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We extend the Fermi liquid theory of Nozieres by introducing the next-to-leading order corrections to the
Fermi liquid fixed point. For a general SU(N) Kondo impurity away from half-filling, this extension is neces-
sary to compute observables (resistivity, current or noise) at low energy. Three additional contributions are
identified and their coupling constants are related using an original (and more complete) formulation of the
Kondo resonance floating. In the conformal field theory language, a single cubic operator is proposed that
produces the same three contributions with the same coupling constants. Comparison with an exact free-energy
expansion further relates the leading and next-to-leading order corrections so that a single energy scale, the
Kondo temperature, eventually governs the low-energy regime. We compare our results at large N with the

approach of Read and Newns and find analytical agreement.
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I. INTRODUCTION

The fascination exerted by the Kondo model' is probably
due to the large variety of theoretical techniques invented to
describe it. In fact, it has proven quite difficult to find a
single approach that alone explains all features of the Kondo
model. This is particularly true in out-of-equilibrium
situations,? for example, when a bias voltage is applied to a
source-drain setup. The seminal papers of Nozieres>* on the
Fermi liquid (FL) theory have provided a remarkable insight
into the low-energy regime of the Kondo model. Based on a
phenomenological picture, this approach contains, neverthe-
less, all relevant physics and leads to predictions that are
exact, albeit perturbative. The most famous example is cer-
tainly the Wilson ratio predicted by Nozieres® to be exactly
two in agreement with numerical estimates by Wilson.> Fi-
nally, the FL picture provides a straightforward tool to study
analytically the out-of-equilibrium regimes.

The FL approach has been recast later in the more formal
language of conformal field theory (CFT) by Affleck® and
Ludwig.”8 In this framework, the quasiparticles of the FL
constitute a boundary free field theory,® which is the infrared
strong-coupling fixed point of the Kondo model. The low-
temperature regime is then dominated by the leading irrel-
evant operator at this fixed point and the results’ are in com-
plete agreement with Nozieres. More recently, elaborating on
a more involved version of the Bethe ansatz, Lesage and
Saleur’ were able to justify the FL theory for ordinary SU(2)
Kondo and to extend it to all irrelevant operators. To be more
exhaustive, we shall mention the work of Yosida and Yamada
published independently from Nozieres. In a series of
papers!'® on the parent Anderson model, they did a thorough
analysis of perturbation theory in the interaction term U.
They derived general low-energy properties for the self-
energy that proved the Fermi liquid picture extending it to
finite U. The extension of their work to the second-order
low-energy corrections is yet an unsolved problem. Aside
from these works and perhaps surprisingly, the FL theory as
presented by Noziéres was not pursued much further,’!!
probably because no simple means were known to relate the
different phenomenological coefficients of the theory. Fol-
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lowing studies have started instead to focus on more exotic
non-Fermi liquid regimes.”%1?

Originally discussed for an ordinary spin-1/2 impurity
with SU(2) symmetry, the FL fixed point constitutes more
generally the low-energy limit of the Kondo model for a
SU(N) hyperspin impurity. The value of N tunes the relative
importance of the different low-energy processes. This
SU(N) Kondo model is called the Cogblin-Schrieffer
model'? for a single-electron impurity. Both this model and
its parent Anderson model have exact Bethe ansatz
solutions.'*!> The SU(4) case has a particular experimental
relevance with recent achievements in vertical quantum
dots'® and carbon nanotubes.'”!® In those experiments, an
orbital degeneracy might combine with the usual spin-1/2 to
form an intricate SU(4) symmetry.

The conventional Fermi liquid description contains only
the leading irrelevant operators of dimension 3, also linear in
1/Tg, where Ty is the Kondo temperature. These operators
include a combination of an elastic channel with an inelastic
one. The ratio of elastic to inelastic-scattering amplitudes is
fixed by the Friedel sum rule!® or more generally by the
principle of floating of the Kondo resonance that we shall
detail in the core of this paper. This fixed ratio can also be
shown to be a consequence of the vanishing charge suscep-
tibility on the dot."! The conventional FL approach, as we
described, is sufficient to compute observables that have a
linear energy (kgT, eV, or upB) dependence, hence, the suc-
cess in the determination of Wilson’s ratio even for a general
SU(N) symmetry.'> However, for observables with a qua-
dratic behavior, such as the resistivity or the conductance, the
addition of dimension-4 operators becomes necessary. The
ordinary SU(2) Kondo effect is peculiar in this respect since
the coefficients of these new dimension-4 operators identi-
cally vanish.

