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An apparent h / fe Aharonov-Bohm flux period, where f is an integer, has been reported in coherent quantum
Hall devices. Such subperiod is not expected for noninteracting electrons and thus is thought to result from
interelectron Coulomb interaction. Here we report experiments in a Fabry-Perot interferometer comprised of
two wide constrictions enclosing an electron island. By carefully tuning the constriction front gates, we find a
regime where interference oscillations with period h /2e persist throughout the transition between the integer
quantum Hall plateaus 2 and 3, including half-filling. In a large quantum Hall sample, a transition between
integer plateaus occurs near half-filling, where the bulk of the sample becomes delocalized and thus dissipative
bulk current flows between the counterpropagating edges �“backscattering”�. In a quantum Hall constriction,
where conductance is due to electron tunneling, a transition between forward and backscattering is expected
near the half-filling. In our experiment, neither period nor amplitude of the oscillations show a discontinuity at
half-filling, indicating that only one interference path exists throughout the transition. We also present experi-
ments and an analysis of the front-gate dependence of the phase of the oscillations. The results point to a single
physical mechanism of the observed conductance oscillations: Aharonov-Bohm interference of interacting
electrons in quantum Hall regime.
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The Aharonov-Bohm effect demonstrates the primacy of
the potentials rather than fields in quantum mechanics.1–3

Specifically, for a dilute beam of noninteracting electrons
propagating in a magnetic field B, the vector potential A
attaches a phase factor exp�−i e

��O
r A�r�� ·dr�� to the electron

wave function at position r. For closed electron orbits, the
phase factor is periodic in flux � through the area S enclosed
by the interference path: �=�A�r� ·dr=�SB ·dS by the vir-
tue of the Stokes’ theorem; the 2� period of the phase cor-
responds to the �0�2�� /e=h /e flux period.

Electron interaction usually does not affect the h /e
Aharonov-Bohm flux period observed in conductance of nor-
mal metal and semiconductor rings with two leads. The situ-
ation is more complex in quantum Hall devices. An apparent
h / fe Aharonov-Bohm flux period, where f is the integer
quantum Hall effect �QHE� filling in the constrictions, has
been reported in quantum antidot4,5 and Fabry-Perot
interferometer6–8 devices. In quantum antidots, the closed
Aharonov-Bohm path follows an equipotential around the
lithographically defined potential hill in the two-dimensional
�2D� electron plane. In interferometer devices, the interfer-
ence path follows an equipotential at device’s edges, and is
closed by two tunneling links.

The experiments are done in a uniform magnetic field so
that a well-defined interference path enclosing an area is
needed to translate the field into flux. This Aharonov-Bohm
subperiod is accompanied by an e charge period as a func-
tion of a gate voltage and is not affected by the 2D bulk
filling outside the device. In quantum antidots, previously
reported h /2e period9,10 was tentatively attributed to spin
splitting of a Landau level. However, subsequent work has
concluded that no model of noninteracting electrons can con-
sistently explain this subperiod.11,12 On the other hand, it
seems apparent that the strong interelectron Coulomb inter-

action, present in nearly all QHE samples, can naturally
cause the observed Aharonov-Bohm and charge periods by
substantially mixing the Landau-level electron occupation.5

An isolated metallic island weakly coupled by tunneling
to two electrodes displays quasiperiodic conductance oscilla-
tions observed as a function of gate voltage. In such Cou-
lomb islands,13,14 the net island charge Q=−e�N−Neq� incre-
ments in steps of one electron due to the Coulomb blockade
which opens a gap of Q2 /2C in the island energy spectrum.
The island has total capacitance C to the gate and the elec-
trodes. Here N is the number of electrons in the nearly iso-
lated island, an integer, and the equilibrium expectation
value Neq=Nion+Ngate is the sum of two terms: the number of
electrons neutralizing the positively charged background of
the fixed ions in the crystal lattice Nion and the continuously
varying polarization charge Ngate=−�Vgate induced by a gate
voltage Vgate. Under conditions of low temperature and exci-
tation �bias voltage between the two electrodes�, the net is-
land charge oscillates between Q=− 1

2e and Q= 1
2e, conduc-

tance peaks occurring at gate voltages when Neq is an integer
and Q is zero, so the Coulomb gap vanishes.

