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We present an approximate analytic expression for the photoluminescence spectral function of a model
polariton system, which describes a quantum dot, with a finite number of fermionic levels, strongly interacting
with the lowest photon mode of a pillar microcavity. Energy eigenvalues and wave functions of the electron-
hole-photon system are obtained by numerically diagonalizing the Hamiltonian. Pumping and photon losses
through the cavity mirrors are described with a master equation, which is solved in order to determine the
stationary density matrix. The photon first-order correlation function, from which the spectral function is
found, is computed with the help of the quantum regression theorem. The spectral function qualitatively
describes the polariton lasing regime in the model, corresponding to pumping rates two orders of magnitude
lower than those needed for ordinary �photon� lasing. The second-order coherence functions for the photon and
the electron-hole subsystems are computed as functions of the pumping rate.
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I. INTRODUCTION

Excitonic polaritons are quasiparticles made up from
strongly coupled electron-hole pairs and photons.1,2 They are
experimentally realized in semiconductor optical microcavi-
ties with embedded quantum wells. The small volume of the
microcavity, high reflectivity of its walls, and quasiresonance
condition between the confined-photon and excitonic ener-
gies guarantee the strong coupling regime.

At very-low excitation rates, in mean only a single quasi-
particle lives inside the cavity. With increasing excitation
power, however, an abrupt increase of ground-state occupa-
tion takes place due to the quasibosonic statistics of the po-
laritons. A threshold behavior of the photoluminescence is
observed. This behavior has been interpreted as Bose-
Einstein condensation of polaritons3,4 or as a dynamical ef-
fect �polariton lasing�.5 The latter position is motivated by
the experimental demonstration that thermalization mecha-
nisms are not effective.

In the present paper, we start from the idea of the polar-
iton laser,6 where pumping provides a reservoir from which
the low-lying polariton states are populated. Unlike common
lasers, no population inversion is required and the active me-
dium �the excitons� is strongly interacting with the cavity
photons, forming the quasibosonic polaritons.

The theoretical description of polaritons faces the difficul-
ties inherent to a many-particle strongly interacting system
working under a nonequilibrium pumping regime. Our strat-
egy to tackle this problem is based upon two simplifications.
First, we consider a finite system,7–9 that is a single photon
mode, and a finite number of single-particle states �ten� for
electrons and holes. Then, the electron-hole-photon many-
particle Hamiltonian is numerically diagonalized in order to
find the energies and wave functions of the system. We stress
that both Coulomb and electron-hole-photon interactions are
treated exactly in our scheme. Second, we compute the sta-
tionary density matrix from a master equation which ac-
counts for photon losses through the cavity mirrors and
pumping. The master equation is solved in a truncated set of

many-particle states. Notice that these simplifications pre-
serve the main ingredients of the problem: the existence of
fermionic and bosonic degrees of freedom, the strong cou-
pling between them, the existence of a finite number of
single-particle states for fermions �around 104 in Refs. 5 and
10 in our model� participating in the conformation of polari-
tons, a stationary state reached when pumping and losses are
equilibrated, etc.

Strictly speaking, our model describes a quantum dot sup-
porting a few excitonic states and strongly interacting with
the lowest photon mode of a thin micropillar. It covers an
intermediate region between the two-level dot10–12 and the
infinite system �well�.13 It is simple enough to allow exact
diagonalization but, at the same time, complex enough to
capture many of the properties of the infinite system.

The plan of the paper is as follows. In Sec. II, the model
is described in details. In the next section, we briefly sketch
the algorithm for the numerical diagonalization of the Hamil-
tonian, and show a few results for the energy spectrum and
matrix elements of operators. In Sec. IV, we present the mas-
ter equation for the density matrix and show typical occupa-
tions of many-polariton levels for low, intermediate, and
relatively strong pumping rates. In Sec. V, the way of obtain-
ing the exact photoluminescence �PL� spectral function, and
the approximations leading to the simplified expression used
in the paper are clarified. From this expression, we compute
the intensity, position and linewidth of the main PL peak as
functions of the pumping rate. Section VI is devoted to
second-order coherence functions. Finally, in the last section,
we summarize the main results of the paper.

