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We introduce a variant to the diffusion Monte Carlo algorithm that can be employed to study the effects of
the Rashba interaction in many-electron systems. Because of the spin-orbit nature of Rashba interaction a
standard algorithm cannot be applied and therefore a specific imaginary time spin-dependent propagator has
been developed and implemented following previous work developed in the framework of nuclear physics. We
computed the ground-state energy of the two-dimensional electron gas at different densities for several values
of the Rashba interaction strength as a function of “Rashba spin states” polarization. Comparison is given with
analytically known Hartree-Fock results and for the system in absence of Coulomb interaction.
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I. INTRODUCTION

The Rashba interaction, an electric-field-induced spin-
orbit coupling, has been experimentally observed in semi-
conductor heterostructures, depending on their symmetry,
and has been proved to be tunable in strength through a gate
voltage.1,2 The external voltage can then be used to control
the spin state of the system. This property becomes ex-
tremely interesting in view of spintronics applications. Sev-
eral experiments have also been performed with the aim of
studying the dependence of the interaction strength on ap-
plied gate voltage and well thickness.3

The typical experimental setup consists of a device etched
on a two-dimensional �2D� quantum well formed at the in-
terface of two semiconductors. In such devices electrons are
constrained to move in a two-dimensional space �Ox̂-Oŷ�
forming a 2D gas. The asymmetry of the quantum well gen-
erates an electric field, along the ẑ direction, perpendicular to
the plane containing the electrons. This causes electrons to
be subject to an effective magnetic field Beff�p�E coupling
to their spin. Such coupling gives rise to the well-known
Rashba potential,4

VRashba = ��
i=1

N

�pi
y�i

x − pi
x�i

y� , �1�

where pi is the momentum of the ith electron, and �i
x and �i

y

are the Pauli matrices acting over the spin of particle i. Ne-
glecting the Coulomb interaction among the electrons the
Hamiltonian is a sum of one body terms, and the problem is
analytically solvable. Single particle solutions are given by
plane waves with k-dependent spinors. In particular, for each
wave vector with momentum k two possible solutions exist,

��r� =
eik·r

�2 ��
ky + ikx

k

1
� . �2�

These solutions correspond to two different spin states, with
the following dispersion law:

��k�� =
k2

2m
� �	k	 . �3�

This spin splitting causes noninteracting electrons to ar-
range in two bands with different fillings depending on the
interaction strength �, therefore inducing a natural imbalance
in the filling of the two bands. In this case two different
Fermi surfaces are generated, as also shown experimentally
by beating patterns in the Shubnikov–De Haas oscillations.1,2

We will refer to this unbalance as to a “Rashba spin-state”
�RSS� polarization. Being � proportional to the intensity of
the external electric field, it is possible to manipulate the
occupation numbers and to induce at the same time preces-
sion on the electron spin. These properties induced studies in
the direction of spin field effect transistors.5

Once the Coulomb interaction is included in the Hamil-
tonian, no analytic solution is available. Several methods can
be used to study this system and much theoretical work has
been done so far �for a review see, e.g., Ref. 6�. The Hartree-
Fock �HF� method gives a simple analytical solution, and
though it totally ignores the effect of correlations, it provides
a useful insight on the structure of the single-particle levels.
Another interesting approach consists in applying a unitary
transformation U �Refs. 7 and 8� giving, to leading order
in the spin-orbit strength, a transformed Hamiltonian

H̃=U−1HU whose eigenstates are also spin and angular-
momentum eigenstates. Though approximate, this method al-
lows the use of standard Quantum Monte Carlo techniques.9

In this work a particular implementation of the diffusion
Monte Carlo �DMC�, directly dealing with spin-orbit inter-
actions, is proposed in order to obtain an ab initio method
giving accurate ground-state energies of the system. No
transformation is needed because the spin-orbit term is in-
cluded in the imaginary time propagator.

The paper is organized as follows: in Sec. II we describe
the diffusion Monte Carlo method and the way in which the
Green’s function used for treating Rashba interaction is de-
rived. The trial wave function used as a starting point for the
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projection is described in Sec. II C. Finally in Sec. III the
results are presented and discussed together with Hartree-
Fock energies for the ground state of the system,10 and con-
clusions are given in Sec. IV.