Phenomenological Coulomb blockade models were pro-
posed to evaluate the effects of on-site interaction in quan-
tum antidot11,12 and Fabry-Perot geometry.15–19 Specifically,
it has been proposed that two distinct mechanisms producing
conductance oscillations exist: one being Aharonov-Bohm
interference of backscattered electrons, another is caused by
forward scattering via a “compressible island” subject to
Coulomb blockade �see Fig. 1 in Ref. 17�. The third possi-
bility, the backscattering via a compressible island �shown in
Fig. 1 in Ref. 20 and as “type ii” in Ref. 17�, does not
conserve angular momentum in the integer QHE regime, and
thus is expected to be much weaker. Experiments aimed at
distinguishing the distinct Coulomb blockade and the
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Aharonov-Bohm mechanisms have been reported.21–23

However: �i� a compressible island has no well-defined
area, so that while Coulomb blockade is possible, it does not
necessarily lead to B-periodic oscillations as a function of a
uniform applied magnetic field. �ii� A compressible island, if
formed, would vary in size and shape from a point at the
island center to a ring of maximal radius, when filling is
changed in a QHE plateau transition; thus the forward tun-
neling distance and tunneling conductance would vary enor-
mously. �iii� Further, in semiconductor heterostructures with
�200 nm 2D depletion length, the confining potential has
considerable radial gradient which results in a discrete island
energy spectrum; no strictly compressible island is possible
in the limit of low temperature.

The state of affairs is further obscured by the fact that the
single-electron tunneling dynamics is similar for the discrete
electron spectra resulting from Coulomb blockade and quan-
tum confinement. In particular, the Schrödinger equation can
be solved for an electron constrained to move on a circular
ring of radius R enclosing flux �. The energy is periodic in
�, E= e2

8�2mR2 ��−n�0�2, where n is an integer. The lowest
energy radii correspond to enclosed flux of an integer mul-
tiple of �0. If the orbit radius is fixed and the applied mag-
netic field is varied, this Aharonov-Bohm periodic energy
dependence, consisting of a set of intersecting parabolas,
with the ground state switching at half-integer values of
� /�0, is similar to the Coulomb blockade energy E= e2

2C �N
−Neq�2. Thus, the characteristic tunneling conductance “Cou-
lomb blockade diamonds” seen in the source-drain bias ver-
sus gate voltage plots11,23 are also expected for any size-
quantized electron system with a discrete energy spectrum,
including an Aharonov-Bohm ring.

Here we report experiments on a Fabry-Perot electron in-
terferometer in the regime of transition between f =2 and 3
QHE plateaus. By fine tuning the two constrictions, we have
obtained a continuous sequence of the Aharonov-Bohm os-
cillations persisting throughout the transition, including Lan-
dau level filling �=2.5. The half-filling �= f + 1

2 separates the
high-B side of the f +1 plateau and the low-B side of the f
plateau.24,25 The two situations have been interpreted as cor-
responding to backscattering and forward-scattering regimes,
respectively.17,21 We observe experimental flux period h /2e
all through the plateau transition, although a period of h /3e
is expected for the f =3 plateau. We also present experiments
and an analysis of the gate dependence of the phase of the
oscillations that shows that the slope of the constant-phase
stripes depends on details of the confining potential and de-
vice geometry. We conclude that all reported experimental
results can be understood without invoking tunneling via a
compressible island. The observed continuous sequence of
sub-h /e period oscillations argues strongly for a single
physical mechanism: the Aharonov-Bohm interference of in-
teracting electrons in QHE regime.

The Fabry-Perot device, shown in the inset in Fig. 1, was
described previously.26,27 The etch trenches define two
1.2 �m-wide constrictions, which separate an approximately
circular electron island from the 2D bulk. Tunneling occurs
in the two constrictions, thus forming a Fabry-Perot interfer-
ometer. The depletion potential of the trenches determines

the electron density profile, see Fig. 1 in Ref. 26. Four Au/Ti
front gates are deposited in the etch trenches. Front gates are
used to fine tune the constrictions for symmetry of the tun-
neling and to vary the overall device electron density, but the
shape of the electron confinement potential is dominated by
the etch trench depletion. The 2D density �1�1011 cm−2 is
achieved by illumination at 4.2 K, there are �3000 electrons
in the island. Four-terminal longitudinal RXX and Hall RXY
resistances �see inset in Fig. 2� were measured with 200 or
400 pA, 5.4 Hz ac current excitation. All data reported here
were taken at the bath temperature of 10 mK.

