
From these equations, we obtain
(0 =£1(6) = f,(6), (A8)
where
1 . o ._
F1(0) = ——=—| X% -1+ > (%% + &% —2)cos m# |,
N2k m=1
(A9)
1 “ 2i88 206 \o:
f2(0) = hE (e*'°m — e*'°m)sin m 0. (A10)
27K =1

The scattering cross section is given by o~ (6)=|f"(6)|*.
Hence the spin polarization of the scattered wave in the 6
direction is expressed as

o PPl 2Re(f)
TP TP P

when the incident electron is unpolarized. This formula is
analogous to that of skew scattering in three dimensions.?*?’
The spin is polarized in the z direction and P.(—6)=—P.(6).

A remark is made on Eq. (A5). We put a phase of 7/4 on
the exponent of the second term on the right side. Although
the phase has no physical meaning, it ensures the “optical

(A11)
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theorem” that the total cross section is determined only by
the amplitude of forward scattering;

2
Ufmuzf o (0)do= \/%Imfi(O). (A12)

0

Now we apply our formula of the SHE to the case of a
potential well, Eq. (6) with AR,— 0, that is,

V(r) = VoO(Ry - 1) (A13)

(V,<0), where 6(z) is a step function [6(r)=1 for >0,0 for
t<0]. Then V,=—Q2N/r)V'(r)=(2N/Ry)Vy8(r—R,) with the
o function &(¢).

The phase shifts &, are calculated by solving Eq. (A3).
The calculation is elementary. We have only to consider the
case with m=0 because of the relation of &7,,=6,. For r
>Ry, V=0 and thus

R, (r) = C\J . (kr) + C,Y,,(kr) (A14)
2
~\|—[C, cos(kr — mm/2 — m/4)
wkr
+ C, sin(kr — mm/2 — w/4)], (A15)

where Y,, is the mth Neumann function. From Egs. (A15)
and (A4), we find

tan 8, =— C,/C;. (A16)

For r<R,, V=V,. Then
R (r)=C3J,(k'r), (A17)
Rk 1(2m") = E = V,,. (A18)

The connection of Egs. (A14) and (A17) at r=R, yields

tan 5: — [Jm—l(kRO) - Jm+1(kR0)]Jm(k’R0) - ayi;‘]m(kRO)
" (Y1 (kRo) = Y1 (kR)) 1, (k' Ry) — @, Y, (kRy)

(A19)

with
ay, = (k'1K)[J -1 (k' Ro) = T 1 (k' Ro)]
T 2m[1 + (k' 1k)*J(kNR),(K'Ry).  (A20)

Here, we have used the relation of dJ,,(x)/dx=[J,_;(x)
_]m+1(-x)]/2 and de(-x)/dxz[Ym—l(-x)_ Ym+l(x)]/2'

The calculated results are shown in Fig. 8: (a) scattering
probability of each partial wave, sin? 8, (b) scattering cross
section o (@=—1r/2) for s,= = 1/2, and (c) spin polarization
P, at #=—m/2, when the potential depth |V,| is gradually
changed. The strength of the SO interaction is set to be
Nk2=0.01, which corresponds to the value for InAs, A\
=117.1 10\2,2 with electron wavelength 27/k=70 nm. The
radius of the potential well is Ry=1/k. As seen in Fig. 8(a),
with an increase in |V;|, the scattering probability increases
and becomes unity at some values of |V| (unitary limit with
8, =m/2) for m=0 (S wave) and m= =1 (P wave). This is
due to resonant scattering through virtual bound states in the
potential well. The resonant width is narrower for larger |m|
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FIG. 8. Partial-wave expansion for the extrinsic SHE due to the
scattering by a potential well [Eq. (A13)] in 2DEG. kRy=1. The
strength of the SO interaction is Nk>=0.01. (a) Scattering probabil-
ity of each partial wave, sin> &, (b) scattering cross section o= (6
=—m/2) for s,= +1/2, and (c) spin polarization P, at 6=—m/2, as
functions of the potential depth |V;| [normalized by electron energy
E=%%k*/(2m*)]. In (a), solid and broken lines indicate the cases of
5.=1/2 and —1/2, respectively, for m=1(5",=5;). The scattering
probability for |m|=2 is negligible. In (b), a broken line indicates
the cross section at §=—7/2 in the absence of SO interaction. Inset:
scattering cross section in the absence of SO interaction at 6=
—0.457(a), —m/2 (broken line), and 6=-0.557(b).

because of the centrifugal potential «m?/r? separating the
bound states from the outer region.