The purpose of this paper is to extend the conventional FL.
approach by introducing the full set of dimension-4 operators
with their coefficients. Within the theoretical framework pro-
posed by Nozieres, this second generation adds three terms
to the conduction-electron phase shift. One represents elastic
scattering and two inelastic scatterings involving the excita-
tion of one and two electron-hole pairs. The ratios between
the coefficients of the three FL corrections are then fixed by
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using the floating of the Kondo resonance. Let us emphasize
that the picture built in this paper for the Kondo resonance
floating extends the initial vision of Nozieres. Not only the
peak of the resonance is tied to the Fermi singularity but also
the whole structure of the resonance. We also investigate
how this translates into the CFT language. A single
dimension-4 operator is identified with SU(N) invariance. Its
expansion on the electron fields recovers the aforementioned
three processes with the same coefficient ratios. Last step of
the analysis, the free energy as a function of generalized
magnetic fields can be easily calculated within the FL theory
including all dimension-3 and dimension-4 operator sets.
Comparing the result with the exact solution obtained from
an alternative Bethe ansatz,20 the ratio between dimension-3
and dimension-4 corrections can be determined. All coeffi-
cients are finally related to each other so that, as expected,
universality is recovered as Tk remains the only energy scale
in the problem. This completes our full characterization of
the low-energy FL theory for the Kondo SU(N) model. We
stress again that this work does not modify (and therefore
does not contradict) the ordinary SU(2) analysis®' since the
new FL corrections are vanishing in that case. However,
these new corrections are fundamental in the more general
SU(N) case where particle-hole symmetry is broken.

The idea of introducing the next-to-leading order FL cor-
rections was first formulated in Ref. 22, although incom-
pletely. It was however not taken into account in Ref. 23.
The current and the noise through a SU(N) Kondo quantum
dot were calculated in Refs. 22 and 24, with a correction in
Ref. 25 on the basis of this work. The rest of this paper is
organized as follows: the new FL corrections are introduced
in the usual FL framework in Sec. II with an emphasis on the
Kondo floating and in the CFT language in Sec. III. Section
IV compares the free energy with the exact Bethe ansatz
solution. Section V proceeds with a 1/N expansion, which
coincides with the field theoretical large N approach of Read
and Newns.?¢ Section VI concludes.

II. FERMI-LIQUID THEORY

Let us define the problem more precisely. The starting
Kondo Hamiltonian is (we follow Einstein convention for
the capital superscripts)

H= 2 eblbi+ISt 2 blTh by, (1)

k,o=1...N ko0

with the dispersion &;=&p+%v gk linearized around the Fermi
energy &r. by, is the annihilation operator for a conduction
electron with spin o and wave vector k (measured from k).
The Kondo interaction controlled by Jg is an antiferromag-
netic coupling between the impurity spin operator §={SA}
and the spin operator of the conduction electrons at x=0
(impurity site). 7" and S are two sets of N>~1 generators
satisfying the commutation relations

[SY,88)=ifapeSC,  [TMTPl=ifapcTC, (2)

where the antisymmetric tensors f,pc are the structure fac-
tors of the SU(N) Lie algebra. The matrices 7" generate the
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fundamental representation of SU(N), while the S* define the
antisymmetric representation of SU(N) corresponding to a
Young tableau of a single column with m boxes. Physically,
the Kondo Hamiltonian (1) emerges from an Anderson
model with exactly m electrons at the impurity site.