II. METHOD

A. Diffusion Monte Carlo method for general spin-
independent many-body problems

The DMC method is based on imaginary time evolution
projection. Through the use of an appropriate Green’s func-
tion, an initial state is projected over its lowest energy com-
ponent having the same nodes or the same phase as the trial
wave function �T. Given an initial wave function ��R ,0� its
propagation in imaginary time 	 is given by

��R,	� = exp�− �H − E0�	���R,0�

= �
n

cn exp�− �H − E0�	�
n�R� , �4�

where E0 is a normalization factor, 
n�R� are the eigenstates
of the Hamiltonian, and R represents the space coordinates
of the system. The amplitudes of higher energy states, due to
propagation, decay exponentially with 	, with a lifetime in-
versely proportional to their energy relative to E0. If ��R ,0�
is not orthogonal to the ground state, ��R ,	→�� will be
proportional to the ground state itself.

A typical many-body system is described with a Hamil-
tonian of the form

H = T̂ + V̂ , �5�

where T̂ is the sum of single-particle kinetic-energy opera-

tors, and the potential V̂ between all the electrons only de-
pends on spatial coordinates. The evolution in imaginary
time can be achieved by means of the Green’s function of the
Hamiltonian that can be approximated by using Trotter’s for-
mula,

e−	Ĥ = e−	V̂e−	T̂ + o�	2� . �6�

In space representation propagator �6� can be written as

G�R,R�,	� = 
R	e−�Ĥ−E0�		R�� � e−�V�R�−E0�	G0�R,R�,	� .

�7�

G0 is the exact Green’s function of a two-dimensional non-
interacting system:

G0�R,R�,	� =
1

4�D	
e−��R − R��2/2D	�, �8�

where D=2 /m is the diffusion constant. The exponential of
the kinetic term gives rise to a free particle imaginary time
Green’s function G0, while the other term is viewed as a
weighting term.

The algorithm makes use of walkers, i.e., points in the
coordinate space, in order to sample the ground-state wave
function. The propagation is obtained by diffusing the walk-
ers according the displacements distribution given by G0.

Afterwards a weight is assigned to the walkers according to
the other factor in the propagator given by the potential en-
ergy of the system. Because of the Trotter approximation, the
Green’s function is correct only at order O�	�. The problem
is overcome by using short-time propagation repeatedly in
order to achieve long enough imaginary times and adequate
statistics, minimizing at the same time the time step error.
The result is given after an extrapolation to �	→0.

In order to enhance the efficiency, importance sampling is
implemented in DMC algorithms.11,12 The idea consists in
sampling a density of points proportional to the ground-state
distribution multiplied by an importance function. In stan-
dard cases the importance function will only depend on
space coordinates being the spin fixed; thus,

�T�R�
�R,	� = G�R,R�,	�
�T�R�
�T�R��

�T�R��
�R�,0�dR�.

�9�

This can be shown to introduce a drift in G0 and to modify
the weighting factor, which will not only contain the poten-
tial, but also the local energy EL=H�T�R� /�T�R� of the sys-
tem.

B. Many-body spin-dependent Hamiltonian

The system we are studying is a two-dimensional electron
gas at T=0, in presence of both Coulomb and Rashba
interaction, with the addition of a uniform charge
background.13,14 The Hamiltonian for the system can be
written as

H = �
i=1

N
Pi

2

2m
+ ��

i=1

N

�pi
y�i

x − pi
x�i

y� + VCoul�R� , �10�

where VCoul includes the electron-electron interaction and the
effects of the background. The Hamiltonian in this case does
not only contain space coordinate dependent potentials. The
Rashba interaction, because of its spin-orbit character, con-
tains spin and momentum operators, which therefore cannot
be treated like simple weighting factors as in the case shown
above. In order to apply the DMC technique, a new propa-
gator form is needed, taking into account the particular fea-
tures of nonlocality and spin dependence.15,16

In order to simplify the following calculations let us first
consider the single-particle Hamiltonian given by the kinetic
term and the Rashba interaction for only one electron. By
applying Trotter’s formula the following form of the Green’s
function can be obtained,