As discussed in the text with Eq. (5), the scattering of a
partial wave with positive m is enhanced (suppressed) for
spin s,=1/2(s,=—1/2). Around the resonance of the P
waves, the scattering of (m,s.)=(1,1/2) goes to the unitary
limit at a smaller value of |V,| than the scattering of (m,s.)
=(1,-1/2). Thus we observe a difference between 8] and &;
in Fig. 8(a). This leads to the difference of the scattering
cross section at §=—1/2 for s,= = 1/2 [Fig. 8(b)] and a spin
polarization [P,~30% in Fig. 8(c)]. When &, (jm|=2) is
negligible, Egs. (A8)—(A10) yield

. 2
o (0=-7/2)= E[Sinz & + sin® A8,

+ 2 sin &, sin(28; — &)sin A5, ],  (A21)

where AS=8[-8; and &,=(5+8;)/2. Around the reso-
nance, Ad; is enlarged, which results in the enhancement of

the SHE. For 6, ~ 1r/2, the spin polarization is given by
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FIG. 9. Partial-wave expansion for the extrinsic SHE due to the
scattering by a potential well [Eq. (A13)] in 2DEG. kRy=2. The
strength of the SO interaction is Nk>=0.01. (a) Scattering probabil-
ity of each partial wave, sin® 8, and (b) spin polarization P, at 6
=-m/2, as functions of the potential depth |V,| [normalized by elec-
tron energy E=%2k*/(2m*)]. In (a), solid and broken lines indicate

the cases of s,=1/2 and —1/2, respectively, for m>0(35",,=5).
2 sin” &) sin AS,
P(=-m2)~——"— 1 (A22)

sin? & + sin® AJ,

from Eq. (A11).
In our three- and four-terminal devices, the resonant scat-

tering makes minima of the conductance. It should be hard to
say, however, whether the resonant scattering enhances or
suppresses the conductance in general. For simplicity, let us
ignore the SO interaction. We plot the scattering cross sec-
tion in the inset in Fig. 8(b), in the direction of §=-0.451,
—m/2, and §=-0.557. Using &, and &;=6; =&, the cross

section is written as

2
o(6) = —[sin? & + 4 sin® &, cos’ 0
Tk

+4 sin &, sin ) cos(8y— &))cos F].  (A23)
The resonance of the P wave (8,=1/2) has no effect on the
scattering at #=-/2. Its effect on the scattering at 0+
—1r/2 depends on the value of &,. In the inset in Fig. 8(b), the
resonance of the P wave makes a peak of o(6=-0.457) and
a dip of a(#=-0.557). In the situation of our devices, the
conductance should reflect an integrated value of o(6)
around #=-m/2 and also a complicated interference effect.
Figure 9 shows the calculated results in the case of kR,
=2. The resonant scattering is observed for 0=|m|=3.
Around the resonance of F waves (Jm|=3), P, is enhanced to
72%. In general, a sharper resonance enlarges &;,— &, for
larger |m|, which results in a larger polarization.
In Fig. 9(b), P, shows a dip and peak structure at the
F-wave resonance. This structure is observed when the reso-
nance of (m,s,)=(3,1/2) is sufficiently separated from that
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of (m,s))=(3,-1/2). Around the F-wave resonance, &
~ ] and &= &, (=6, as seen in Fig. 9(a). Neglecting &,
Eq. (A11) yields

4 sin &, sin(26; — &)sin Ad;
4 sin® &, + sin®> A&,

P(0=—m/2)=

(A24)

where Ad;=355—6; and 8;=(8}+8;)/2. At the resonance of
(m,s,)=(3,1/2), &=m/2 and &=0. Then P (0=-m/2)
shows a dip for 7w/2< 8, <. At the resonance of (m,s,)
=(3,-1/2), &~ and &=m/2. Then P,(6=-m/2) shows a
peak. A similar dip-peak structure of P, is observed around
F-wave resonance in Figs. 2 and 3 for our devices.