In the ground state of the model, the spin of the impurity
forms a singlet with conduction electrons. It is therefore
completely screened and disappears from the picture at low
energy. The Fermi-liquid theory describes the low-energy re-
gime and is built on the following assumptions: (i) the sin-
glet scatters elastically conduction electrons, (ii) virtual po-
larization of the singlet leads to weak interactions between
conduction electrons of different spin, and (iii) the energy of
the system is an analytical function only of the bare energies
g, and of the relative quasiparticle occupation numbers
on,(g). More precisely, dn,(g)=ny(g)—60(ep—e) is the actual
occupation number relative to the ground-state distribution
with Fermi energy &p. The last point (iii) is in fact the most
stringent one and it is reminiscent of the usual (bulk) Fermi-
liquid theory. Instead of considering the total energy, one can
concentrate on the energy shift of a single quasiparticle ex-
citation and, by imposing boundary condition for a system of
finite size, translate it into an electron phase shift at energy ¢.
S,(e,0n,s) is therefore an analytical function that depends
only on ¢ and on the functions én,(e).

The general expansion of the phase shift (hereafter X,
stands for [de)

Sy(8.01,0) = &+ L& — £p) + (e — £5)°
Tk %

-2

o #o

L2 :
re2 o)

+ ;%(% (e+&' —2ep)dn, (&)
1
XSS (e ) dngale”) | + o(—3)
TKO’"<U'/ g’,g" TK
o'#o
(3)

introduces the dimensionless phenomenological coefficients
ay, a,, Py, ¢y, and x,. 9 is the phase shift at the Fermi level.
Its value is imposed by the Friedel sum rule,

mar
o= e (4)

so that 8y=r/2 at half-filling, i.e., for a particle-hole sym-
metric situation. Only «; and ¢, are kept in the conventional
FL approach.*?! a; , correspond to elastic scattering. ¢, is
an energy correction to the four-point vertex controlled by
;. x> tunes the six-point vertex corresponding to the local
interaction of three electrons. The properties of the Kondo
resonance can be read from the phase-shift expression (3).
The phase-shift expansion for a resonant-level model (RLM)
of width ~Ty is similar to the first three (elastic) terms,
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on(e)

EF £

FIG. 1. Schematic view of the doping of conduction electrons.
The black filled area represents the initial distribution n(e) and the
gray one the added electrons 5]1(17(8). Both the initial and final
[on)(e)] distributions start at e=¢& since the ground-state distribu-
tion has been subtracted.

which identifies Tk as the size of the Kondo resonance. The
comparison with RLM also indicates that «, is expected to
vanish when the resonance is centered at the Fermi level.”’
The dependence of the phase shift (3) on the conduction-
electron populations is also physically sensible. The Kondo
screening is a many-body effect that results from the sharp-
ness of the Fermi surface.?® The resonance is therefore ex-
tremely sensitive to changes in the occupation numbers,
which modify the shape of the Fermi surface.

The floating of the Kondo resonance follows from the
same physical idea. Since the Kondo resonance is built by
the conduction electrons themselves, its structure should be
invariant when doping the system such that the shapes of
electronic distributions remain the same, apart from a global
energy shift de. The only effect of this doping is then to shift
the Kondo resonance by de. Let us implement this physical
idea in a practical way. The doping procedure is shown in
Fig. 1. on/ (&) denotes the new distribution and 5n(1,(s) is the
added one such that

on, () = Snyle) + 5}1:,(8).

This translates into 6n,(e)=dn,(e— )+ 6(e)— (e - S¢)
since dn, and dn, have the same shape at the right of the
energy distribution. The invariance of the Kondo resonance
under this doping implies that

S,(e+ 8e,6n)) = 8,(e,0n,), (5)
for any ¢ and dn,. Using Eq. (3), it leads to four equations

aj—(N-1)¢; =0, (6a)

JAW-D W=D

@ 4 n+ > 2=

N-1
(N=2)x2- ¢, =0, 2“2—T¢2=0, (6¢)

corresponding to vanishing coefficients in front of, respec-
tively, S, &0, 82,1440 0n,(e"), and (S8e)®. Equations
(6a), (6b), and (6¢) are satisfied with

ay=(N-1d,, (7a)
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N —

1
Td’z, br=(N=-2)x,. (7b)

ay =

The ratio between «; and ¢; was first obtained in Ref. 12.
The identities (7a) and (7b) are consistent with the Friedel
sum rule, but they cannot be simply reduced to it. It is the
whole Kondo resonance structure that remains invariant
through the energy shift and not only the phase shift at the
Fermi energy. To our knowledge, this generalization of the
original Nozieres’ argument had not yet been pointed out.
Note that the Fermi energy & is the only energy reference in
this problem compared to which the system is doped. An
alternative and straightforward way to derive Eqgs. (6) and (7)
is therefore to require the invariance of the phase shift (3)
when shifting ep.