Figure 1 shows several RXY traces, each with slightly dif-
ferent front-gate voltage on one side of one constriction. The
f =2 and 3 constriction plateaus are connected by a QHE
transition region, where the h /2e Aharonov-Bohm oscilla-
tions are superimposed on a varying background. Similar
oscillations are also seen in RXX. In general, unless the two
constrictions are fine tuned, the B-regions with oscillations
are interrupted, so that the plateau transition does not contain
a continuous oscillation sequence. In a large 2D sample, a
transition between two plateaus displays a smooth, mono-
tonic RXY.28 The aperiodic peaks or dips in Fig. 1, spaced by
�0.03 T, are attributed to disorder-assisted tunneling out-
side the constrictions; similar ubiquitous mesoscopic fluctua-
tions are also seen in the same device at lower magnetic
fields27 and in quantum antidots. That the aperiodic peaks
originate outside of the island is evidenced by their different
response to front gates of the left and right constrictions.

By fine tuning the constriction gate voltage, we managed
to obtain a continuous, uninterrupted oscillation sequence.
Figure 2 shows a high-resolution RXY trace measured with
200 pA excitation and the oscillatory conductance �G ob-
tained by subtracting a smooth background. Although 200
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FIG. 1. �Color online� The Hall �RXY� and longitudinal �RXX,
lowest trace� resistance of the interferometer device between con-
striction f =3 and 2 QHE plateaus. The successive RXY traces are
shifted by 3 k	 and are labeled by bias of one of the front gates,
the other three voltages are constant. Inset shows a 4�4 �m AFM
micrograph of the central region of the device.
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pA produces only 2 �V constriction Hall voltage at �	2.5,
we still observe non-Ohmic behavior, namely, the oscillatory
conductance amplitude still increases upon lowering of the
excitation at 10 mK temperature. This is evidence that the
extensive cold filtering employed lowers the electromagnetic
background “noise” to 
2 �V at the sample’s contacts.

Note that the conductance oscillations can be seen, with-
out interruption, throughout the transition from the RXY

= 1
3

h
e2 to the 1

2
h
e2 QHE plateaus. The top panel of Fig. 2 shows

the magnetic field period of the oscillations. In these data
�B=1.14 mT is closely one half of the 2.3 mT f =1 period.
Thus we interpret the oscillatory data in Fig. 2 as displaying
two oscillations per h /e, the fundamental flux period, in
agreement with earlier results.6–8,20–22,26 The same h /2e flux
period persists in the whole 2↔3 QHE transition region.
The weak, systematic variation in �B as B is increased is
caused by the gradual, secular inward shift of the island-
circling edge channel �interference path area shrinks�, so as
to maintain a constant �=hn /eB in the local edge-channel
electron density n when B is changing. The sign of the
d�B /dB slope is consistent with both: forward and back-
scattering at the saddle point in the constrictions. The oscil-
lation amplitude is maximal near half-filling, and falls off
toward the quantized plateaus, similar to that reported in a
Mach-Zehnder interferometer.29

We discuss these data in terms of a specific edge-channel
model below. Here we note that the oscillatory behavior in
Fig. 2 is dramatically different from resistance peaks and
dips in quantum antidots. In quantum antidots, resonant tun-

neling peaks are seen on the low-� side of a QHE plateau,
and dips on the high-� side of the same plateau, both having
equal flux period h / fe.5 In particular, for the 2
�
3 tran-
sition, there are two dips per h /e below the f =2 plateau, and
three peaks per h /e above the f =3 plateau, separated by a
smooth region near half-filling. Such behavior is consistent
with two distinct tunneling regimes of backscattering and
forward scattering in the antidot geometry. The continuous
oscillation sequence with a constant flux period is consistent
with only backscattering occurring in Fabry-Perot interfer-
ometers.