G�r,r�,�	� = e−��py�x−px�y��	G0�r,r�,�	� , �11�

where the Pauli matrices �x and �y act on the spin compo-
nents of the electron, and r and r� are the coordinates of the
electron after and before the diffusion generated by G0. The
last factor G0 will again give the space displacement, while
the second one, including the Rashba interaction, contains
both momentum and spin operators, and can be viewed as
acting on the free propagator. Expanding to first order in �	
the first factor of Eq. �11�, and applying the derivatives given
by p=−i� to G0, we have
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�1 − i
�

D
��x�y − �y�x��G0�r,r�,�	�

� exp�− i
�

D
��x�y − �y�x��G0�r,r�,�	� . �12�

The first part can be interpreted as a spin rotation depending
on �x=x−x� and �y=y−y�, i.e., the displacement generated
by the Gaussian free particle Green’s function G0. The ap-
pearance of the spin-rotating factor in the Green’s function
implies that the spin coordinates of the electrons must be
explicitly used. Making use of a spinorial representation, the
spin state for the ith electron is given by

	si� = �i	↑� + �i	↓� , �13�

where � and � are the amplitudes of the spin state in the
�	↑ �� and �	↓ �� basis.

The propagation of the spin-dependent Green’s function
can then be realized with a rotation of spinors. For each
electron i the spin-dependent propagator can be written using
the following matrix form:

exp�− i
�

D
��x�y − �y�x��

� Oi

=� cos� �

D
�ri� sin� �

D
�ri�− i�yi + �xi

�ri

− sin� �

D
�ri� i�yi + �xi

�ri
cos� �

D
�ri� � ,

�14�

where �ri=��xi
2+�yi

2. Therefore, during the propagation in
imaginary time, an electron with initial coordinates
�ri ,�i ,�i�, will be first moved to �ri� ,�i ,�i� due to the free
propagator G0, and then to �ri� ,�i� ,�i�� due to rotation ac-
cording to

��i�,�i�� = Oi��i

�i
� . �15�

The approximations introduced after Eq. �11� generate an
error, which must be now taken into account at least to order
�	. If the spin-orbit propagator just derived were correct, we
would expect to obtain

 e−i�/D��x�y−�y�x�G0�r,r�,�	���r��dr�

= e−��py�x−px�y� G0�r,r�,�	���r��dr�. �16�

This equation does not hold unless the propagator is cor-
rected for a weighting factor,

e��2/D��	. �17�

It is important to note that the results obtained following this
approach coincide with the analytical form of the Green’s
function for the system in absence of Coulomb potential. In
this case no error is introduced in G�R ,R� ,�	� because the

Rashba interaction commutes with the kinetic term of the
Hamiltonian.

By considering the full many-particle Hamiltonian, in-
cluding the Coulomb interaction, the total Green’s function is

G�R,R�,�	� = e−�VCoul�R�−E0−N�2/D��	

� e−i�/D�i=1
N ��ri

y�i
x−�ri

x�i
y��	G0�R,R�,�	� .

�18�

When a spin-orbit term is introduced in the Hamiltonian,
as shown before, the propagator will not leave spin un-
changed because space coordinate diffusion becomes related
to spin rotation. This means that also the importance sam-
pling should not be naively applied, but in the total weight, a
factor �T�R ,S� /�T�R� ,S��, where S� and S respectively are
the old and new spin states, should be taken into account. It
is possible to apply the importance sampling adding a drift
term in G0 as usual by considering

�T�R,S�
�T�R�,S��

=
�T�R,S��
�T�R�,S��

�T�R,S�
�T�R,S��

�
�T�R,S��
�T�R�,S��

�T�R�,S�
�T�R�,S��

,

�19�

where the two forms of Eq. �19� are equivalent to first order
in �	. The factor where spins are unchanged can be included
as usual, while the second one can be interpreted as an ad-
ditional weighting factor. We point out that in this case the
local energy appearing in the weight includes only the spin-
independent part of the Hamiltonian.