III. CONFORMAL FIELD THEORY

The CFT offers an alternative and illuminating perspec-
tive to re-examine these new FL corrections. It was origi-
nally noted by Affleck® that the fixed ratio between elastic
and inelastic terms in the leading FL corrections was a con-
sequence of spin-charge decoupling (spin-charge separation
was first shown in Ref. 29; it also appears in the Bethe ansatz
solutions for the Kondo!* and the Anderson'® models). Writ-
ten in terms of (spin) currents, the only eligible dimension-3
operator is the square of the spin current operator. This single
operator was shown,” using standard point-splitting tech-
niques, to produce the two couplings in Nozieres’ FL theory,
thereby, enforcing automatically the relation (7a). We shall
see here that the same reduction applies to the second gen-
eration of FL terms. One single dimension-4 operator can be
identified, which produces the couplings «,, ¢, and y, to-
gether with the relations [Eq. (7b)].

The quadratic Hamiltonian describing the strong-coupling
fixed point

Hy= 2

k,o=1...N

elioUio (8)

is written in terms of the quasiparticle field i, (x)
=3, .e™. It corresponds to free fermions and the zero-
energy phase shift (4) is included in the wave function asso-
ciated to ¢, The zero-temperature Green’s function is given
by

1

X—X

WP = —. ©)
21

The spin current operator J4(x)=X, z[ff,(x)T'lU, Por(x) is

written on the basis of SU(N) generators 7. The N X N Her-

mitian and traceless matrices T follow Gell-Mann

convention.?® The symmetry tensors d,p- (Ref. 31) are de-

fined by the multiplication rules

1 1 .
7" = EvéA,Bl + E(dABC +ifapc)TC, (10)

compatible with Eq. (2) and where | denotes the unit

matrix. The dimension-3 FL correction is given by Hﬁl)

=-\,J4(0)J4(0). For the dimension-4 operator, we seek a
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SU(N) invariant form involving three spin currents. The
most natural one is

HY =\, f dx8X)dge:J 0)IFX)IC(x):,  (11)

which can be seen as a generalization of the cubic Casimir
operator of the SU(N) Lie algebra.*? The notation :...: indi-
cates normal ordering of the operators. The invariance over
SU(N) rotations can be shown directly using the identity

dggcfepa + dapcleps + dapefEpc = 0.

The calculation that follows is similar to the one that has
been performed for the dimension-3 operator in Refs. 7 and
23. The product d,zJ*JBJC is obtained from the contraction
of the tensor dABCT;‘bedef with six fermionic fields (here
a,b,c,d,e,f denote spins). We resort to the identity

dABCT:bed A’{ (014656 ef T 5af5bc5de)+ 5ab5cd5ef

- (6, 0c/Ode + 0uqOpcOuf + OnyGpe Od) |»

(12)

with the normalization factor A'=(N*—1)/[2N(N*+1)], in
order to avoid the explicit values of the generators T*. The
singular operator J4J8J is defined using the standard point-
splitting procedure and the normal ordering eventually en-
sures a regular result.

Using the identity (12) and the explicit point-splitting
calculation—with the short-distance behavior (9)—we re-
write the perturbation H;z) (11) in terms of fermion fields.
This is a tedious but straightforward procedure. The result is
proportional to the combination

2 I
HP o = = bl g it (N = 2) —
3 21

(N—2)(N—1)<L'>2
4 2w

X (0 = )2 Pt (13)

where all fields are taken at x=0. For the complete result, we
prefer to go to wave-vector space. Using that k=27, g,
where v;=1/(hvg) is the density of state for chiral one-
dimensional (1D) fermions, it reads as

X(3) = 00): Yl Yrl ori=

H? = - > (ep +8)2
I 47TV1T%(U{/<} K+ E) Wy W gy
4
¢ ESk
2 ¥ .
t s 2 e Ve e i
™V Ko<o' {k;}
X2 - ki i )
3T2 E . lzbo-,k] lpo',kz %g;% l;bo",k4l//g-",k5 wo”,l%' .
7TV1 Ko'<u"<0'"

{k;H
(14)
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Together with the dimension-3 operators, Eq. (14) repro-
duces exactly the phase shift (3). The coefficients «,, ¢,, and
X» are related to \,,

(N> -4)(N*-1)

=3UN——————\,, 15a
1TV1T2 2N : (15a)
N —4)(N+1
d? 5 =6le( X )xz, (15b)
v Tk N
N+2)(N+1
X _gpNFDWHD, (15¢)
v Tk N

so that again we find the Eq. (7b).