APPENDIX B: CASE OF kgR(y=1

We present calculated results in the case of attractive po-
tential and kgRy=1, where the number of conduction chan-
nels is unity in the leads. In this case, an interference effect
around the junction strongly influences the conductance and
spin polarization. We discuss the results only for the three-
terminal device.

Figures 10(a) and 10(b) show the conductance G for s,
=*1/2 and spin polarization P, respectively, when the po-
tential depth |V, is gradually changed. As seen in Fig. 10(a),
the conductance G.. vanishes two times at |Vy|/Egp~2.7 and
5.0. The reason why the conductance completely disappears
cannot be explained by resonant scattering only. This is due
to an interference effect around the junction area. The value
of |Vy| for G,=0 and that for G_=0 are different from each
other in the presence of the SO interaction. As a result, P,
=1 at G_=0 and P,=-1 at G,=0 as seen in Fig. 10(b).

Figure 10(c) is a grayscale plot of the density of states in
the junction area, D(E), in the plane of |V,| and energy E of
electron. The band edge of the lowest conduction channel in
the leads is at E/Eg=0.616. A virtual bound state of P-like
state is seen at the Fermi level at the first zero point of the
conductance (|Vy|/Eg=2.7). This indicates a resonant scat-
tering via the virtual bound state there. However, we do not

PHYSICAL REVIEW B 80, 125311 (2009)
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FIG. 10. (Color online) Numerical results for the three-terminal
device with kpRy=1, where Ry, is the radius of attractive potential.
(a) Conductance G. from reservoir 1 to 2 in Fig. 1(a) for s,
=*1/2 and (b) spin polarization P of the output current in reser-
voir 2, as functions of the potential depth |Vy|. In (a), solid and
broken lines indicate G, and G_, respectively. A dotted line shows
the conductance per spin in the absence of the SO interaction. (c)
Grayscale plot of the density of states in the junction area, D(E), in
the plane of |V,| and energy E of electron.

observe any virtual bound state at the second zero point.

We observe a perfect spin polarization of P,= *1 in Fig.
10(b). However, the absolute value of the conductance is
very small when P = *1. Hence, it should be difficult to
apply this situation to a spin filter.

*tyokoyam @kobrmc34.rk.phys.keio.ac.jp

1. Zutic’, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323
(2004).

2R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems (Springer, Berlin, Heidelberg, 2003).

3E. 1. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960); Yu. A.
Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).

4J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev.
Lett. 78, 1335 (1997).

>D. Grundler, Phys. Rev. Lett. 84, 6074 (2000).

6Y. Sato, T. Kita, S. Gozu, and S. Yamada, J. Appl. Phys. 89,
8017 (2001).

7S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).

8G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J.

van Wees, Phys. Rev. B 62, R4790 (2000).

9E. N. Bulgakov, K. N. Pichugin, A. F. Sadreev, P. Streda, and P.
Seba, Phys. Rev. Lett. 83, 376 (1999).

10A. A. Kiselev and K. W. Kim, Appl. Phys. Lett. 78, 775 (2001).

WA, A. Kiselev and K. W. Kim, J. Appl. Phys. 94, 4001 (2003).

I2T. P. Pareek, Phys. Rev. Lett. 92, 076601 (2004).

3T, Koga, J. Nitta, H. Takayanagi, and S. Datta, Phys. Rev. Lett.
88, 126601 (2002).

14M. Eto, T. Hayashi, and Y. Kurotani, J. Phys. Soc. Jpn. 74, 1934
(2005).

I5p. G. Silvestrov and E. G. Mishchenko, Phys. Rev. B 74, 165301
(20006).

16]. I. Ohe, M. Yamamoto, T. Ohtsuki, and J. Nitta, Phys. Rev. B
72, 041308(R) (2005).

125311-10



ENHANCED SPIN HALL EFFECT BY TUNING ANTIDOT...