C. Wave function

We used a trial wave function made of a Slater determi-
nant of single-particle states multiplied by a Jastrow factor
accounting for correlations, according to the form

�T�R,S� = D�R,S�exp�− �
i�j

N

u�	ri − rj	�� , �20�

where u�r� is a two-body pseudopotential of the double
Yukawa form.13,14

Single-particle states used to build the determinant are
chosen as the eigenstates of the Hamiltonian in absence of
Coulomb interaction, coinciding also with Hartree-Fock
single-particle solutions, written in Eq. �2�


k,��r,�,�� = ���
ky + ikx

	k	
+ ��eik·r, �21�

where � and � are, respectively, the up- and down-spin com-
ponents with respect to the z axis. These are pairs of wave
functions which we will call quasiup �plus sign� and quasi-
down �minus sign� states.

DMC simulations of infinite systems are usually per-
formed in close shell configurations in order to obtain a real
wave function and to reduce the finite-size effects mainly
due to the kinetic energy. This makes it possible to apply the
fixed node approximation in order to obtain a state with the
same symmetry as �T. In our case the trial wave function
cannot be reduced to a real form because of the phase change
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induced by spin rotation. Therefore we employ the fixed-
phase approximation.16–21 For any complex wave function it
is always possible to factorize the modulus in the following
way:

�T�R,S� = 	�T�R,S�	ei�T�R,S�. �22�

Using fixed node approximation means finding the
lowest energy state 
�R� whose product with the �in this
case real� trial wave function is positively defined

�R��T

��R�=
�R��T�R��0. In our case this product does
not have a defined sign and cannot be used as a sampling
density,


�R,S��T
��R,S�

= 	
�R,S�		�T�R,S�	exp�i���R,S� − �T�R,S��� . �23�

In the fixed phase approximation the problem is overcome
assuming

exp�i���R,S� − �T�R,S��� = 1, �24�

which corresponds to finding a solution with the same phase
as the trial wave function. Under this assumption Eq. �23�
becomes positive definite and the sampled distribution will
only depend on the wave-function modulus.

In order to calculate the ground-state energy at different
RSS polarizations and to reduce finite-size effects, twist av-
eraged boundary conditions �TABCs� have been introduced
in the algorithm.16,22 As shown in the electron gas without
spin-orbit interactions, this allows to obtain good results
without the need to use a very large number of electrons,
giving therefore a great improvement in terms of the compu-
tational time required.

III. RESULTS

In order to verify our method a check has been performed
by comparing numerical results with the exact solution ob-
tained neglecting the electron-electron interaction. As men-
tioned in the introduction, the Hamiltonian

H0 = �
i=1

N
Pi

2

2m
+ ��

i=1

N

�pi
y�i

x − pi
x�i

y� �25�

can be diagonalized by the single-particle wave functions
�Eq. �21��. The analytical solution to N fermions only subject
to Rashba interaction is therefore a N�N Slater determinant
of these single-particle solutions. For a given � value, the
ground state has a well defined RSS polarization. As a test
for our DMC we multiplied the exact wave function by a
Slater determinant in order to obtain a wrong state with the
same nodes as the real ground state. Our algorithm indeed
proved to be able to project out the ground state obtaining
the analytical result within error bars.

In this work we make use of the dimensionless parameter
rs=r0 /a0, defined as a function of the Bohr radius
a0=2 /me2 and the radius containing only one particle on
average V /N=�r0

2. Energies are given in units of
Rydberg/electron �1 Ry=e2 /2a0� and the Hamiltonian of
Eq. �10� in these units is

H = �
i=1

N �− �i
2

rs
2 −

2i�

rs
��i

y�i
x − �i

x�i
y��+ �26�

2e2

rs
�
i�j

N
1

	ri − r j	
+ Vback, �27�

where Vback contains the effects of the charge background.
The main numerical results presented in this work con-

cern the ground-state energies of the two-dimensional elec-
tron gas with Coulomb and Rashba interaction at different
densities �expressed in terms of the rs parameter�, different
values of the intensity � of the Rashba interaction and dif-
ferent RSS polarizations defined as

� =
N+ − N−

N
, �28�

where N− and N+ are the numbers of electrons in the
quasidown- and quasiup-spin states respectively, and the to-
tal number of electrons in the simulation is fixed to N=58.
All the values obtained for the ground-state energies as a
function of rs, �, and � are reported in the Appendix, where
the DMC and the Hartree-Fock results are compared.