To conclude, we have found independently that the CFT
leads to the same three corrections with the same relations
[Eq. (7b)] as the FL theory.

IV. INPUT FROM THE BETHE ANSATZ

In the last two sections, we have shown that we can relate
the amplitudes of the different physical processes that appear
at a given order in the Hamiltonian perturbative expansion.
This can be done either in the FL or in the CFT framework.
The arguments that we have used are only based on symme-
tries and on the global structure of the low-energy resonance.
What we cannot do however with these phenomenological
approaches is to relate the coefficients of the different orders,
for instance, a to a, or similarly \; to \,. For this, we have
to resort to the exact solution of the model, in principle,
given by the Bethe ansatz solution. Using an alternative Be-
the ansatz technique, Bazhanov et al?® derived analytical
expressions for the free energy in the general SU(N) Kondo
model with m electrons forming the impurity. We can com-
pute the free-energy perturbatively with our model and then
compare with the exact solution as a way to extract the rela-
tionship between «; and «;.

We study the same situation as in Ref. 20. The system is
at zero temperature and independent generalized magnetic
fields h,, are applied to the different spin components. Their
chemical potentials are then shifted to €+h, (or h, alone if
we take €;=0). Since the position of € is arbitrary as we
have demonstrated in Sec. II, it is chosen such that X A,
=0. In the FL theory, the free energy is straightforward to
calculate from the phase shift (3),

F=F, ——E <a18+T—8 )5}1 (e)

71-TK(r,s‘ K

N>

7TTK o<

( TK 5 )571 (g)dng(e")

’
g,&

X2
- = 2

Kg<o'<o”

S (&) Sy (e") Snyul(e", (16)

’ "
g,e',e
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where F, is the ground-state energy. The same expression
can be recovered from the Hamiltonian form, with?!-33

o .
HY = _ L g, +g. ) :
1 ZWVlTKg%,}( ky kz) l//a,kllﬂa,kz
$ §
e 2 Wi ey ()
™V K0'<o",{k,-}

and Eq. (14). The free-energy expression (16) is general. In
our simple case, the energy integrals are easy to perform
with on,(e)=6(g)— 6(e—h,). Using the FL relations (7a) and
(7b), the final result is

F:FO—A1<§h(2,>—A2<§ hf,), (18)

; ; ——Nu _ N
with the coefficients AI_ZwTK(N—l) and A2—37T;( -
On the other hand, the exact formula® gives A,

=sin(mm/N)/[27T sin(7/N)] and

B sin(2ma/N) I'(1/N)
~ sin2@/N) T(1/2 + 1/N)37T%

with the gamma function I'(z). The following universal ratio

can be extracted:
a N-2 I'(1/N) tan(7/N)

a% N-1 — (1 l)tan(mﬂ'/N)'

(19)
val'| -+
2 N
With this relation and the Egs. (7a) and (7b), all coefficients
of the model are related to «; and our low-energy approach
is fully characterized. Note that the precise value of «; de-
pends on the definition of the Kondo temperature. With no
loss of generality, we can set a;=1 and T is the only energy
scale that controls the low-energy expansion.

For a half-filled dot (particle-hole symmetric case), such
as the standard SU(2) case, m=N/2 so that a,=0 from Eq.
(19), and ¢, = x,=0 from Eq. (7b). This indicates, as we have
already mentioned, that the Kondo resonance is centered ex-
actly at the Fermi level as a natural consequence of particle-
hole symmetry. Another interesting case is the large N limit
of Eq. (19). In this limit, the Kondo model becomes a
resonant-level model with a position and a width that are
determined in a mean-field way (the slave boson mean-field
theory!'#2634) For N—+%, we indeed find that Eq. (19)
tends to a,/a? = cot(8,)—with & given by Eq. (4)—as ex-
pected for a resonant-level model.