II. MODEL POLARITON SYSTEM

As mentioned in the preceding section, we study a finite
polariton system. A GaAs micropillar with radius of about
one micron or lower is considered, in such a way that the
lowest photon mode is well separated from the higher
modes,14 and we can assume that a single photon mode is
coupled to the lowest electron-hole states. The active me-
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dium inside the cavity is described by a finite number of
harmonic-oscillator states for electrons and holes, as shown
in Fig. 1. The number of single-particle states �ten� is dic-
tated only by practical reasons: the dimension of the many-
particle Hilbert space grows exponentially with the number
of states. This finite system could be a good model for a
quantum dot inside a thin micropillar, and even could be
used to obtain the qualitative behavior of quantum well-
based micropillars.

The interaction Hamiltonian includes electron-electron,
hole-hole, and electron-hole Coulomb interactions as well as
electron-hole-photon coupling, the latter in the rotating-wave
approximation,15

H = �
i

�Ti
�e�ei

†ei + Ti
�h�hi

†hi�

+
�

2 �
ijrs

�i, j��r,s�ei
†ej

†eser +
�

2 �
ijrs

�i, j��r,s�hi
†hj

†hshr

− ��
ijrs

�i, j��r,s�ei
†hj

†hser + �Egap + ��a†a

+ g�
i

�a†hīei + aei
†h

ī

†� . �1�

The effective band gap, Egap, is taken as 1500 meV for
GaAs. � is the detuning of the photon mode with respect to
Egap. The harmonic-oscillator energies are much smaller than
Egap. We will neglect them in the single-particle energies of
electrons and holes, and will write: Ti

�h�=0, Ti
�e�=Egap. g is

the electron-hole-photon coupling strength. Notice that we
are including only spin-up electrons, spin-down holes and
one “circular” polarization of photons in Eq. �1�. A model
with the two photon polarizations, which, however, would
dramatically increase the dimension of the Hilbert space,
would make possible the study of interesting features such as
the spontaneous buildup of coherence between “left-handed”
and “right-handed” polaritons.16 � is the strength of Cou-
lomb interactions, and �i , j��r ,s�—the dimensionless matrix
elements among harmonic-oscillator states.

The oscillator states are labeled by two quantum numbers:
the number of zeroes in the radial wave function, k, and the
angular momentum projection along the cavity axis, l. The

hole state, ī, in Eq. �1� is the conjugate of the electron state i,
that is, has the same k, but the momentum is −l. This means
that the photon interacts only with electron-hole pairs with
zero angular momentum. As a consequence, the total angular
momentum of the electron-hole system,

L = �
i

�li
�e� + li

�h�� , �2�

is a conserved magnitude. In addition, the Hamiltonian, Eq.
�1�, preserves the polariton number,

Npol = Npairs + Nph =
1

2�
i

�ei
†ei + hi

†hi� + a†a . �3�

We notice the similarity between ours and a finite Dicke
model.17 The infinite Dicke model has been used to describe
polaritons in microcavities.18 The main difference with our
approach is the following. In the Dicke model of polaritons,
we first solve for the excitons and retain only the ground
state. Multiexcitonic states are not considered. This, may be,
is a good approximation for far-apart, small �not supporting
multiexcitons� quantum dots in a microcavity.

Many-particle states with fixed Npol and L are constructed
in the next section. We give here a preview in order to com-
pare with the traditional picture of noninteracting polaritons.
We take for the parameters the values, g=3 meV, and �
=2 meV. The latter is a reasonable value for GaAs, leading
to an exciton binding energy of a few meVs. The high value
of g is, however, not intended to be realistic. It is chosen in
order to illustrate the interesting regime, not studied so far,
where photon-pair coupling and Coulomb interactions are
comparable. In Fig. 2 we show all of the states with Npol
=1 in the model. We joined with a dashed line the lowest
states in each L tower �the yrast states� in order to conform
the lower polariton �LP� branch. The upper polariton �UP�
states, on the other hand, can be identified from the photolu-
minescence �PL� emission. We indicated in Fig. 2 the UP
state in the L=0 sector. Notice that, because of the strong
electron-hole-photon coupling constant, the UP state is
pushed up to high energies in our model. In between LP and
UP states there is a set of “dark” polariton states. They play
an important role in the dynamics because they cannot decay
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FIG. 1. �Color online� Schematic representation of the
harmonic-oscillator states for electrons and holes in the model.
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FIG. 2. Polariton states with Npol=1.
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through photon emission. Let us stress that, our high-g re-
gime could be of interest in other contexts, where ultrahigh
light-matter couplings have been reported.19

We shall see in Sec. IV that photon losses in the cavity
and incoherent pumping can be modeled by two terms in the
master equation for the density matrix. We will not include
relaxation mechanisms inducing transitions between states in
the same Npol sector �acoustical phonons�. As a result, the
total angular momentum is conserved even when pumping
and losses are taken into account. We will solve the dynam-
ics in the L=0 tower, which will allow us to compute the PL
emission along the pillar symmetry axis.