In particular the rs values 1, 5, 10, and 20 were chosen
and, for each density, calculations were performed at differ-
ent � values of ground-state energy as a function of quasiup-
quasidown occupation numbers, the total number of elec-
trons in our simulation being fixed to N=58. Simulations
were done for relatively low values of rs, distant from the
Wigner crystallization regime. Calculations would also be
possible for lower densities given an appropriate set of
single-particle orbitals. This might be achieved by linear
combination of Hartree-Fock orbitals, in order to obtain a
wave function of the same quality as that used in the gas
phase. Coulomb interaction was treated by means of the
Ewald sums.23 As a comparison, besides DMC results, we
also give Hartree-Fock energies, which are given, in this
case, by the following analytic form for infinite systems:

E

N
=

�1 − �2�
rs

2 +
2�2

rs
3

���� −
2

�
��1 + ��3/2 − �� +

2

�
��1 − ��3/2� . �29�

where � was defined in Eq. �28�.
DMC results at nonzero RSS polarization are obtained by

projecting out of a trial wave function �T whose Slater de-
terminant contains different numbers of quasiup- and
quasidown-spin states. The approach is apparently similar to
what is commonly done for the electron gas in absence of
spin-orbit interaction. However, in this case the Hamiltonian
does not commute with the z spin component. The choice of
the quasiup and quasidown basis was made by comparison
with the results obtained using the standard spin-up and spin-
down basis. The latter consistently gives higher values of the
energy for the ground-state RSS polarization. Results in ab-
sence of Coulomb interaction predict spin-state RSS polar-
ization as a consequence of a two band dispersion law. A
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very similar behavior for the energy as a function of RSS
polarization is found in our results �see Fig. 1�. This suggests
the existence of an analogous two band structure also in pres-
ence of Coulomb interaction as experimentally proved by the
Shubnikov–De Haas oscillations.

In Fig. 2 energies at different � are shown as a function of
the RSS polarization �. As expected, the RSS polarization
depends on the intensity of the spin-orbit interaction, increas-
ing in module with larger �. Calculations have been per-
formed at different rs values, corresponding to different den-
sities. The onset of RSS polarization occurs at lower and
lower strengths of the Rashba interaction when the density is
decreased. This is an effect of the Rashba interaction depen-
dence on the momentum. In the Hamiltonian of Eq. �27� the
1 /rs prefactors for the interaction terms, compared to the
1 /rs

2 of the kinetic energy let interactions become more effi-
cient at high rs �low density� compared to the kinetic term.
While at high density the system will look less interacting,
and therefore also less polarized, at larger values of rs the
system will be more sensitive to the spin-orbit interaction
and will be more polarized also for smaller �.

At lower densities correlations among electrons play a
major role. In Figs. 1 and 3 DMC energies are shown to-
gether with the corresponding results from HF approxima-
tion. We see a worsening agreement when rs increases. This
must be due to the fact that HF approximation does not take
correlations into account, causing a larger deviation when the
N electrons wave function becomes less similar to a Slater
determinant.

In Fig. 4 energies for the 2D electron gas from Ref. 24 are
compared with ground-state results in presence of spin-orbit
interaction with fixed strength �=0.1. In presence of Rashba
interaction ground states have a different structure and their
RSS polarization varies with the density. However the
ground-state energy is always lower than in absence of spin-
orbit interaction over the whole density range.

In Fig. 5 the pair-correlation function g�r� decomposed
into triplet and singlet components is reported. Triplet and
singlet components were obtained collecting the following
quantities:

gc�r� = N�
i�j


�T	��rij − r�	�T�

�T	�T�

�30�

-0.75 -0.5 -0.25 0 0.25 0.5 0.75
Polarization
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E

ne
rg

y
(R

y)