V. COMPARISON WITH 1/N EXPANSION

The extended FL theory that we have built allows us to
compute observables in the low-energy regime. A Hamil-
tonian form is used for the perturbing operators given by
Egs. (14) and (17), and electron interaction is incorporated
by standard many-body diagrammatics. Following the large
N approach developed by Read and Newns,’® Houghton et
al. calculated the conductivity and the Lorentz ratio at low
energy and to the first order in a systematic 1/N expansion.
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3 g
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FIG. 2. Hartree diagrams for the self-energy built from Egs. (14)
and (17). The full dots (respectively, black and gray) indicate ver-
tices with four or six external lines. «, B, and vy denote spins.

We shall next compute these transport properties in the same
limit and see that our analytical predictions coincide exactly
with those of Ref. 35.

We consider the conventional Kondo problem:”* a host
metal with density of state v; at the Fermi energy contains
dilute SU(N) Kondo impurities with density n;. The single-
particle lifetime (&, T) for conduction electrons is related to
the imaginary part of the 1D improper self-energy (see Ref. 7
for more details),

_b R
o=y mlen. (20)

The different moments of 7 can be defined as

(1) = f Mds(— ! (S’T))ds,T)e”, 1)

de

where f(g,T)=(1+¢®")"" is the finite temperature Fermi-
Dirac distribution. The conductivity and the Lorentz ratio are
then, respectively, given by

2.2
o(T) = %”%O(r), (22a)

L (T) 3 £2 ( El )2
Ly, (@) c° \cz°) |
with Ly=17/3¢%. The Lorentz ratio is defined as L=«/oT,
where « is the thermal conductivity.
We gather all terms that contribute to the self-energy 37

up to O(1/T%). Following Ref. 7, the elastic contributions
can be summed up to give

(22b)

SHa(e.1) == S (1 - ¥4, 23)

where 661(8):50+(a]/TK)8+(a2/Ti)82 is the elastic phase
shift. As in Ref. 35, the impurity is formed by only one
electron so that &y=m/N. We next turn to electron interac-
tion. The Hartree diagrams shown in Fig. 2 have a structure
similar to potential scattering. Therefore, they can be incor-
porated into the elastic expression (23), where the phase shift
is now given by Eq. (3) with dn(e)=f(e,T)— 0(er—€). More
precisely, since X.0n(e)=0 and X,edn(e)=(wT)?/6, the
phase shift (3) simplifies to
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B

FIG. 3. Second-order contribution to the self-energy correspond-
ing to inelastic collisions.

(N=1)¢, (nT)*

8e,T) =
T 12

561(8) - s (24)

where only the ¢, coupling survives. The last diagram to
consider is shown Fig. 3. It describes relaxation due to elec-
tron inelastic collisions.>* Its calculation follows from Ref. 7
leading to

162150

(e,7) = (N—l)<¢l) [2+(wT)%], (25)

lm

where the N—1 factor comes from the intermediate spin sum-
mation.

To summarize our findings, the self-energy 3F=3F el
+21 . 1s the sum of inelastic (25) and elastic (23) contribu-
tions with the phase shift (24). From this result, the transport
observables [Eq. (21)] can be determined at low energy for
any N. Instead, we start at this point to investigate the large
N limit keeping only the first-order 1/N corrections. Hence,
we approximate sin éy=m/N and cos 26,=1. Expanding
the single-particle lifetime at low energy, we find

He,T) 2ae 3ae? 2&{ ) (ﬂ)z}
=1- ——| & -
70,0) Ty Ty Ty 3
—2
T2 2N[8 + (7)), (26)

with the renormalized coefficients @, ,=(N/m)a;,. Before
proceeding further, let us discuss the normalization of «.
The Kondo temperatures in the FL theory and in the large N
approach of Ref. 35 coincide if a single observable is
matched between the two models, for instance, the zero-

temperature magnetic susceptibility. In the FL theory, it reads
34,12
as>®

Nay N(N*-1) (gup)?
N-1 12

Xo= > (27)

7Ty

whereas %(g,u,B)ZJ(J +1)/Tk is the definition given in Ref.
35. J is the angular momentum and the impurity model has
SU(2J+1) symmetry. A common Kondo temperature Ty is
thus achieved with a;=1-1/N.