Finally, let us comment about the truncation of the basis
of single-particle states in Fig. 1. For small quantum dots,
this is a natural assumption. In thin micropillars, the number
of states strongly coupled to the lowest photon mode is large,
but finite. In Ref. 5, for example, it should be around 104. In
this sense, our model may be thought of as a scaled version
of a micropillar. At larger excitation energies the electron-
hole states behave incoherently and act as a reservoir for the
lower polariton states. We partially take account of these
higher excited states in our model of incoherent pumping
�Sec. IV�. Coulomb interactions between polariton states and
the reservoir, which is an additional source of decoherence,
will be, however, neglected.

III. EXACT DIAGONALIZATION RESULTS FOR THE
ISOLATED SYSTEM

For given Npol and L, we diagonalize the Hamiltonian in a
basis constructed from Slater determinants for electrons and
holes and Fock states of photons. The wave functions are
looked for as linear combinations,

�I� = � CSe,Sh,n�Se,Sh,n� , �4�

where Se and Sh are Slater determinants for electrons and
holes with the same number of particles, Npairs, and the num-
ber of photons is n=Npol−Npairs. When Npol=0 there is only
one state, the vacuum. When Npol=1 there are 17 states with
L=0. One of them is the state with one photon �no pairs�,
and the remaining 16 states correspond to matter excitations
�no photons�, that is, all possible combinations of one elec-
tron and one hole states with total angular momentum equal
to zero. On the other hand, there are 256 states with Npol
=2, 1746 states with Npol=3, etc. As Npol increases, the num-
ber of eigenstates of H rises, reaching around 18 000 for
Npol�10. We use Lanczos algorithms20 to obtain the ener-
gies and wave functions of the lowest states in each sector.

We give in Fig. 3 a schematic representation of the
ground-state wave functions with quantum number L=0, and
polariton numbers Npol=1 	case �a�
, Npol=6 	case �b�
, and
Npol=600 	case �c�
. The detuning parameter is fixed to
�=−3 meV. This value corresponds to quasi resonance. In-
deed, in the Npol=6 case, the distribution is peaked around
Npairs=3, whereas in the large-Npol limit it is peaked around
Npairs=5, that is the mean occupation of fermionic levels is
near 1/2. Notice that the mean number of photons is around
595 in the latter case.

In Fig. 4�a� the many-particle effects on polariton �pho-
ton� emission are made evident. We plotted the energy dif-
ference Egs�Npol�−Egs�Npol−1�−Egap as a function of Npol. A
persistent blueshift toward the photon energy �equal to �� is
noticed as Npol is increased. On the other hand, in Fig. 4�b�
the energy difference EUP−ELP is plotted as a function of
Npol. For large Npol numbers, this difference behaves like
2�g2Npol.

The obtained wave functions may be used to compute
matrix elements of operators. As it will be seen in the next
section, the most important matrix elements related to photon
emission and losses are �F�a�I�, where the many-polariton

FIG. 3. Weights of the sectors with given Npairs in the ground-
state wave functions. Case �a� corresponds to L=0 and Npol=1, case
�b� to Npol=6, and case �c� to Npol=600.

FIG. 4. �a� Energy shift of photon emission from the ground
state as a function of Npol. That is, �E=Egs�Npol�−Egs�Npol−1�
−Egap. �b� Scaling in the EUP−ELP energy difference.
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states F and I are such that Npol�F�=Npol�I�−1. We show in
Fig. 5�a� the matrix elements squared ��F�a�I��2 for transitions
from Npol=2 states to the one-polariton ground state. A
Lorentzian with �=0.1 meV is used to smear out the tran-
sitions. The analogs of UP and LP states are also clearly
distinguished here and in any Npol sector. The transfer of
population from the UP state with Npol polaritons to the LP
state with Npol−1 polaritons will be a key ingredient in the
dynamics, as will become clear in the next section.