FIG. 1. �Color online� Energy values at rs=1 and �=0.1, respec-
tively, obtained with DMC �triangles�, HF �squares�, and without
Coulomb interaction �circles�.
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FIG. 2. �Color online� Energy values obtained at rs=1 for three
different � values, respectively, 0.1 �triangles�, 0.2 �squares�, and
0.5 �circles�. The arrows indicate the point of minimum energy for
each �. For increasing � the energy minimum shifts to larger �in
modulus� RSS polarization.
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FIG. 3. �Color online� Energy values at rs=10 �=0.05 as in the
figure above. DMC results are represented by triangles, HF by
squares and results in absence of Coulomb interaction by circles.
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FIG. 4. Difference between energies without and in presence of
Rashba interaction ��=1�. Data were taken from Ref. 24.
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g��r� = N�
i�j


�T	��rij − r��i · � j	�T�

�T	�T�

�31�

where N is a normalization factor, and composing them ac-
cording to the triplet and singlet spin projectors,16

gS=0�r� =
1

4
�gc�r� − g��r�� , �32�

gS=1�r� =
1

4
�3gc�r� + g��r�� . �33�

The results show a tendency for the triplet and singlet first
peaks to become smaller and closer to each other when spin-
orbit interaction is switched on. This suggests a decrease in
the antiferromagnetic character of the electrons, probably
due to the induced RSS polarization.

IV. CONCLUSIONS

We have implemented a DMC algorithm for treating
Rashba spin-orbit interaction in the electron gas. We have
calculated the equation of state of 2D electron gas in the
presence of Rashba interaction. We computed the energy per
particle as a function of the strength � of the Rashba poten-
tial, rs and the RSS polarization � showing system RSS po-
larization and comparing the results with analytical HF re-
sults. Our work not only gives results for the 2D electron gas
but also provides a good test for the algorithm, opening new
possibilities for implementation on other systems, in particu-
lar quantum dots or quantum wires involving both the
Rashba and the Dresselhaus potential.25 A similar treatment
can also be extended to finite systems such as atoms and
molecules.
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APPENDIX: TABLES WITH RESULTS

In Tables I–IV the diffusion Monte Carlo results are re-
ported together with corresponding Hartree-Fock energies
and results for the system without the Coulomb interaction
with the Rashba interaction only.

TABLE I. Energies of the system at rs=1 and �=0.1, 0.2, and
0.5 for various RSS polarizations � as defined in Eq. �28�. The
DMC result is computed with Coulomb and Rashba interaction,
ERashba is the energy given by Rashba Hamiltonian �25�, and in the
last column the Hartree-Fock result is reported. All the energies are
expressed in Ry.

� N− N+ EDMC ERashba EHF

�=0.1

0.690 9 49 0.243�4� 1.67 0.244

0.414 17 41 −0.128�3� 1.29 0.009

0.276 21 37 −0.259�3� 1.15 −0.081

0.138 25 33 −0.354�2� 1.06 −0.151

0.069 27 31 −0.388�4� 1.024 −0.178

0.0 29 29 −0.414�3� 1.00 −0.200

−0.069 31 27 −0.427�4� 0.985 −0.217

−0.138 33 25 −0.432�3� 0.98 −0.229

−0.207 35 23 −0.428�3� 0.984 −0.235

−0.276 37 21 −0.416�5� 0.998 −0.237

−0.414 41 17 −0.360�4� 1.06 −0.223

−0.690 49 9 −0.136�4� 1.29 −0.137

�=0.2

0.690 9 49 0.437�4� 1.86 0.435

0.414 17 41 −0.008�4� 1.40 0.125

0.276 21 37 −0.184�5� 1.23 −0.022

0.138 25 33 −0.306�5� 1.1 −0.112

0.0 29 29 −0.411�4� 1.00 −0.200

−0.138 33 25 −0.469�3� 0.94 −0.268

−0.276 37 21 −0.514�5� 0.92 −0.314

−0.414 41 17 −0.474�5� 0.94 −0.340

−0.690 49 9 −0.322�4� 1.09 −0.328

�=0.5

0.690 9 49 1.013�7� 2.43 1.008

0.276 21 37 0.053�6� 1.47 0.230

0.0 29 29 −0.410�6� 1.00 −0.200

−0.207 35 23 −0.660�3� 0.75 −0.469

−0.414 41 17 −0.821�5� 0.59 −0.688

−0.690 49 9 −0.888�8� 0.52 −0.900

−1.0 58 0 −0.741�7� 0.67 −1.031

0 1 2 3 4 5 6 7
r (r

0
)