The conductance (21) is readily obtained from the elec-
tron lifetime (26) with the result
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o(T)

o= G w30 ol )

aT\? 8 1
:1+<T—K> |:1_3TV+O<N2>:| (28)

in full agreement with Ref. 35. This agreement confirms that
the two procedures, namely, the FL theory expanded at large
N on one side, and the large N approach expanded at low
energy on the other side, indeed correspond to the same
physical limit. Nevertheless, it does not help us to validate
the new dimension-4 FL corrections since a, disappears
from the final result (28).

The situation is markedly different for the Lorentz ratio

(21). Using
f‘“’ das4<— &f(S’T)> -
o de -

and the electron lifetime (26), we obtain, up to O(1/N),

L(T 8 (7T \ 7 1
Lo _,, (’T ) [ a%—m%——}, (29)
L, 15 2 N

where @, is explicitly present. The large N expansion of the
universal ratio (19) (with m=1),

a N( +21112—1)

a%ﬂ' N

7(=T)*
15 °

(30)

is introduced in Eq. (29), leading eventually to

L(T) 4 (@T 8
L—0=1 15( )[1+—(21n2—1)] (31)

Again there is full agreement with Ref. 35.

One conclusion that can be drawn from these results is
that our extension of the FL theory satisfies a stringent test
imposed by the large N approach. We can also be confident
in our theory and reverse the perspective with the following
conclusion: we have checked on representative observables
that the 1/N expansion of Read and Newns is correct at low
energy.

VI. CONCLUSIONS

In the case of a generalized SU(N) symmetry for the im-
purity away from half-filling, the Kondo resonance is cen-
tered off the Fermi energy. One consequence is that observ-
ables like the resistivity in magnetic alloys, or the current
and the noise in quantum dots, require at low energy the
introduction of the next-to-leading order correction around
the Fermi-liquid fixed point. Two possible reasonings have
been employed in this work to identify the new Fermi-liquid
corrections. In a first approach, the Landau expansion of the
phase shift has been pushed to the next order. The coeffi-
cients of the three resulting new contributions have further
been related by using the floating argument. Physically, the
floating expresses the fact that the Kondo resonance is built
only by the distribution of conduction electron and follows
its Fermi singularity.

125304-6



FERMI-LIQUID THEORY FOR SU(N) KONDO MODEL

In a second approach, we have proposed a single operator,
cubic in the spin currents, and which remains invariant over
SU(N) rotations. This operator resembles the cubic Casimir
invariant of the SU(N) Lie algebra. Performing point split-
ting, we have recovered the same three processes with the
same relation between their coupling constants. In fact, the
reduction in coupling constants can be assigned to a common
physical origin: the quenching of charge excitation on the
impurity. In the first approach, the only fixed absolute energy
reference that the Kondo resonance might depend on is the
single-particle energy level. It is effectively pushed to infin-
ity in the Kondo limit, which allows to develop the floating
argument. In the second approach, the fact that charge exci-
tations are frozen imposes that our cubic operator involves
only spin currents.

Next the ratio between the leading and the next-to-leading
order corrections has been determined by comparison with
the exact solution for the free energy. This reduces further
the number of coupling constants to a single one, which is

PHYSICAL REVIEW B 80, 125304 (2009)

essentially the inverse of the Kondo temperature. Finally, the
large N regime of our theory has been shown to coincide
exactly with field theoretical large N predictions, thereby,
comforting our analysis.

Let us conclude by noting some consequences for experi-
ments (experiments in alloys with magnetic impurities are
reviewed in Ref. 36 with a comparison to exact Bethe ansatz
results). The subtleties of this work do not apply to the ordi-
nary spin-1/2 Kondo effect with SU(2) symmetry since our
corrections all vanish in that case (and for a half-filled dot in
general). However, for experiments probing a possible SU(4)
Kondo effect, the ingredients presented here are necessary to
determine the low-energy properties of the model.
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