173, J. Krich and B. I. Halperin, Phys. Rev. B 78, 035338 (2008).

M. Yamamoto and B. Kramer, J. Appl. Phys. 103, 123703
(2008).

195, Murakami, N. Nagaosa, and S.-C. Zhang, Science 301, 1348
(2003).

203, Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A.
H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004).

21y Waunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys.
Rev. Lett. 94, 047204 (2005).

22M. 1. Dyakonov and V. L. Perel, Phys. Lett. 35A, 459 (1971).

23]. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999).

24S. Zhang, Phys. Rev. Lett. 85, 393 (2000).

2H. A. Engel, B. 1. Halperin, and E. I. Rashba, Phys. Rev. Lett.
95, 166605 (2005).

26N. F. Mott and H. S. Massey, Theory of Atomic Collisions, 3rd
ed. (Oxford University Press, New York, 1965).

27L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd ed.,
Course of Theoretical Physics, Vol. 3 (Pergamon Press, New
York, 1977).

28y, K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom,
Science 306, 1910 (2004).

M. Eto and T. Yokoyama, J. Phys. Soc. Jpn. 78, 073710 (2009).

30K. Hattori and H. Okamoto, Phys. Rev. B 74, 155321 (2006).

31S. Bellucci and P. Onorato, Phys. Rev. B 74, 245314 (2006).

32Y. Jiang and L. Hu, Phys. Rev. B 74, 075302 (2006).

3Y. Xing, Q. F. Sun, L. Tang, and J. P. Hu, Phys. Rev. B 74,
155313 (2006).

3G. Dresselhaus, Phys. Rev. 100, 580 (1955).

35L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R.
M. Westervelt, and N. S. Wingreen, in Mesoscopic Electron
Transport, NATO Advanced Studies Institute, Series E: Applied
Science, edited by L. Y. Sohn, L. P. Kouwenhoven, and G.
Schon (Kluwer, Dordrecht, 1997), Vol. 345, p. 105.

PHYSICAL REVIEW B 80, 125311 (2009)

36T. Aono, Phys. Rev. Lett. 93, 116601 (2004) and references cited
therein for the spin pumping.

37D. Feinberg and P. Simon, Appl. Phys. Lett. 85, 1846 (2004).

33 M. Pustilnik and L. Borda, Phys. Rev. B 73, 201301(R) (2006).

39P. Sharma and C. Chamon, Phys. Rev. Lett. 87, 096401 (2001).

40R. Citro, N. Andrei, and Q. Niu, Phys. Rev. B 68, 165312
(2003).

4IM. Pustilnik, E. G. Mishchenko, and O. A. Starykh, Phys. Rev.
Lett. 97, 246803 (2006).

42B. Braunecker, D. E. Feldman, and F. Li, Phys. Rev. B 76,
085119 (2007).

Related to the quantum wires, we also refer a paper on a spin
filter using the spin edge states of quantum Hall effect in
graphene; D. A. Abanin, P. A. Lee, and L. S. Levitov, Phys. Rev.
Lett. 96, 176803 (2006).

48, Dtta, Electronic Transport in Mesoscopic Systems (Cambridge
University Press, Cambridge, 1995).

4T. Ando, Phys. Rev. B 40, 5325 (1989).

4T. Ando, Phys. Rev. B 44, 8017 (1991).

4TM. Yamamoto, T. Ohtsuki, and B. Kramer, Phys. Rev. B 72,
115321 (2005).

“For the calculation of DOS, a small imaginary part, iEg/ 100, is
added to E in Eq. (14) to broaden the sharp peaks corresponding
to the bound states.

“This dispersion relation is obtained from Eq. (12) if the cosine
band is approximated by the parabolic band (wide limit of the
leads).

S0A. Fert and O. Jaoul, Phys. Rev. Lett. 28, 303 (1972).

SLA. Fert, A. Friederich, and A. Hamzic, J. Magn. Magn. Mater.
24, 231 (1981).

32G. Y. Guo, S. Maekawa, and N. Nagaosa, Phys. Rev. Lett. 102,
036401 (2009) and related references cited therein.

33Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

125311-11