In Fig. 5�b� we draw the absolute value of the matrix
elements ��F�a�I�� in the low-Npol sectors. When Npol�1,
only the lowest 20 states are used to construct the matrix.
Notice that the analogs of LP and UP states are always in-
cluded among these 20 states. We computed the matrix ele-
ments for Npol�600 �a matrix of dimension around 12 000�
and stored them in a file. A second file contains the energy
eigenvalues. They are the input files for the dynamics, dis-
cussed in the next section.

IV. MASTER EQUATION DESCRIPTION OF PUMPING
AND LOSSES

The actual polariton system is not isolated. Photons es-
cape mainly through the cavity mirrors. The spontaneous
pair decay through leaky modes of the cavity is much less
important,10 and will be neglected. In order to maintain a
mean number of polaritons in the cavity, the system should
be continuously pumped. As mentioned before, pumping
comes from excited pair states decoupled from the photon
field, which may decay through emission of optical phonons,
for example. We will, however, neglect the effects of Cou-
lomb interactions with the excited pair states on the relax-

ation of the polariton states, and also neglect relaxation due
to the emission of acoustical phonons by the polariton states,
prevented by the bottleneck effect,21 that is selection rules
for energy and momentum of the transitions which cannot be
simultaneously satisfied. These two effects, i.e., relaxation
due to Coulomb interactions or to phonons, could be in-
cluded in a latter stage, but in the present paper they will not
be considered. This means that the density matrix of the
polariton system should be determined from a dynamical
equation.

We will use a quantum dissipative master equation10,22 in
order to describe photon losses and pumping,

d�

dt
= −

i

	
	H,�
 +




2
�2a�a† − a†a� − �a†a�

+
P

2 �
I,J

�2�IJ
† ��IJ − �IJ�IJ

† � − ��IJ�IJ
† � . �5�

The parameter 
 accounts for photon losses through the cav-
ity mirrors �	
�Egap /Q, where Q is the cavity quality fac-
tor�. In our calculations, we take 
=0.1 ps−1. Notice that 

�g /	, thus our model system works under the strong light-
matter coupling regime. On the other hand, the parameter P
is a pumping rate. We will use a sort of homogeneous pump-
ing, with equal probabilities for all states. To this end, we
introduce lowering and rising operators, �IJ�I�= �J�, �IJ

† �J�
= �I�, where Npol�I�=Npol�J�+1. As we are employing a finite
number of states 	Eq. �20�
 in each sector with given Npol
�1, total pumping probabilities are finite. The absence of
phonon thermalization is also the reason why L=0 states are
decoupled from other states with L�0. Thus, we will solve
Eq. �5� in the most relevant L=0 sector. In addition, we will
focus on the stationary solutions of Eq. �6�, that is, the lhs of
these equations equal to zero.

The number of variables in Eq. �5� may be estimated as
follows. In each sector with Npol�1 there are 20 occupa-
tions, �II, and 2019=380 coherences, �FI, with F� I. That
is, 400 variables per sector. If we include sectors with 0
�Npol�Npol

�max�, the total number of variables is 400Npol
�max�

−2. When Npol
�max�=10, for example, the system has 3998

equations.
We solve the resulting linear system of equations for the

stationary density matrix with Npol
�max�=10, and found the re-

markable fact that the coherences are three order of magni-
tude lower than the occupations, that is the density matrix is
approximately diagonal in the energy representation.9 For
example, for the set of parameters �=−3 meV, P
=0.01 ps−1, we get: �I�J��IJ� /�I�II=710−4.

In what follows, in order to extend the analysis up to
relatively high polariton numbers �Npol

�max�=600�, we will ne-
glect the coherences. The number of variables reduces to
20Npol

�max�−2. For the occupations in the stationary limit, Eq.
�5� take the explicit form

0 = 
�
J

��I�a�J��2�JJ − 
�II�
J

��J�a�I��2

+ P �
Npol�J�=Npol�I�−1

�JJ − P�IINup�I� , �6�

where Nup�I� counts the number of states with polariton
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FIG. 5. �Color online� �a� The matrix elements ��F�a�I��2 for
transitions from Npol=2 states to the one-polariton ground state. A
Lorentzian with �=0.1 meV is used to smear out the transitions.
�b� The matrix ��F�a�I�� in the low-Npol sectors.
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number Npol�I�+1. We have Nup�1�=17, Nup�I�=20 for 1
�Npol�I��Npol

�max� and, finally, Nup�I�=0 for Npol�I�=Npol
�max�.