Figure 3 shows conductance oscillations at �	2.36 with
the front-gate voltage VFG as a parameter. Here, all four
VFG1-4 are stepped by a common bias of 0.10 mV, and the
average VFG= 1

4
 jVFGj. The 2D electron density is greater in
this cooldown than in Fig. 2 so that equal � occurs at a
higher B. The fundamental flux period h /e contains two con-
ductance oscillations, S�B=h /2e. Stepping VFG more nega-
tive reduces the overall island electron density and thus shifts
the region of oscillations to lower B, see Fig. 3�b�. The flux
period is constant, but VFG changes the interference path area
S, see Fig. 3�b�, thus changing the B-field period �B.6,8 The
constant phase of oscillations form stripes spaced vertically
by �VFG

=0.7�0.1 mV. Interpreting �VFG
as matching the

change in the number of electrons within S by one gives
S�dn /dVFG��VFG

=1.0, using the experimental dn /dVFG

=7.9�1014 m−2 V−1, obtained from the low-B
magnetotransport,27 and S=h /2e�B=1.83�10−12 m2, ob-
tained from the Aharonov-Bohm period in Fig. 3. This satis-
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FIG. 2. �Color online� Hall resistance of the interferometer for the 2↔3 QHE plateau transition, the Landau-level filling is given at the
top. The middle panel shows the oscillatory conductance and the upper panel the oscillation period; the red line is the linear fit: �B

=0.104�2.5−��+1.14 mT. The oscillations persist uninterrupted throughout the transition region, including the half-filling. The inset shows
four-terminal measurement configuration for RXX=VX / IX; for RXY current is passed 1–3, voltage is measured on contacts 2–4.
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factory agreement supports validity of our interpretation.
In general, the sign of the constant phase slope depends

on details of heterostructure material and device geometry
and fabrication. For one electron the Aharonov-Bohm phase
=−e� /�. In a uniform B, the flux through the interference
path �=BS, and the differential

d/2� = − �e/h��SdB + BdS� . �1�

In the QHE of noninteracting electrons, in the symmetric
gauge, each orbital in each Landau level is quantized so as to
enclose an integer multiple of �0=h /e,24,25 this also mini-
mizes the e2

8�2mR2 ��−n�0�2 per electron Aharonov-Bohm en-
ergy. Thus, the QHE ground-state maximum density electron
droplet �a completely filled Landau level� is constructed by
filling the Aharonov-Bohm orbitals from the center of the
island �the minimum of the confining potential� outwards.
Likewise, a partially filled Landau level contains an integer
number of electrons within an Aharonov-Bohm path. There-
fore, even the orbitals of noninteracting electrons in QHE
regime are quantized to enclose an integer number of elec-
trons in each Landau level. Invoking Coulomb blockade in
ill-defined areas to ensure an integer number of electrons is
redundant in this open geometry.

Between the QHE plateaus, at filling f ��� f +1, when f
Landau levels are completely filled, lowering the uniform
magnetic field and thus SdB by h /e “excites” f electrons.
Thus SdB=−�h /ef�dNe, where Ne is thermal average number

of the excited electrons �electrons in the f +1st Landau level�
enclosed by the path. One may argue that the excitation of an
electron into the partially filled Landau level is likely to
modulate the conductance via the interference path closed by
tunneling and thus result in conductance oscillations. This
explains why there may be f conductance oscillations within
the fundamental h /e period �or tunneling peaks in quantum
antidots�, but does not explain why the f oscillations are
equally spaced in B or have equal amplitude.5 Indeed, for
noninteracting electrons the positions of oscillations in B
depend on the detail of the confining potential, each oscilla-
tion originating in a different filled Landau level. For inter-
acting electrons, the many-electron ground states involve oc-
cupation of higher Landau levels, “Landau-level mixing.”
But the basis orbitals, and thus the interference paths, are
still quantized by the Aharonov-Bohm flux condition. When
electron-electron interaction is strong, occupation of neigh-
boring Landau levels is similar, and the “excited” electrons
do not originate in any specific Landau level. Thus, excita-
tion of an electron by reduction in B would result in approxi-
mately equivalent oscillations. This provides a qualitative
model explaining the experimental observations as resulting
from effects of electron Coulomb interaction on Aharonov-
Bohm effect in QHE regime.5 However, this qualitative
model has proven difficult to implement in a formal theory.