0

0.5

1

1.5

2
g(

r)

FIG. 5. �Color online� Pair correlation function g�r� decom-
posed into singlet �circles� and triplet �squares� channels for rs=5
with �closed symbols� and without �open symbols� spin-orbit inter-
action. For better comparison the curves are all normalized to give
g�r�→1 for r→�.
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TABLE II. Energies of the system at rs=5 and �=0.02 and 0.1 for various RSS polarizations � as defined in Eq. �28�. The DMC result
is computed with Coulomb and Rashba interaction, ERashba is the energy given by Rashba Hamiltonian �25�, and in the last column the
Hartree-Fock result is reported. All the energies are expressed in Ry.

� N− N+ EDMC ERashba EHF

�=0.02

0.690 9 49 −0.2719�5� 0.0667 −0.2178
0.414 17 41 −0.2861�5� 0.0515 −0.2042
0.138 25 33 −0.2947�5� 0.0423 −0.1995
0.0 29 29 −0.2971�5� 0.0400 −0.2001

−0.138 33 25 −0.2978�4� 0.0392 −0.2026
−0.414 41 17 −0.2951�5� 0.0422 −0.2125
−0.690 49 9 −0.2867�4� 0.0514 −0.2330
−1.0 58 0 −0.2748�5� 0.0693 −0.2702

�=0.1

0.690 9 49 −0.2403�5� 0.0972 −0.1872
0.414 17 41 −0.2668�4� 0.0701 −0.1856
0.138 25 33 −0.2879�4� 0.0486 −0.1932
0.0 29 29 −0.2964�4� 0.0400 −0.2001

−0.138 33 25 −0.3033�3� 0.0330 −0.2088
−0.414 41 17 −0.3127�3� 0.0236 −0.2321
−0.690 49 9 −0.3155�5� 0.0209 −0.2635
−1.0 58 0 −0.3099�5� 0.0267 −0.3129

TABLE III. Energies of the system at rs=10 and �=0.02, 0.05, and 0.1 for various RSS polarizations � as defined in Eq. �28�. The DMC
result is computed with Coulomb and Rashba interaction, ERashba is the energy given by Rashba Hamiltonian �25�, and in the last column the
Hartree-Fock result is reported. All the energies are expressed in Ry.

� N− N+ EDMC ERashba EHF

�=0.02

0.690 9 49 −0.1621�5� 0.0186 −0.1236
0.414 17 41 −0.1660�2� 0.0140 −0.1138
0.138 25 33 −0.1688�3� 0.0110 −0.1099
0.0 29 29 −0.1694�2� 0.0100 −0.1100

−0.138 33 25 −0.1698�2� 0.0094 −0.1149
−0.414 41 17 −0.1700�2� 0.0094 −0.1184
−0.690 49 9 −0.1699�2� 0.0109 −0.1313
−1.0 58 0 −0.1684�3� 0.0147 −0.1551

�=0.05

0.690 9 49 −0.1561�4� 0.0243 −0.1179
0.414 17 41 −0.1625�3� 0.0175 −0.1103
0.138 25 33 −0.1669�3� 0.0122 −0.1088
0.0 29 29 −0.1690�2� 0.0100 −0.1100

−0.138 33 25 −0.1714�2� 0.0082 −0.1127
−0.414 41 17 −0.1736�2� 0.0059 −0.1219
−0.690 49 9 −0.1746�2� 0.0052 −0.1370
−1.0 58 0 −0.1742�2� 0.0067 −0.1631

�=0.1

0.690 9 49 −0.1459�4� 0.0338 −0.1084
0.414 17 41 −0.1565�3� 0.0233 −0.1045
0.138 25 33 −0.1656�3� 0.0141 −0.1068
0.0 29 29 −0.1696�2� 0.0100 −0.1100

−0.138 33 25 −0.1733�2� 0.0063 −0.1146
−0.414 41 17 −0.1792�2� 0.0001 −0.1277
−0.690 49 9 −0.1837�2� −0.0043 −0.1465
−1.0 58 0 −0.1861�2� −0.0067 −0.1764
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