The set of homogeneous linear equations 	Eq. �6�
 should
be complemented with the constraint,

�
I

�II = 1, �7�

which corresponds to the conservation of probability.
We show in Fig. 6 three regimes of pumping: low, inter-

mediate, and large pumping rates, clearly differentiated by
the patterns of occupations. In that figure, the y axis corre-
sponds to the occupations �II, whereas in the x axis the states
are arranged in increasing order of the polariton number,
Npol. Recall that the first state is the vacuum with Npol=0,
then we have 17 states with Npol=1, then 20 states with
Npol=2, etc. The ground state in each sector with fixed Npol
is indicated by a square.

At low pumping rates, the mean polariton number, defined
as �Npol�=�I�IINpol�I�, is �Npol��1. The state with the high-
est occupation is the vacuum. The ground-state occupations
in sectors with Npol�1 are depressed. On the other hand, in
the situation represented in the central panel of Fig. 6, �Npol�
is around four. The ground-state occupations in sectors with
Npol� �Npol� are enhanced with respect to the other states in
the same sector. This is a kind of stimulated occupation of
ground states. Finally, for large pumping rates the occupation
in each sector with fixed Npol is nearly uniform. In the ex-
ample shown in the lower panel of Fig. 6, �Npol� is around
24. A broad bell of occupied states ranging from Npol�12 to

around 40 is observed. Once computed the stationary density
matrix, one can estimate the photoluminescence response in
the stationary state.

V. PHOTOLUMINESCENCE SPECTRAL FUNCTION

In order to obtain the photoluminescence spectral func-
tion, S���, we follow the lines sketched in paper.10 S��� is
defined in terms of the first-order correlation function of pho-
tons,

S��� =
1

�
Re 

0

�

d� exp�− i����a†�t + ��a�t�� . �8�

This function is to be computed with the help of the quantum
regression theorem,22 which states that if we write

�a†�t + ��a�t�� = �
I,J

�J�a†�I�ga,IJ, �9�

the auxiliary operator

ga,IJ = � �J��I��t + ��a�t�� , �10�

satisfies with respect to � the same master equation as the
matrix elements �IJ, with initial conditions,

ga,IJ��=0 = �
K

�I�a�K��KJ�t� . �11�

In the stationary limit, t→�, we get �KJ�t�=�JJ
����KJ, and

ga,IJ��→0�= �I�a�J��JJ
���. These initial conditions dictate that

ga,IJ behaves in the same way as the “vertical” coherences,
that is, Npol�I�=Npol�J�−1. Recall the equation for the verti-
cal coherences, which may be obtained from Eq. �5�,

d

d�
ga,IJ = �i�IJ − �IJ�ga,IJ

+ 
�
K,M

�I�a�M�ga,MK�K�a†�J�

−



2 �
K�I,M

�I�a†�M��M�a�K�ga,KJ

−



2 �
K,M�J

ga,IM�M�a†�K��K�a�J� , �12�

where �IJ= �EJ−EI� /	, and

�IJ =



2 �
K

���K�a�I��2 + ��K�a�J��2� +
P

2
�Nup�I� + Nup�J�� .

�13�

The general solution of Eq. �12� is

ga,IJ = �
n

Cne�n�XIJ
�n�, �14�

where �n and XIJ
�n� are, respectively, the eigenvalues and

eigenvectors of matrix BIJ,MK, defined by the rhs of Eq. �12�,
that is

FIG. 6. Occupations at three different pumping rates: low �upper
panel�, intermediate �polariton laser, central panel�, and high pump-
ing �lower panel�. The detuning parameter is �=−3 meV.
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�
M,K

BIJ,MKXMK
�n� = �nXIJ

�n�. �15�

The coefficients Cn are determined from the initial condi-
tions,

�
n

CnXIJ
�n� = �I�a�J��JJ

���. �16�

The explicit expression for S��� is the following:

S��� = −
1

�
�
I,J

�
n

DIJ,n
�r� �n

�r� + DIJ,n
�i� ��n

�i� − ��
��n

�r��2 + ��n
�i� − ��2 , �17�

where DIJ,n= �J�a†�I�CnXIJ
�n�, and the supraindexes r and i re-

fer, respectively, to the real and imaginary parts of the mag-
nitudes. The dimension of the matrix problems given by Eqs.
�15� and �16� is 17+2017+2020 �Npol

�max�−2�. When
Npol

�max�=10, for example, the dimension is 3557.
We notice that there is an approximate expression for

S��� which is based on the fact that EJ−EI�Egap
�1500 meV �for GaAs�, whereas 	
 and 	P are smaller
than 1 meV. In a first approximation, we take only the diag-
onal terms in Eq. �12�, arriving to the following expression
for the correlation function:

�a†�t + ��a�t���t→� � �
I,J

��I�a�J��2�JJ
��� exp�i�IJ − �IJ�� ,

�18�

from which it follows that

S��� �
1

�
�
I,J

��I�a�J��2�JJ
����IJ

�IJ
2 + ��IJ − ��2 . �19�

The main advantage of expression �19� is the simplicity. The
luminescence from state J depends on the probability, �JJ,
that the state is occupied, and on the matrix elements �I�a�J�
for emission of a photon. The widths �IJ have contributions
from losses and pumping, the latter is also a source of deco-
herence.

The nondiagonal terms in Eq. �12� can only slightly
modify the position of resonances, given by �IJ. They have a
more appreciable effect on the widths. In Fig. 7, a compari-
son is made between the exact, Eq. �17�, and approximate,
Eq. �19�, spectral functions. The parameters are such that the
mean number of polaritons is �Npol�=3.4. The lower energy
emission has contributions from different peaks. We notice,
by the way, that multimode emission in the polariton lasing
regime, which is a manifestation of its nonequilibrium na-
ture, has been nicely demonstrated recently.23 The strongest
peak, which we take as the definition of the LP, is more
sharper in the exact scheme. We will, nevertheless, use ex-
pression �19� in order to obtain the behavior of the PL even
for very strong pumping rates ��Npol��500�, where an effec-
tive weak coupling regime is established.

We fit the lower polariton peak to a Lorentzian �dashed
line�, from which the integrated intensity, peak position, and
effective linewidth are extracted. In Fig. 8, we show S�E�
and the corresponding Lorentzian fit for the three cases illus-
trated in Fig. 6. The main characteristics of the polariton
emission are apparent in the figure. That is, a blueshift of the

emission, and an increase of the linewidth as the pumping
rate is increased.

The upper panel of Fig. 9 shows the integrated intensity
as a function of P for a detuning �=−3 meV. A threshold
�change in the slope� at P�310−3 ps−1 is observed, cor-

FIG. 7. �a� PL spectral function computed from the exact ex-
pression, Eq. �17�. �b� The spectral function computed from the
approximate expression, Eq. �19�. The detuning is �=−3 meV, and
the pumping rate, P=0.006 ps−1.

FIG. 8. S�E� and the Lorentzian fit �dashed line� to the LP peak
for the three cases of Fig. 6.
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responding to stimulated ground-state occupations when the
number of polaritons exceeds one. This is the “polariton la-
ser” regime. At this threshold value, the peak position �center
panel� begins a continuous blueshift toward the bare photon
energy �1500−3=1497 meV�, and the linewidth �bottom
panel� starts increasing. In the “polariton laser” regime there
is an interval where the linewidth saturates, and even de-
creases. This is better seen in the additional line �empty
squares�, computed from the exact equations, Eqs. �15�–�17�.
The decrease of the linewidth corresponds to maximum co-
herence, as will become evident below.

We draw an additional curve �dashed line� in Fig. 9, cen-
ter panel, which refers to ground-state to ground-state tran-
sitions. This curve is constructed in the following way. For a
given P, we find �Npol�. Then, the energy of the transition
from the ground state of the system with polariton number
equal to �Npol� to the ground state of the system with polar-
iton number equal to �Npol�−1 is found from Fig. 4�a�. Com-
parison with this curve shows that the excited states, and
states with polariton number higher than the mean value de-
termine the position of the LP peak.