We now turn to consideration of the effect of front gates.
For interacting electrons, minimization of the ground-state
energy requires local charge neutrality for 2D density n.24,25

Thus �n /�B=0 and �ne /�B=−ef /h. Using B and a gate
voltage V as two independent variables, the differentials
dNe= ��Ne /�B�dB+ ��Ne /�V�dV and dS= ��S /�B�dB
+ ��S /�V�dV. Here, the total number of electrons within the
interference path is N=nS, �Ne /�B=−feS /h+ �1
− f /��n��S /�B� and �Ne /�V=S��n /�V�+ �1− f /��n��S /�V�
because the fraction of the excited electrons is 1− f /�, ne
= �1− f /��n. A gate changes the occupation only of the par-
tially filled Landau level: �n /�V=�ne /�V in a fixed B. Com-
bining the terms and defining �=2f /�−1, we obtain

fd

2�
= − � feS

h
+ �n

�S

�B
�dB + �S

�n

�V
− �n

�S

�V
�dV . �2�

For etch trench depletion a good approximation may be
the hard confinement: �S /�B=0, �S /�V=0. Then the periods
�exciting one electron, f�=2�� are S�B=h /ef and S�V
= ��n /�V�−1. Note that the B=const, V=const partial deriva-
tives in Eq. �2� are not equal to the experimental slopes in
Fig. 3�b�, which correspond to �	const.

The d=0 stripe slope depends on the signs of the dB and
dV multipliers in Eq. �2�. For electrons, the chief dB term is
always positive. The net sign of the dV term depends on the
two contributions. Positive gate voltage attracts electrons:
�n /�V is always positive; �S /�V is negative for anticonfining
�quantum antidots4,5� and positive for confining potential
�Fabry-Perot devices�. Mach-Zehnder devices29–31 have one
edge with confining and one with anticonfining potential, the
net term depends on device details. In most experiments �
�1. Thus, the hard confinement model predicts a small posi-
tive =const, dV /dB slope for Fabry-Perot interferometers
and quantum antidots. For devices with soft confinement
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FIG. 3. �Color online� �a� Three-dimensional color plot of the
Aharonov-Bohm oscillations on the f =2 plateau ��	2.36�. A nega-
tive VFG is stepped by 0.10 mV. The slope of the constant oscilla-
tion phase stripes is positive, consistent with Aharonov-Bohm effect
in a QHE interferometer, as discussed in the text. �b� Constriction
electron density and interference path area dependence on front-
gate voltage. Constriction n and interference S are determined from
the B-field position and period of the f =2 oscillations ��	2.5� in
several cooldowns.
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and/or modulation gates the dV /dB slope can be large in
magnitude �weak net gate coupling� and its sign depends on
device details. A small modulation gate may have Sdn and
ndS effects different than large gates.

A Coulomb blockade model of Ref. 17 was used in Ref.
22. It predicts constant oscillation phase when the charging
energy is constant, dNe=0. However, the island area is as-
sumed fixed for one device, while not so for the larger, very
constricted �nC /nB=0.4� device. We see that, in general,
there are more terms contributing: gate voltage changes flux,
too, by affecting the area ��=const means n /B=const, not
N /B=const�.

When the interference oscillations are observed, the coun-
terpropagating edge channels must pass near the saddle
points in the constrictions where tunneling occurs. Thus the
filling of the relevant edge channels is determined by the
saddle-point filling �C. The filling outside the constrictions
and at the island center �I is greater than �C, the exact profile
of the depletion is determined by the heterostructure mate-
rial, device geometry and fabrication, and also by the gate
voltage. In this device nI /nC	1.07, thus the entire interfer-
ometer, including the island center and the constrictions, is
on the same integer QHE plateau for f 
8.26,27

Figure 4 shows an illustration of edge-channel configura-
tions used to analyze the Fabry-Perot geometry in Ref. 17. In
this model, lines represent compressible edge channels,
where local filling varies f −1��� f , that carry edge cur-
rents. The incompressible �gapped� regions between the lines
are at an exact filling �= f; they do not have low-energy
charged excitations and so do not carry current, except when
tunneling occurs. Tunneling through the energy barrier
formed by the QHE gap occurs over a short distance t; for

t�5� the tunneling rate �exp−�t /2��2� is exponentially
small. Here, the magnetic length �=�� /eB. Tunneling be-
tween different Landau levels does not conserve angular mo-
mentum, or involves a spin flip, and is expected to be much
weaker; thus the backscattering via a compressible island
�type ii in Ref. 17� is not considered here.

In 2D, a compressible QHE state is formed near half-
filling, when the top Landau level is half filled.24 However, a
confining potential lifts electron state degeneracy and a small
confined “compressible island” is, in fact, incompressible in
the low-temperature limit. This fundamental fact and the fol-
lowing detailed considerations seem difficult to reconcile
with forward scattering via a compressible island as the
mechanism of the conductance oscillations reported in ex-
periments. �i� Conductance oscillations periodic in applied
uniform magnetic field B are observed in experiments. Gauge
invariance requires periodicity in magnetic flux �=BS;3 a
well-defined area S is necessary to translate a uniform field
into flux through this area. Aharonov-Bohm area is well de-
fined but it is not clear what exactly is the area of a com-
pressible island. �ii� As a function of Landau-level filling
factor �=nh /eB, in a transition between QHE plateaus f and
f +1, the size of the compressible island changes from zero
to a maximum value, so that a large variation in the B-period
would result near half-filling �= f + 1

2 . �iii� Even at the maxi-
mum size, the radius of the compressible island must be less
than the outer Aharonov-Bohm edge ring by at least 5�
=120 nm at B=1.2 T �cf. Fig. 2�. Thus one would expect a
30% smaller “compressible ring” area and thus 30% different
oscillation periods �B if the two distinct mechanisms were
involved. This is not seen in the experiment, the maximal
variation in �B is under 10% �see Fig. 2�.

Similar conductance oscillations have been observed in
devices with variously depleted constrictions, relative to the
island center, from 5 to 50 %. Different saddle-point con-
striction depletion and filling factor would result in different
edge-channel structure in the island. In a device with 50%
depletion, Landau-level filling �=4.5 in constrictions is ac-
companied by filling �=9 at island center, so that several
concentric compressible rings would be expected to form;
while in a device with 5% depletion, the island center has
�=1.26 when �=1.20 in constrictions, when oscillatory con-
ductance has been reported, but no compressible island is
expected at filling �=1.26. Thus widely different regimes of
constriction versus island center Landau-level fillings � re-
sult in similar oscillatory behavior.

While pleasingly simple and easy to visualize, the edge-
channel models, like that of Fig. 4, have certain serious
drawbacks. It can be deceptive to imply both tunneling rate
and the QHE filling by one set of lines, while tunneling is
exponentially sensitive to distance and thus to detail of con-
striction. For example, in Fig. 4, �C=2+�, hole forward scat-
tering in the inner 2���3 edge channels is shown; but
electron backscattering between the outer 1���2 channels,
over a shorter distance in the perpendicular direction, is also
easy to envision. The tunneling rate for forward scattering
can be extremely different for short and long constrictions,
depending on device fabrication, while the backscattering
rate is about the same. Another drawback is that the “com-
pressible island” in Fig. 4, �C=2+�, is not truly compress-
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ible: the electron state degeneracy is lifted by the confining
potential. These energies can be estimated as the increment
of the self-consistent �screened� confining potential over the
distance separating two consecutive island-circling basis or-
bitals, like in quantum antidots.4,5 This energy is 60 mK in
the interferometer of Ref. 20, in agreement with thermal ex-
citation experiments. In the present device it is slightly lower
but still greater than temperature or excitation.

The continuous experimental oscillation sequence in Fig.
2 is consistent with a single physical mechanism, rather than
a different mechanism for the different regimes in the edge-
channel model of Fig. 4 backscattering ��C=3−�� and for-
ward scattering ��C=2+��, and also at half-filling ��C=2.5�.

Such interpretation has been disputed in Refs. 21–23, where
two physically different regimes, called “Aharonov-Bohm”
for backscattering and “Coulomb blockade” for forward scat-
tering have been proposed. The oscillatory behavior at half-
filling has not been anticipated in Ref. 17. However, no
qualitative discontinuity in the oscillation period or ampli-
tude at half-filling is apparent in the data of Fig. 2, and single
physics, the Aharonov-Bohm interference of interacting elec-
trons in QHE regime, appears to fit all the regimes.
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