The right border of the polariton laser regime is conven-
tionally set to P�410−2 ps−1 in this figure. It is charac-
terized by a second change of slope in the intensity curve,
and a renewed increase of linewidth. Let us notice that, in
this quasiresonant case, the mean occupation of fermionic
levels becomes near one half in the border, a fact that could
be appreciated below. For strong pumping rates, we observe
a tendency to saturation in the position of the peak �toward

the photon energy�, which indicates the emergence of a new
regime characterized by an effective, weak photon-matter in-
teraction.

In Fig. 10, we show results for positive detuning, �=
+5 meV, where the electron-hole contents of the wave func-
tions are higher. At this level, they look very similar to those
reported in Fig. 9. We can approximately fix the limits of the
polariton laser regime as 910−3� P�610−2 ps−1. How-
ever, as it will become clear in the next section, the mean
number of pairs is close to 5 near threshold, leading to a
mean occupation of fermionic levels, �Npairs� /10, close to
1/2. This example shows that polariton lasing is not in an-
tagonism with population inversion. Or, to set it in a different
way, population inversion in these systems is not synonym of
effectively weak pair-photon coupling. These results could
be related to the small number of available states for fermi-
ons or the chosen values of the system parameters, but any-
way they illustrate aspects of principle.

VI. SECOND-ORDER COHERENCE FUNCTIONS

In Figs. 11 and 12, we show the mean number of polari-
tons, �Npol�, the mean number of pairs, �Npairs�, and the co-
herence properties of the photon and matter subsystems in
the quasiresonant and in the positive detuning case, respec-
tively. We define the second-order coherence functions for
photons and electron-hole pairs in terms of the one- and two-
point correlation functions at zero time delay,

gph
�2� =

�a†a†aa�
�a†a�2 , �20�
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FIG. 9. Integrated intensity, position and linewidth of the lower
polariton peak, coming from Eq. �19�, as functions of the pumping
rate. �=−3 meV. For the additional lines in the center and bottom
panels see explanation in the main text.

FIG. 10. Same as Fig. 9 for �=+5 meV.
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geh
�2� =

�D†D†DD�
�D†D�2 , �21�

where a is the photon annihilation operator, and D=�ihīei is
the interband dipole operator.

The coherence functions evolve from values larger than
two at low pumping rates to values near one �Poisson statis-
tics, perfectly coherent state� immediately after the threshold.
Notice that the electron-hole subsystem reaches coherence
more rapidly than photons �geh

�2��gph
�2�� possibly because of

Coulomb interactions. For large values of P, we get geh
�2�

�gph
�2��1. Notice also that, in the resonant case, there is a

pumping rate for which both geh
�2� and gph

�2� are approximately
equal to one. This is the point of maximum coherence, and
corresponds to a minimum of the linewidth.

In the positive detuning case, the minimum of the line-
width is reached at the point where geh

�2� has a local maxi-
mum. For low pumping rates, �Npol� and �Npairs� are very
similar. They start differing precisely at the polariton lasing
threshold, where the population of fermions is inverted.

VII. CONCLUSIONS

In conclusion, we have computed the stationary density
matrix, the photoluminescence spectral function, and the
second-order coherence functions in a model polariton sys-
tem describing a multilevel quantum dot strongly interacting
with the lowest photon mode of a microcavity. The main

features of polariton lasing, i.e., blueshift of the emission
peak and increase of the linewidth as the pumping rate is
raised, are reproduced by the model. Unexpected properties,
such as the coexistence of polariton lasing and population
inversion for positive detuning, are also manifested.

Our polariton model with a finite number of degrees of
freedom, could be positioned in between the two-level sys-
tem, studied in Ref. 10, and the infinite degrees of freedom
systems considered, for example, in Ref. 13. Our model is
simple enough to be numerically diagonalized but, at the
same time, complex enough to capture many of the features
of the infinite system. In this sense, our results could be
qualitatively compared with the experiment reported in Ref.
5, although the values of our model parameters are com-
pletely unrealistic.

Finally, we should stress that we are aware of the limita-
tions of our model. We understand, for example, that g�2�

does not rise further in the regime of strong pumping be-
cause the model does not include higher fermionic levels,
which should become populated in this regime, that interact
with the lowest polariton states, partially destroying coher-
ence.
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FIG. 11. Upper panel: mean number of polaritons and electron-
hole pairs as a function of P. Lower panel: The second-order co-
herence functions at zero time delay for photons and electron-hole
pairs. The detuning parameter is �=−3 meV.

FIG. 12. Same as Fig. 11 for �=+5 meV.
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